
The steady-states of splitter networks

Basile Couëtoux, Bastien Gastaldi, Guyslain Naves

Aix-Marseille University

G-SCOP 2025

1

Splitter networks

A splitter network consists in conveyor belts joined by splitters.

A conveyor belt (or belt) moves items

▶ from its tail to its head;

▶ at a constant speed;

▶ items may accumulate at its head end: they stop until
some item is consumed.

A splitter joins one or two incoming belts to one or two
outgoing belts

▶ it takes items from the incoming belts;

▶ and moves them to the outgoing belts;

▶ it tries to alternate between the two incoming belts,
between the two outgoing belts; it is fair.

2

Splitters are fair (out)

down

up

up

up

▶ Splitters alternate pushing on their outgoing arcs;
▶ except when one of them is completely filled.

3

Splitters are fair (in)

down

up

down

down

▶ Splitters alternate pulling from their incoming arcs;
▶ except when one of them has not available item.

4

Example of a splitter network dynamics

0

0

0

0

5

Example of a splitter network dynamics

1

1

0

0

6

Example of a splitter network dynamics

2

2

0

0

7

Example of a splitter network dynamics

3

3

0

0

8

Example of a splitter network dynamics

4

4

0

0

9

Example of a splitter network dynamics

5

5

1

0

10

Example of a splitter network dynamics

6

6

2

0

11

Example of a splitter network dynamics

7

7

3

0

12

Example of a splitter network dynamics

8

8

4

0

13

Example of a splitter network dynamics

8

9

5

0

14

Example of a splitter network dynamics

9

10

6

1

15

Example of a splitter network dynamics

10

10

7

1

16

Example of a splitter network dynamics

11

11

8

2

17

Example of a splitter network dynamics

11

12

9

2

18

Example of a splitter network dynamics

3(n−1)
4

+ 2

3(n−1)
4

+ 3

n − 4

n−1
2

− 4

19

The static of a splitter network

3
4

3
4

1
2

1

1
2

1

1
2

20

A continuous model to study steady-states

▶ A directed graph (I ∪ S ∪ O,E);

▶ I inputs, O outputs with degree 1;

▶ S splitters with in-degree and out-degree at most 2;

▶ E belts;

▶ c : I ∪ O → [0, 1]: frequency of item generation (input)
or absorption (output);

Goal: determine the throughput t : E → [0, 1]: frequency of
items passing through each arc, in the long run.

21

Steady-state rules

Steady-state:

▶ t : E → [0, 1] throughput function;

▶ F ⊆ E set of fluid arcs

▶ E \ F set of saturated arcs

Rules:

▶ conservation: t(δ−(s)) = t(δ+(s)) for any splitter s;

▶ maximization: if
e e ′

, then t(e) = 1 or t(e ′) = 1;

▶ . . .

22

Rules for splitter fairness

A splitter alternates between its outgoing belts, except for full
(saturated) belts:

▶ out-fairness: for any

e1

e2

with e1 fluid, t(e1) ≥ t(e2);

▶ therefore, if the two leaving arcs are fluid, they have equal
throughput.

On the incoming belts:

▶ in-fairness: for any

e1

e2

with e1 saturated,

t(e1) ≥ t(e2);

▶ therefore, if the two incoming arcs are saturated, they
have equal throughput.

23

Rules for inputs and outputs

An input provides items at a given frequency. Excessive items
accumulates, making the outgoing belt saturated.

▶ input: for an input
e

i , t(e) ≤ c(i), and if
t(e) < c(i), e is saturated.

An output consumes items at a given frequency. There is no
excess below that frequency.

▶ output: for an output
e

o , t(e) ≤ c(o), and if
t(e) < c(o), e is fluid.

24

Preliminary remarks

▶ Splitters networks come from the video game Factorio.

▶ The definition of steady-states is symmetrical: (t,F)
steady-state in G ⇔ (t,E \ F) steady-state in the reverse
of G ;

▶ If F is given, the feasible t can be described by a linear
system of inequalities, and thus computed efficiently.

▶ When there is no saturation (only fluid arcs), the discrete
model is equivalent to the rotor-router model (each vertex
routes its passing items cyclically on its outgoing arcs).
Rotor-router is a deterministic idealization of a random
walk. Stationary distributions will play a role!

25

Questions

▶ Existence of steady-states? Algorithms?

▶ Uniqueness of steady states?

▶ Design splitter networks with interesting properties. In
particular, motivated by Factorio, can we design
(minimal) networks with uniform throughput on their
output? Can we test these properties?

▶ Extension to allow belt capacities? Can we make a
rate-limiter network for any allowed maximum rate?

26

Computing a steady-state

27

Two families of max-flow algorithms

Recall the two classical max-flow algorithms:

▶ Augmenting paths:
▶ ignore the condition of being maximum;
▶ improve the flow by increasing along a path or a

blocking flow, until reaching maximum.

▶ Push-relabel:
▶ ignore the conservation rule (vertices can have excessive

incoming flow);
▶ push the excess forward or backward, until there is no

excess left.

28

A push-relabel algorithm for steady-state?

▶ relax the conservation rule (allow flow in excess):
pre-steady-state;

▶ push excess forward equally on outgoing fluid arcs;

▶ when both outgoing arc are full or saturated, make
incoming arcs saturated.

▶ push excess backward equally on incoming saturated arcs;

▶ repeat until no more excess remain.

29

Non-termination of the naive approach

+1 0 0 0

0 0

0 0

0

30

Non-termination of the naive approach

0 +1 0 0

1 0

0 0

0

31

Non-termination of the naive approach

0 +1
2

+1
2

0

1
1
2

1
2 0

0

32

Non-termination of the naive approach

0 +1
4

+3
4

0

1
3
4

3
4 0

0

33

Non-termination of the naive approach

0 + 1
2n

1− 1
2n

0

1 1− 1
2n

1− 1
2n 0

0

34

Exponential example

125 124 123 122 121 120 119 116 109 94 63 0

▶ Let ϕ(u) = 1 +
∑

v∈N+(u)
ϕ(v)
d+(u)

for any u ∈ I ∪ S , and

ϕ(o) = 0 for o ∈ O.

▶ pushing ϵ units of excess flow decreases
∑

s∈S ϕ(s)exc(s)
only by ϵ.

35

A terminating push-relabel algorithm.

Solution:

▶ keep the mecanism to move arcs from fluid to saturated;

▶ use a linear program to push as much flow as possible.
More precisely, F is fixed, and we find t which maximizes

t(F)− t(E \ F)

Then by the optimality property,
▶ either there is e ∈ F , such that (t,F \ e) is a

pre-steady-state;
▶ or (t,F) is a steady-state.

Terminates in at most |E | rounds.

36

An augmenting path algorithm?

▶ Relax the input rule (allow fluid input belts below
capacity): sub-steady-state;

▶ Define a residual graph: fluid arcs + reversed saturated
arcs;

▶ Find a circulation with equal flow on outgoing arcs of any
vertex;

▶ Increase the sub-steady-state along that circulation.
▶ Circulation: conservation is preserved;
▶ equal flow on outgoing arcs: fairness is preserved.

▶ If no circulation exists, find a sink in the residual graph,
and move some arc from fluid to saturated.
▶ Preserves maximality rule.

37

the C=-circulation problem

Problem: Given G digraph, C= a partition of E (G), find a
non-zero circulation f on G , where for each F ∈ C=, f is
constant on F .

▶ easily solvable by LP;

▶ max integer flow variant is NP-hard (Meyers-Schulz).

Special case: C= is a refinement of (δ+G (u))u∈V (G).

38

Good characterization


x(δ+(v))− x(δ−(v)) = 0 (v ∈ V)

xe − xe′ = 0 (e, e ′ ∈ C ∈ C=)
x ≥ 0

(1)

By Farkas lemma:

Theorem

(G = (V ,E), ts, C=) has a C=-circulation x with xts > 0 iff
there is no set S ⊆ V \ {t} with a partition
S = S0 ⊎ S1 . . . ⊎ Sk where

▶ s ∈ S0;

▶ for any C ∈ C=, e ∈ C, there is e ′ ∈ C (possibly e = e ′)
such that e ′ ∈ E [Si , Sj] and i < j .

39

Solving in strongly connected graph

t

s

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

40

Solving in strongly connected graph

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

41

Solving in strongly connected graph

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

42

Solving in strongly connected graph

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

43

Solving in strongly connected graph

π2

π3

π4

π5

π6

π7

π1

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

44

Solving in strongly connected graph

π2

π3

π4

π5

π6

π7

π1

π 3

π
2

π4
/2

π
7
/
2

π
6 π 5

/2

π1/2

π
4 /2

π
5

π 7
/2

π
1
/
2 ▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.

45

Solving in general graphs

Lemma

Algorithm in time O(|E | log4 |V |+ sd(G)) that

▶ either find a feasible solution x with xts > 0;

▶ or correctly assert that none exists.

Lemma

▶ Either there is a non-zero C=-circulation in G;

▶ or there is a vertex v ∈ V with δ+(v) = ∅.

46

Example of the sub-steady-state algorithm

1 10

0

0

0
0

0

0

0

0

0

z z
1/12

1/
8

1/8

1/16

1/16

1/6

5/48

1/12

5/
48

1/
12

47

Example of the sub-steady-state algorithm

1 1
1/2

3/
4

3/4

3/8

3/8

1

5/8

1/2

5/
8

1/
2

z z

S0

S1

48

Example of the sub-steady-state algorithm

1 1
1/2

3/
4

3/4

3/8

3/8

1

5/8

1/2

5/
8

1/
2

z z
4/26

2/
26

2/26

1/26

1/26

1/26

4/26

7/
26

4/
26

49

Example of the sub-steady-state algorithm

1 1
5/7

6/
7

6/7

3/7

3/7

1

4/7

5/7

1

5/
7

z z
1/16

4/
16

3/16

2/16

2/16

2/16

1/16

1/
16

50

Example of the sub-steady-state algorithm

1 1
3/4

1

3/4

1/2

1/2

1

1/2

3/4

1

3/
4

z z
3/18 4/18

1/18

2/18

2/18

2/18

3/18

1/
18

51

Example of the sub-steady-state algorithm

1 1
6/7

1

5/7

3/7

4/7

6/7

3/7

6/7

1

5/
7

z z

52

The sub-steady-state algorithm

▶ computes a steady-state;

▶ by augmenting along stationary circulation;

▶ in O(m) rounds, and at most as many computations of a
stationary distribution in the residual graph.

53

Some consequences

Increasing the input capacities:

▶ increases the throughput on fluid arcs, and decreases it on
saturated arcs;

▶ cannot decrease the throughput on any ouput;

▶ may decrease the throughput on some input!

Increasing the output capacities:

▶ decreases the throughput on fluid arcs, and increases the
throughput on saturated arcs;

▶ cannot decrease the throughput on any input;

▶ may decrease the throughput on some output!

54

Example of non-monotonicity

1

0

1

0

1

0

1
1

0

1

1

1

0

1
2

1
2

1
1

0

1

1

1

1

1
2

1
2

1

1
2

1
2

55

Uniqueness

Steady-states are not unique.

1 1
1/4 1/2 1

1/2

1/2

1/4

1/4
1/2 + ε

1/4 + ε

1/4 1/2 1 1/2 1/4

1/2

1/4

56

Unique throughputs

Theorem: Steady-states have the same throughputs on their
inputs and outputs.

Definition: Uniform sub-steady states = steady-states where
all fluid inputs have equal throughput γ.

For any is ∈ δ+(I), if is ∈ F , then t(is) = max{c(i), γ}.

57

Recall the algorithm

The sub-steady-state algorithm iterates 3 operations:

▶ augment(f): augment along a C=-circulation f that
improves the total throughput;

▶ move(f): augment along a C=-circulation f that does not
improve the throughput;

▶ saturate(e): remove an arc e from F .

Performs a sequence of these three operations:

(0,E)
σ1−→ (t1,F1)

σ2−→ . . .
σk−→ (t⋆,F ⋆)

58

Confluence of operations

Proposition: these operations are locally confluent.

(t,F)

(t1,F1)

(t2,F2)

σ1

σ2

Consequence:

59

Confluence of operations

Proposition: these operations are locally confluent.

(t,F)

(t1,F1)

(t2,F2)

σ1

σ2

(t ′,F ′)

σ2

σ1

Consequence:

60

Confluence of operations

Proposition: these operations are locally confluent.

(t,F)

(t1,F1)

(t2,F2)

σ1

σ2

(t ′,F ′)

σ2

σ1

Consequence:

(t0,F0)

(t1,F1)

(t2,F2)

∗

∗

61

Confluence of operations

Proposition: these operations are locally confluent.

(t,F)

(t1,F1)

(t2,F2)

σ1

σ2

(t ′,F ′)

σ2

σ1

Consequence:

(t0,F0)

(t1,F1)

(t2,F2)

∗

∗
(t ′,F ′)

∗
∗

62

Any steady-state is reachable

Proposition: Any steady-state is reachable by a sequence of
operations of the uniform sub-steady-state algorithm.

+ Confluence: steady-states have unique throughputs on
I ∪ O.

Proposition: The valid sequences of operations from (0,E) is
an antimatroid. The uniform sub-steady-states form a
semimodular lattice.

63

The join and meet operations

(t1,F1) ∧ (t2,F2) = (t0,F1 ∪ F2) and
(t1,F1) ∨ (t2,F2) = (t ′,F1 ∩ F2) with

t0(e) =


max{t1(e), t2(e)} if e ∈ F1 ∩ F2

t1(e) if e ∈ F1 \ F2

t2(e) if e ∈ F2 \ F1

min{t1(e), t2(e)} if e /∈ F1 ∪ F2

t ′(e) =


min{t1(e), t2(e)} if e ∈ F1 ∩ F2

t2(e) if e ∈ F1 \ F2

t1(e) if e ∈ F2 \ F1

max{t1(e), t2(e)} if e /∈ F1 ∪ F2

64

Balancer networks
(definitions and upper bounds)

65

Designing balancers

Factorio players need a family of splitter networks:

▶ arbitrary many inputs;

▶ arbitrary many outputs;

▶ for any input capacities, the output throughputs are all
equals.

▶ Motivation 1: Balances the throughput between multiple
belts;

▶ Motivation 2: reduce or increase the number of belts, for
instance going from 5 input belts to 3 output belts.

Such networks are informally called balancers.

▶ Minimize CPU cost ⇔ minimize the number of splitters
in a balancer.

66

The simple balancer

Balancing property: all outputs have capacity one, for any
choice of input capacities, the output throughputs are equal.

The simple balancer, a recursive construction:

67

Limitations of the simple balancer (1)

Not balancing when output capacities are not uniform.

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 0

0.5

0.5
0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
1

0

68

Limitations of the simple balancer (2)

Limiting the total throughput when some output capacities are
less than 1.

0 0

0 0

1 1

1 1

0

0
0.5

0.5

0

0 0

1

0

0

0.5

0.5

69

The throughput-unlimited balancer

Throughput-unlimited (TU) property: The total throughput is
always the minimum of the input capacities and the output
capacities (the network is never a bottleneck).

Construction: glue a simple balancer with the reverse of a
simple balancer. Known as the Beneš network, both balancing
and TU.

70

The Beneš network

71

Universal property

▶ Balancer properties assumes output capacities are 1;

▶ Even Beneš network is not balancing when output
capacities are not uniform;

▶ Can we design a splitter network whose output
throughputs are equals on fluid outputs (recall that
saturated outputs have throughput equal to capacity)?

Call this the universal property!

72

A universal network

Beneš(k + 1) Beneš(k + 1)

73

Remarks on balancer designs

▶ These designs were proposed by players (with the
universal network slightly modified);

▶ we proved that those designs are correct;

▶ for n inputs and outputs, Θ(n log n) splitters;

▶ from the universal network, we can ignore some inputs
and outputs: universal network with arbitrary number of
inputs and outputs;

▶ another technique used by players is to loop back
superfluous outputs to superfluous inputs (beware that it
may break the balancing property if not done carefully).

74

Rate-limiters

75

Rate-limiters

Another design, used to limit the throughput on a single belt.

▶ For a rational r , design a single-input, single-output
splitter network;

▶ there is a steady-state with throughput min{c(i), r , c(o)};
▶ with a minimum number of splitters;

▶ Motivation: reduce the maximum throughput in a single
belt;

▶ Not possible for irrational r (throughputs are solutions of
rational linear systems).

76

Rate-limiter: naive idea

s

s ′

p
q

1

p
q

1− p
q

2k

q − 1

. . .

p q − p 2k − q

77

Improving over the binary tree

▶ Naive construction as O(q) splitters;

▶ can contract some subtrees into single nodes, to get
O(log q) splitters;

▶ works for p
q
≥ 1

2
, can be modified to work with p

q
< 1

2
;

▶ Another construction with number of splitters logarithmic
in the binary representation of r = p

q
.

78

A binary-based construction.

Construction for r = 169
504

= 0.010(101011)ω

1
2

1
8

2
63

1
126

1
4

4
63

1
53

1
252

1
504

173
504

3
8

1
2

1
2

1
4

4
63

1
63

1
252

1
8

2
63

1
126

1
4

79
252

83
252

84
252

169
504

169
504

1

1
504

0 1 0 1 0 1 0 1 1

79

Balancers (lower bounds)

80

Minimize the number of splitters

Number of splitters in balancers on 2k inputs and outputs:

▶ Simple balancer: S(k) = k · 2k−1;

▶ Benes network: B(k) = (2k − 1)2k−1;

▶ Universal balancer: U(k) = (k + 1)2k+1.

Goal: an Ω(k2k) lower bound would prove that these designs
are almost optimal.

81

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

82

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

83

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

84

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

85

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

86

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

87

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

88

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

89

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

90

Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.

91

Balancers are uniformly-distributing

In an arbitrary balancer network:

▶ set all input capacities to 0 except one;

▶ set all output capacities to 1;

▶ set the last input capacity sufficiently small to avoid
saturated arcs.

Then items from the single active input are uniformly
distributed over the outputs.

Balancer networks are uniformly-distributing coin-tossing
network.

92

Binary decision tree maps into balancer

1 1/2
1/4

1/41/2

1/4

1/4

1/
8

1/8

1/16

1/16

1/16

1/16

c

b

a

1/
2 1/2

1/
4 1/4 1/

4 1/4

1/
8 1/8

1/
16

1/16 1/
16

a b c

a b c

93

Coin-tossing potential

Sub-steady-state algorithm: augment along stationary
distribution.

Random walks induce that stationary distribution.

Taking into account the capacities and the saturated arcs:

▶ each splitter acts as a coin-tossing device for its fluid
outgoing belts, up to 2 units of flow;

▶ each splitter acts as a coin-tossing device for its saturated
incoming belts, up to 2 units of flow.

Total coin-tossing potential is 4|S |.

94

Knuth-Yao sampling algorithm

Sampling in (a, 3
8
), (b, 1

3
), (c , 7

24
):

a b c

0 0 0

1 1 1

1 0 0

0 1 0

0 0 1

0 1 0
...

...
...

a b c

a

b

c

b

95

Knuth-Yao bound

Minimum expected number of coins tosses to sample a
distribution π over all possible algorithm is

E =
d∑

i=1

∑
k∈N

k

2k
binaryk (πi)

We need E
4
splitters to get the same throughput outputs.

Lower-bound for balancers on 2k belts: k2k−2

96

Lower-bound analysis

▶ Simple balancers have twice as many splitters as the lower
bound;

▶ lower-bound based on a potential of 4 per splitter, that is
using saturation;

▶ if we want an all-fluid balancer, then simple balancers are
optimal!

▶ Design balancers using saturation?

▶ Cost of throughput-unlimitedness (factor 4)? of
universality (factor 16)?

97

Priority splitters

98

Priority splitters

In Factorio, splitters may be set with priorities:

▶ out-priority: the splitter send as many items as possible
to some outgoing belt. What is left goes on the other
outgoing belt.

▶ in-priority: the splitter takes as many items as possible
from some incoming belt. If possible it also takes from
the other incoming belt.

▶ choose out-priority or out-fair, in-priority or in-fair
independently.

New questions:

▶ Steady-state and algorithms?

▶ Better designs? Lower bounds?

▶ Complexity: choose priorities to achieve some goal.

99

Steady-states with priorities

Rules for priority splitters with priorities
(p+, p−) : S → E ∪ {⊥}:

▶ out-priority: if

e1

e2

with e1 fluid,

▶ if p+(s) = e1 then t(e1) = 1 or t(e2) = 0;
▶ if p+(s) ̸= e2 then t(e1) ≥ t(e2);

▶ in-priority: if

e1

e2

with e1 saturated,

▶ if p−(s) = e1 then t(e1) = 1 or t(e2) = 0;
▶ if p−(s) ̸= e2 then t(e1) ≥ t(e2);

The algorithms can easily be adapted.

100

Maximizing the total throughput

Problem: given a splitter network with capacities, find
priorities to maximize the sum of throughputs on the outputs.

▶ (uniform choose all) polynomial-time algorithm when all
capacities are 1;

▶ (uniform choose out) polynomial-time algorithm when all
capacities are 1 and all splitter are in-fair;

▶ (force-choose out) NP-hard to choose output priorities,
when output capacities are 1, all splitters are in-fair and
must not be out-fair;

▶ (uniform restricted choose out) NP-hard to choose output
priorities for a subset of splitters, when all capacities are
1, all splitters are in-fair.

101

Force choose-out

Reduction from partition of {a1, a2, . . . , an} with sum 2.

an

a2

a1 1

1

1

1

... u v

102

Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

1

1

1

0

1

1 1

1

7
8 1

0

1

1
1
2

1

3
4

7
8

0

1
2

1
2

1
2

0

1
2

1
4

1
4

1
4

1
2

3
4

7
8

7
8

103

Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

1
2

1

1

1
2

1

1 1

1

1
4

5
8 1

1
4

1
5
8

1
2

1
4

5
8

1
2

1
4

5
8

1
2

1
4

1
2

3
4

3
4

3
4

3
4

1
2

1
2

1
4

104

Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

s1

s2

s3x

x x

x

x?

105

Uniform restricted choose-out

Clause gadget:

t1

t2

t3

t4

t5

s

x y z

1

9
32

7
16

9
32

7
8

23
32

7
16

9
16

1
32

1
16

11
16

11
16

1
16

11
16

7
8

5
8

1
8

1
8

1
4 1

4

1
2

1

23
32

9
16

1
2

1
32

9
32

1
2

p

106

Designing balancers with priorities

▶ Lower bound still applies to bound the number of out-fair
and in-fair splitters;

▶ may use priority splitters to reduce the number of
splitters;

▶ universal balancer splitter invented by players has 4 times
less splitters, with a small number of priority splitters;

▶ there is a splitter network with almost optimal
(k + 2)2k−2 fair splitters, using (too many) priority
splitters, leveraging saturation to balance.

107

A saturating balancer

108

Conclusion

109

Perspectives

▶ Purely combinatorial algorithm (without Laplacian
solver)?

▶ Stronger lower bounds, better designs for balancers.

▶ Complexity for the non-uniform choose-all throughput
maximization problem.

▶ How to check the balancing property? OK for
non-saturating balancers.

110

	Computing a steady-state
	Balancer networks (definitions and upper bounds)
	Rate-limiters
	Balancers (lower bounds)
	Priority splitters
	Conclusion

