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Splitter networks

A splitter network consists in conveyor belts joined by splitters.

A conveyor belt (or belt) moves items

▶ from its tail to its head;

▶ at a constant speed;

▶ items may accumulate at its head end: they stop until
some item is consumed.

A splitter joins one or two incoming belts to one or two
outgoing belts

▶ it takes items from the incoming belts;

▶ and moves them to the outgoing belts;

▶ it tries to alternate between the two incoming belts,
between the two outgoing belts; it is fair.
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Splitters are fair (out)
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▶ Splitters alternate pushing on their outgoing arcs;
▶ except when one of them is completely filled.
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Splitters are fair (in)
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▶ Splitters alternate pulling from their incoming arcs;
▶ except when one of them has not available item.

4



Example of a splitter network dynamics
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Example of a splitter network dynamics
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The static of a splitter network
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A continuous model to study steady-states

▶ A directed graph (I ∪ S ∪ O,E );

▶ I inputs, O outputs with degree 1;

▶ S splitters with in-degree and out-degree at most 2;

▶ E belts;

▶ c : I ∪ O → [0, 1]: frequency of item generation (input)
or absorption (output);

Goal: determine the throughput t : E → [0, 1]: frequency of
items passing through each arc, in the long run.

21



Steady-state rules

Steady-state:

▶ t : E → [0, 1] throughput function;

▶ F ⊆ E set of fluid arcs

▶ E \ F set of saturated arcs

Rules:

▶ conservation: t(δ−(s)) = t(δ+(s)) for any splitter s;

▶ maximization: if
e e ′

, then t(e) = 1 or t(e ′) = 1;

▶ . . .
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Rules for splitter fairness

A splitter alternates between its outgoing belts, except for full
(saturated) belts:

▶ out-fairness: for any

e1

e2

with e1 fluid, t(e1) ≥ t(e2);

▶ therefore, if the two leaving arcs are fluid, they have equal
throughput.

On the incoming belts:

▶ in-fairness: for any

e1

e2

with e1 saturated,

t(e1) ≥ t(e2);

▶ therefore, if the two incoming arcs are saturated, they
have equal throughput.
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Rules for inputs and outputs

An input provides items at a given frequency. Excessive items
accumulates, making the outgoing belt saturated.

▶ input: for an input
e

i , t(e) ≤ c(i), and if
t(e) < c(i), e is saturated.

An output consumes items at a given frequency. There is no
excess below that frequency.

▶ output: for an output
e

o , t(e) ≤ c(o), and if
t(e) < c(o), e is fluid.
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Preliminary remarks

▶ Splitters networks come from the video game Factorio.

▶ The definition of steady-states is symmetrical: (t,F )
steady-state in G ⇔ (t,E \ F ) steady-state in the reverse
of G ;

▶ If F is given, the feasible t can be described by a linear
system of inequalities, and thus computed efficiently.

▶ When there is no saturation (only fluid arcs), the discrete
model is equivalent to the rotor-router model (each vertex
routes its passing items cyclically on its outgoing arcs).
Rotor-router is a deterministic idealization of a random
walk. Stationary distributions will play a role!
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Questions

▶ Existence of steady-states? Algorithms?

▶ Uniqueness of steady states?

▶ Design splitter networks with interesting properties. In
particular, motivated by Factorio, can we design
(minimal) networks with uniform throughput on their
output? Can we test these properties?

▶ Extension to allow belt capacities? Can we make a
rate-limiter network for any allowed maximum rate?
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Computing a steady-state
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Two families of max-flow algorithms

Recall the two classical max-flow algorithms:

▶ Augmenting paths:
▶ ignore the condition of being maximum;
▶ improve the flow by increasing along a path or a

blocking flow, until reaching maximum.

▶ Push-relabel:
▶ ignore the conservation rule (vertices can have excessive

incoming flow);
▶ push the excess forward or backward, until there is no

excess left.
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A push-relabel algorithm for steady-state?

▶ relax the conservation rule (allow flow in excess):
pre-steady-state;

▶ push excess forward equally on outgoing fluid arcs;

▶ when both outgoing arc are full or saturated, make
incoming arcs saturated.

▶ push excess backward equally on incoming saturated arcs;

▶ repeat until no more excess remain.
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Non-termination of the naive approach
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Non-termination of the naive approach
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Non-termination of the naive approach
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Non-termination of the naive approach
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Non-termination of the naive approach
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Exponential example

125 124 123 122 121 120 119 116 109 94 63 0

▶ Let ϕ(u) = 1 +
∑

v∈N+(u)
ϕ(v)
d+(u)

for any u ∈ I ∪ S , and

ϕ(o) = 0 for o ∈ O.

▶ pushing ϵ units of excess flow decreases
∑

s∈S ϕ(s)exc(s)
only by ϵ.
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A terminating push-relabel algorithm.

Solution:

▶ keep the mecanism to move arcs from fluid to saturated;

▶ use a linear program to push as much flow as possible.
More precisely, F is fixed, and we find t which maximizes

t(F )− t(E \ F )

Then by the optimality property,
▶ either there is e ∈ F , such that (t,F \ e) is a

pre-steady-state;
▶ or (t,F ) is a steady-state.

Terminates in at most |E | rounds.
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An augmenting path algorithm?

▶ Relax the input rule (allow fluid input belts below
capacity): sub-steady-state;

▶ Define a residual graph: fluid arcs + reversed saturated
arcs;

▶ Find a circulation with equal flow on outgoing arcs of any
vertex;

▶ Increase the sub-steady-state along that circulation.
▶ Circulation: conservation is preserved;
▶ equal flow on outgoing arcs: fairness is preserved.

▶ If no circulation exists, find a sink in the residual graph,
and move some arc from fluid to saturated.
▶ Preserves maximality rule.
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the C=-circulation problem

Problem: Given G digraph, C= a partition of E (G ), find a
non-zero circulation f on G , where for each F ∈ C=, f is
constant on F .

▶ easily solvable by LP;

▶ max integer flow variant is NP-hard (Meyers-Schulz).

Special case: C= is a refinement of (δ+G (u))u∈V (G).
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Good characterization


x(δ+(v))− x(δ−(v)) = 0 (v ∈ V )

xe − xe′ = 0 (e, e ′ ∈ C ∈ C=)
x ≥ 0

(1)

By Farkas lemma:

Theorem

(G = (V ,E ), ts, C=) has a C=-circulation x with xts > 0 iff
there is no set S ⊆ V \ {t} with a partition
S = S0 ⊎ S1 . . . ⊎ Sk where

▶ s ∈ S0;

▶ for any C ∈ C=, e ∈ C , there is e ′ ∈ C (possibly e = e ′)
such that e ′ ∈ E [Si , Sj ] and i < j .
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Solving in strongly connected graph

t

s

▶ T in-arborescence;

▶
⋃

e∈T Ce ;

▶ H SCC with ts ∈ H ;

▶ π stationary
distribution;

▶ f (uv) = π(u)
d+(u)

.
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Solving in strongly connected graph
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Solving in strongly connected graph
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Solving in general graphs

Lemma

Algorithm in time O(|E | log4 |V |+ sd(G )) that

▶ either find a feasible solution x with xts > 0;

▶ or correctly assert that none exists.

Lemma

▶ Either there is a non-zero C=-circulation in G ;

▶ or there is a vertex v ∈ V with δ+(v) = ∅.
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Example of the sub-steady-state algorithm
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Example of the sub-steady-state algorithm
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Example of the sub-steady-state algorithm
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Example of the sub-steady-state algorithm
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Example of the sub-steady-state algorithm
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Example of the sub-steady-state algorithm
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The sub-steady-state algorithm

▶ computes a steady-state;

▶ by augmenting along stationary circulation;

▶ in O(m) rounds, and at most as many computations of a
stationary distribution in the residual graph.
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Some consequences

Increasing the input capacities:

▶ increases the throughput on fluid arcs, and decreases it on
saturated arcs;

▶ cannot decrease the throughput on any ouput;

▶ may decrease the throughput on some input!

Increasing the output capacities:

▶ decreases the throughput on fluid arcs, and increases the
throughput on saturated arcs;

▶ cannot decrease the throughput on any input;

▶ may decrease the throughput on some output!
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Example of non-monotonicity
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Uniqueness

Steady-states are not unique.
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Unique throughputs

Theorem: Steady-states have the same throughputs on their
inputs and outputs.

Definition: Uniform sub-steady states = steady-states where
all fluid inputs have equal throughput γ.

For any is ∈ δ+(I ), if is ∈ F , then t(is) = max{c(i), γ}.
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Recall the algorithm

The sub-steady-state algorithm iterates 3 operations:

▶ augment(f ): augment along a C=-circulation f that
improves the total throughput;

▶ move(f ): augment along a C=-circulation f that does not
improve the throughput;

▶ saturate(e): remove an arc e from F .

Performs a sequence of these three operations:

(0,E )
σ1−→ (t1,F1)

σ2−→ . . .
σk−→ (t⋆,F ⋆)
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Confluence of operations

Proposition: these operations are locally confluent.

(t,F )

(t1,F1)

(t2,F2)

σ1

σ2

Consequence:
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Confluence of operations
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Any steady-state is reachable

Proposition: Any steady-state is reachable by a sequence of
operations of the uniform sub-steady-state algorithm.

+ Confluence: steady-states have unique throughputs on
I ∪ O.

Proposition: The valid sequences of operations from (0,E ) is
an antimatroid. The uniform sub-steady-states form a
semimodular lattice.
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The join and meet operations

(t1,F1) ∧ (t2,F2) = (t0,F1 ∪ F2) and
(t1,F1) ∨ (t2,F2) = (t ′,F1 ∩ F2) with

t0(e) =


max{t1(e), t2(e)} if e ∈ F1 ∩ F2

t1(e) if e ∈ F1 \ F2

t2(e) if e ∈ F2 \ F1

min{t1(e), t2(e)} if e /∈ F1 ∪ F2

t ′(e) =


min{t1(e), t2(e)} if e ∈ F1 ∩ F2

t2(e) if e ∈ F1 \ F2

t1(e) if e ∈ F2 \ F1

max{t1(e), t2(e)} if e /∈ F1 ∪ F2
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Balancer networks
(definitions and upper bounds)
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Designing balancers

Factorio players need a family of splitter networks:

▶ arbitrary many inputs;

▶ arbitrary many outputs;

▶ for any input capacities, the output throughputs are all
equals.

▶ Motivation 1: Balances the throughput between multiple
belts;

▶ Motivation 2: reduce or increase the number of belts, for
instance going from 5 input belts to 3 output belts.

Such networks are informally called balancers.

▶ Minimize CPU cost ⇔ minimize the number of splitters
in a balancer.
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The simple balancer

Balancing property: all outputs have capacity one, for any
choice of input capacities, the output throughputs are equal.

The simple balancer, a recursive construction:
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Limitations of the simple balancer (1)

Not balancing when output capacities are not uniform.

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 0

0.5

0.5
0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.
5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
1

0

68



Limitations of the simple balancer (2)

Limiting the total throughput when some output capacities are
less than 1.
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The throughput-unlimited balancer

Throughput-unlimited (TU) property: The total throughput is
always the minimum of the input capacities and the output
capacities (the network is never a bottleneck).

Construction: glue a simple balancer with the reverse of a
simple balancer. Known as the Beneš network, both balancing
and TU.
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The Beneš network
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Universal property

▶ Balancer properties assumes output capacities are 1;

▶ Even Beneš network is not balancing when output
capacities are not uniform;

▶ Can we design a splitter network whose output
throughputs are equals on fluid outputs (recall that
saturated outputs have throughput equal to capacity)?

Call this the universal property!
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A universal network

Beneš(k + 1) Beneš(k + 1)
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Remarks on balancer designs

▶ These designs were proposed by players (with the
universal network slightly modified);

▶ we proved that those designs are correct;

▶ for n inputs and outputs, Θ(n log n) splitters;

▶ from the universal network, we can ignore some inputs
and outputs: universal network with arbitrary number of
inputs and outputs;

▶ another technique used by players is to loop back
superfluous outputs to superfluous inputs (beware that it
may break the balancing property if not done carefully).
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Rate-limiters
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Rate-limiters

Another design, used to limit the throughput on a single belt.

▶ For a rational r , design a single-input, single-output
splitter network;

▶ there is a steady-state with throughput min{c(i), r , c(o)};
▶ with a minimum number of splitters;

▶ Motivation: reduce the maximum throughput in a single
belt;

▶ Not possible for irrational r (throughputs are solutions of
rational linear systems).
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Rate-limiter: naive idea
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Improving over the binary tree

▶ Naive construction as O(q) splitters;

▶ can contract some subtrees into single nodes, to get
O(log q) splitters;

▶ works for p
q
≥ 1

2
, can be modified to work with p

q
< 1

2
;

▶ Another construction with number of splitters logarithmic
in the binary representation of r = p

q
.
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A binary-based construction.

Construction for r = 169
504

= 0.010(101011)ω
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Balancers (lower bounds)
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Minimize the number of splitters

Number of splitters in balancers on 2k inputs and outputs:

▶ Simple balancer: S(k) = k · 2k−1;

▶ Benes network: B(k) = (2k − 1)2k−1;

▶ Universal balancer: U(k) = (k + 1)2k+1.

Goal: an Ω(k2k) lower bound would prove that these designs
are almost optimal.
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Splitter networks are coin-tossing network

Point of view of a single item, going through a splitter:

▶ probability 0.5 to go left;

▶ probability 0.5 to go right.

A splitter acts as a coin toss.
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Balancers are uniformly-distributing

In an arbitrary balancer network:

▶ set all input capacities to 0 except one;

▶ set all output capacities to 1;

▶ set the last input capacity sufficiently small to avoid
saturated arcs.

Then items from the single active input are uniformly
distributed over the outputs.

Balancer networks are uniformly-distributing coin-tossing
network.
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Binary decision tree maps into balancer
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Coin-tossing potential

Sub-steady-state algorithm: augment along stationary
distribution.

Random walks induce that stationary distribution.

Taking into account the capacities and the saturated arcs:

▶ each splitter acts as a coin-tossing device for its fluid
outgoing belts, up to 2 units of flow;

▶ each splitter acts as a coin-tossing device for its saturated
incoming belts, up to 2 units of flow.

Total coin-tossing potential is 4|S |.
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Knuth-Yao sampling algorithm

Sampling in (a, 3
8
), (b, 1

3
), (c , 7
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Knuth-Yao bound

Minimum expected number of coins tosses to sample a
distribution π over all possible algorithm is

E =
d∑

i=1

∑
k∈N

k

2k
binaryk (πi)

We need E
4
splitters to get the same throughput outputs.

Lower-bound for balancers on 2k belts: k2k−2
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Lower-bound analysis

▶ Simple balancers have twice as many splitters as the lower
bound;

▶ lower-bound based on a potential of 4 per splitter, that is
using saturation;

▶ if we want an all-fluid balancer, then simple balancers are
optimal!

▶ Design balancers using saturation?

▶ Cost of throughput-unlimitedness (factor 4)? of
universality (factor 16)?
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Priority splitters
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Priority splitters

In Factorio, splitters may be set with priorities:

▶ out-priority: the splitter send as many items as possible
to some outgoing belt. What is left goes on the other
outgoing belt.

▶ in-priority: the splitter takes as many items as possible
from some incoming belt. If possible it also takes from
the other incoming belt.

▶ choose out-priority or out-fair, in-priority or in-fair
independently.

New questions:

▶ Steady-state and algorithms?

▶ Better designs? Lower bounds?

▶ Complexity: choose priorities to achieve some goal.
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Steady-states with priorities

Rules for priority splitters with priorities
(p+, p−) : S → E ∪ {⊥}:

▶ out-priority: if

e1

e2

with e1 fluid,

▶ if p+(s) = e1 then t(e1) = 1 or t(e2) = 0;
▶ if p+(s) ̸= e2 then t(e1) ≥ t(e2);

▶ in-priority: if

e1

e2

with e1 saturated,

▶ if p−(s) = e1 then t(e1) = 1 or t(e2) = 0;
▶ if p−(s) ̸= e2 then t(e1) ≥ t(e2);

The algorithms can easily be adapted.
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Maximizing the total throughput

Problem: given a splitter network with capacities, find
priorities to maximize the sum of throughputs on the outputs.

▶ (uniform choose all) polynomial-time algorithm when all
capacities are 1;

▶ (uniform choose out) polynomial-time algorithm when all
capacities are 1 and all splitter are in-fair;

▶ (force-choose out) NP-hard to choose output priorities,
when output capacities are 1, all splitters are in-fair and
must not be out-fair;

▶ (uniform restricted choose out) NP-hard to choose output
priorities for a subset of splitters, when all capacities are
1, all splitters are in-fair.
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Force choose-out

Reduction from partition of {a1, a2, . . . , an} with sum 2.

an

a2

a1 1

1

1

1

... u v
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Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

1

1

1

0

1

1 1

1

7
8 1

0

1

1
1
2

1

3
4

7
8

0

1
2

1
2

1
2

0

1
2

1
4

1
4

1
4

1
2

3
4

7
8

7
8
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Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

1
2

1

1

1
2

1

1 1

1

1
4

5
8 1

1
4

1
5
8

1
2

1
4

5
8

1
2

1
4

5
8

1
2

1
4

1
2

3
4

3
4

3
4

3
4

1
2

1
2

1
4
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Uniform restricted choose-out

Reduction from 3-Satisfiability. Variable gadget:

s1

s2

s3x

x x

x

x?
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Uniform restricted choose-out

Clause gadget:

t1

t2

t3

t4

t5

s

x y z

1

9
32

7
16

9
32

7
8

23
32

7
16

9
16

1
32

1
16

11
16

11
16

1
16

11
16

7
8

5
8

1
8

1
8

1
4 1

4

1
2

1

23
32

9
16

1
2

1
32

9
32

1
2

p
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Designing balancers with priorities

▶ Lower bound still applies to bound the number of out-fair
and in-fair splitters;

▶ may use priority splitters to reduce the number of
splitters;

▶ universal balancer splitter invented by players has 4 times
less splitters, with a small number of priority splitters;

▶ there is a splitter network with almost optimal
(k + 2)2k−2 fair splitters, using (too many) priority
splitters, leveraging saturation to balance.
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A saturating balancer
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Conclusion
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Perspectives

▶ Purely combinatorial algorithm (without Laplacian
solver)?

▶ Stronger lower bounds, better designs for balancers.

▶ Complexity for the non-uniform choose-all throughput
maximization problem.

▶ How to check the balancing property? OK for
non-saturating balancers.
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