THE STEADY-STATES OF SPLITTER NETWORKS

Basile Couétoux, Bastien Gastaldi, Guyslain Naves

Aix-Marseille University

G-SCOP 2025

Splitter networks

A splitter network consists in conveyor belts joined by splitters.

A conveyor belt (or belt) moves items
» from its tail to its head:
» at a constant speed;

» items may accumulate at its head end: they stop until
some item is consumed.

A splitter joins one or two incoming belts to one or two
outgoing belts

> it takes items from the incoming belts;
» and moves them to the outgoing belts;

> it tries to alternate between the two incoming belts,
between the two outgoing belts; it is fair. L

Gk

Splitters are fair (out)

» Splitters alternate pushing on their outgoing arcs; Lia

3 » except when one of them is completely filled.

Splitters are fair (in)

» Splitters alternate pulling from their incoming arcs; Lia

4 » except when one of them has not available item.

Example of a splitter network dynamics

o

Lia

Example of a splitter network dynamics

[EY

Lia

Example of a splitter network dynamics

N

Lia

Example of a splitter network dynamics

w

Lia

Example of a splitter network dynamics

~

Lia

10

Example of a splitter network dynamics

(€]

Lia

11

Example of a splitter network dynamics

(@)

Lia

12

Example of a splitter network dynamics

\l

Lia

13

Example of a splitter network dynamics

[ee)

Lia

14

Example of a splitter network dynamics

[ee)

Lia

15

Example of a splitter network dynamics

(o)

10m [o

Lia

16

Example of a splitter network dynamics

10m } /_\ 1

Lia

17

Example of a splitter network dynamics

=
[

A
|

Lia

18

Example of a splitter network dynamics

=
[

el
i

Lia

3(n 1)

19

Example of a splitter network dynamics

3(n—1)
) 12

) | 3m /_\ -1 _4

n—4

Lia

20

The static of a splitter network

W

<
<

N =

| |
Y
®
Y
[}
N = <> -
MHJ

BlW

Lia

A continuous model to study steady-states

» A directed graph (/USU O, E);

» [inputs, O outputs with degree 1;

» S splitters with in-degree and out-degree at most 2;
» FE belts;

» c:/UO —[0,1]: frequency of item generation (input)
or absorption (output);

Goal: determine the throughput t : E — [0, 1]: frequency of
items passing through each arc, in the long run.

L |“5
21 ‘

22

Steady-state rules

Steady-state:
» t: E — [0,1] throughput function;
» F C E set of fluid arcs —
» E\ F set of saturated arcs —
Rules:
» conservation: t(0~(s)) = t(67(s)) for any splitter s;

/
> maximization: if —»e—° then t(e) =1or t(e') =1;

> ...

L |“5

23

Rules for splitter fairness

A splitter alternates between its outgoing belts, except for full
(saturated) belts:

€1
» out-fairness: for any < with e; fluid, t(ey) > t(e);
€

» therefore, if the two leaving arcs are fluid, they have equal
throughput.
On the incoming belts:
€1

\o with e; saturated,
e

» in-fairness: for any

t(e1) > t(en);

» therefore, if the two incoming arcs are saturated, they Lin

have equal throughput.

24

Rules for inputs and outputs

An input provides items at a given frequency. Excessive items
accumulates, making the outgoing belt saturated.

. : e . .
» input: for an input jm——, t(e) < c(i), and if
t(e) < c(i), e is saturated.
An output consumes items at a given frequency. There is no

excess below that frequency.

> output: for an output ——mo , t(e) < c(o), and if
t(e) < c(o), eis fluid.

L1

RN

25

v

Preliminary remarks

Splitters networks come from the video game Factorio.

The definition of steady-states is symmetrical: (t, F)
steady-state in G < (t, E \ F) steady-state in the reverse
of G;

If F is given, the feasible t can be described by a linear
system of inequalities, and thus computed efficiently.

When there is no saturation (only fluid arcs), the discrete
model is equivalent to the rotor-router model (each vertex
routes its passing items cyclically on its outgoing arcs).
Rotor-router is a deterministic idealization of a random
walk. Stationary distributions will play a role!

L1

RN

26

v

Questions

Existence of steady-states? Algorithms?
Uniqueness of steady states?

Design splitter networks with interesting properties. In
particular, motivated by Factorio, can we design
(minimal) networks with uniform throughput on their
output? Can we test these properties?

Extension to allow belt capacities? Can we make a
rate-limiter network for any allowed maximum rate?

L1

RN

27

Computing a steady-state

Lia

28

Two families of max-flow algorithms

Recall the two classical max-flow algorithms:
» Augmenting paths:

» ignore the condition of being maximum;

» improve the flow by increasing along a path or a
blocking flow, until reaching maximum.

» Push-relabel:

> ignore the conservation rule (vertices can have excessive
incoming flow);

» push the excess forward or backward, until there is no
excess left.

L1

RN

A push-relabel algorithm for steady-state?

29

v

relax the conservation rule (allow flow in excess):
pre-steady-state,

push excess forward equally on outgoing fluid arcs;

when both outgoing arc are full or saturated, make
incoming arcs saturated.

push excess backward equally on incoming saturated arcs;

repeat until no more excess remain.

L1

RN

30

Non-termination of the naive approach

0 0
0 0 @ 0
[- - n
+1 0 0 0

Lia

31

Non-termination of the naive approach

0 0
1 0 @ 0
[- - n
0 +1 0 0

Lia

32

Non-termination of the naive approach

N [—=
(@)

on
+ 2
ol

on

N

Lia

33

Non-termination of the naive approach

IN
(@)

on
+ 2
R

on

ENT

Lia

34

Non-termination of the naive approach

1
1—5 0
1
Ll 12n© o
0 _|_l _ 1 0
2n 2n

Lia

35

Exponential example

125 124 123 122 121 120 119 116 109 94 63 O

> Let o(u) =1+ cneu ;1(—8) forany u e 1US, and
¢(0) =0 for o € O.

> pushing e units of excess flow decreases) _¢ ¢(s)exc(s)
only by e.

L 14‘5

36

A terminating push-relabel algorithm.

Solution:
» keep the mecanism to move arcs from fluid to saturated,;

» use a linear program to push as much flow as possible.
More precisely, F is fixed, and we find t which maximizes

t(F) —t(E\ F)

Then by the optimality property,

> either there is e € F, such that (t,F \ e) is a
pre-steady-state;
» or (t,F) is a steady-state.

Terminates in at most |E| rounds.

L1

RN

37

An augmenting path algorithm?

Relax the input rule (allow fluid input belts below
capacity): sub-steady-state;
Define a residual graph: fluid arcs + reversed saturated
arcs;
Find a circulation with equal flow on outgoing arcs of any
vertex;
Increase the sub-steady-state along that circulation.

» Circulation: conservation is preserved;

» equal flow on outgoing arcs: fairness is preserved.

If no circulation exists, find a sink in the residual graph,
and move some arc from fluid to saturated.

P> Preserves maximality rule.

L1

RN

38

the C™-circulation problem

Problem: Given G digraph, C= a partition of E(G), find a
non-zero circulation f on G, where for each F € C=, f is
constant on F.

» easily solvable by LP;
» max integer flow variant is NP-hard (Meyers-Schulz).
Special case: C= is a refinement of (65 (u))uev(c)-

L |“5

39

Good characterization

@) =X (V) = 0 (veV)
Xe —Xe = 0 (e,ef e CeC) (1)
x > 0

By Farkas lemma:
Theorem

(G =(V,E), ts,C™) has a C=-circulation x with xis > 0 iff
there is no set S C V \ {t} with a partition
SZSOH'JS]_...H'JS/(where

> se 50,'
» forany C € C=, e € C, there is € € C (possibly e =€) _
such that €' € E[S;,S;] and i <. 14

40

Solving in strongly connected graph

41

Solving in strongly connected graph

W\/

RN

——————————

» T in-arborescence;

/\ \\/ > Ueer G

Solving in strongly connected graph

\/‘

A

N
\\

A

42

AN

/

» T in-arborescence;

> UeeT Ce;
» H SCC with ts € H;

L |4‘5

Solving in strongly connected graph

AN

7

43

‘\/

» T in-arborescence;

> UeeT Ce;
» H SCC with ts € H;

L |4‘5

a4

Solving in strongly connected graph

T3
/ o » T in-arborescence;
3
\ > UeeT Ce;
» H SCC with ts € H;
1 A
» 7 stationary
distribution;

75
7 \ /
3

L |4‘5

45

Solving in strongly connected graph

T3
<> T\@/ .
o 9>7r4 » T in-arborescence;
20\ =
kS " m\q’/\ > UeeT Ce;
‘4‘\‘ o 2 » H SCC with ts € H;
T
& Emy, » 7 stationar
\r\ \ 75 y
& distribution;
7 \% P > f(uv) = dﬁ(é’g).
\./
6

L |4‘5

46

Solving in general graphs

Lemma

Algorithm in time O(|E|log* |V| + sd(G)) that
» either find a feasible solution x with x;s > 0;

» or correctly assert that none exists.

Lemma

» Eijther there is a non-zero C=-circulation in G;
> or there is a vertex v € V with 6T (v) = 0.

L5

Example of the sub-steady-state algorithm

47

Example of the sub-steady-state algorithm

3 3/8%\
1l1—/2>o<—0 M»ll
5/8 oy
NP

: N
Zo— S V’oz
L:G

48

Example of the sub-steady-state algorithm

[J
© 7
Vv
W |26
IRYE: 4/26
1/26 o
o A
5

L 15

(4

49

Example of the sub-steady-state algorithm

1w a1 "v ml
A
a7
&
2 A

o—»/ 2/16 S

Ll/16 1/16,,
AN2/16
%

50

Example of the sub-steady-state algorithm

A
12 >
S ™
7 A
@
<5
2/18%&
3/18_ 4/18 3/18
Z@0——>0——> o—>0Z
2/18
%5 &
S

L 15
51 '

Example of the sub-steady-state algorithm

Z@+—@ — o—0Z

Lia
52 '

53

The sub-steady-state algorithm

» computes a steady-state;
» by augmenting along stationary circulation;

» in O(m) rounds, and at most as many computations of a
stationary distribution in the residual graph.

L |“5

54

Some consequences

Increasing the input capacities:

» increases the throughput on fluid arcs, and decreases it on
saturated arcs;

» cannot decrease the throughput on any ouput;
» may decrease the throughput on some input!
Increasing the output capacities:

» decreases the throughput on fluid arcs, and increases the
throughput on saturated arcs;

» cannot decrease the throughput on any input;

» may decrease the throughput on some output!

L1

RN

Example of non-monotonicity

N
e,

55

56

Uniqueness

Steady-states are not unique.

14 12 1 1/2 14 H2EE

retrelre /50 ie 1—/io o—ro-L5
1/4 1/4

L |4‘5

57

Unique throughputs

Theorem: Steady-states have the same throughputs on their
inputs and outputs.

Definition: Uniform sub-steady states = steady-states where
all fluid inputs have equal throughput ~.

For any is € §7(/), if is € F, then t(is) = max{c(i),~}.

L |"5

58

Recall the algorithm

The sub-steady-state algorithm iterates 3 operations:

» augment(f): augment along a C=-circulation f that
improves the total throughput;

» move(f): augment along a C=-circulation f that does not
improve the throughput;

> saturate(e): remove an arc e from F.

Performs a sequence of these three operations:

(0, E) REN (tl, Fl) RENELN (t*, F*)

L1

Gk

59

Confluence of operations

Proposition: these operations are locally confluent.

o1 (t17F1)

(t, F)

>

(t2, F2)

L 14‘5

60

Confluence of operations

Proposition: these operations are locally confluent.

, LR
) — e (¢, F)
o 4'

2 (t27F2)

(t,F

L |4‘5

61

Confluence of operations

Proposition: these operations are locally confluent.

(t17F1)
(t, F) \ (t’7l—_/)
O /o‘v
2 (t27F2) >
Consequence:
>k (tl,Fl)
(to, Fo)
*
(tZ)FZ)

L |4‘5

62

Confluence of operations

Proposition: these operations are locally confluent.
(t17 Fl) o

(', F)

\

(t27 FZ)
Consequence:

* (tl, Fl)

/

(to,Fo) * (tl,F/)

A
\

(t2, F2) Li5

63

Any steady-state is reachable

Proposition: Any steady-state is reachable by a sequence of
operations of the uniform sub-steady-state algorithm.

+ Confluence: steady-states have unique throughputs on
U 0.

Proposition: The valid sequences of operations from (0, E) is
an antimatroid. The uniform sub-steady-states form a
semimodular lattice.

L |“5

64

The join and meet operations

(t1, F1) A (t2, F2) = (to, F1 U F,) and
(t1, F1) V (t2, F2) = (t', F1 N F,) with

(max{tl(e), tz(e)} ifee Fl N F2
fole) = ti(e) ifeec i\ PR
° t2(e) ifeEFg\Fl
| min{ti(e), 2(e)} ife¢ RUF

[min{t;(e), t2(e)} ifee FNF
t’(e) _ t2(e) ifee F \ F

t1(e) ifec F\FA
| max{ti(e), 2(e)} ifed LUF

L|’5

65

Balancer networks
(definitions and upper bounds)

Lia

Designing balancers

Factorio players need a family of splitter networks:
» arbitrary many inputs;
» arbitrary many outputs;

» for any input capacities, the output throughputs are all
equals.

» Motivation 1: Balances the throughput between multiple
belts:

» Motivation 2: reduce or increase the number of belts, for
instance going from 5 input belts to 3 output belts.

Such networks are informally called balancers.

» Minimize CPU cost < minimize the number of splitters

in a balancer.
L

66

Gk

67

The simple balancer

Balancing property: all outputs have capacity one, for any
choice of input capacities, the output throughputs are equal.

The simple balancer, a recursive construction:

>
>

TAVATAY
AL

L5

68

Limitations of the simple balancer (1)

Not balancing when output capacities are not uniform.

/OVIO

%*‘l 1
5 . 1

0.5 '1

o. 5
0.5:>5“ 0.5 .0<:-1

%) 0.58’.3

[oN
0.5 05 o 05 .m1
:>o e Jo—
0.58 g5 0.5 0.5 gz ml

L 14‘5

Limitations of the simple balancer (2)

Limiting the total throughput when some output capacities are
less than 1.

L 15

70

The throughput-unlimited balancer

Throughput-unlimited (TU) property: The total throughput is
always the minimum of the input capacities and the output
capacities (the network is never a bottleneck).

Construction: glue a simple balancer with the reverse of a
simple balancer. Known as the Bene$ network, both balancing

and TU.

L |“5

The Benes$ network

Li5

Ty
==
gy
X
=N

= =S
LALALLLLL

71

72

Universal property

» Balancer properties assumes output capacities are 1;
» Even Bene$ network is not balancing when output
capacities are not uniform;

» Can we design a splitter network whose output
throughputs are equals on fluid outputs (recall that
saturated outputs have throughput equal to capacity)?

Call this the universal property!

L1

R

73

L1 1]
[
TT1 71

A universal network

74

vy

Remarks on balancer designs

These designs were proposed by players (with the
universal network slightly modified);

we proved that those designs are correct;
for n inputs and outputs, ©(nlog n) splitters;

from the universal network, we can ignore some inputs
and outputs: universal network with arbitrary number of
inputs and outputs;

another technique used by players is to loop back
superfluous outputs to superfluous inputs (beware that it
may break the balancing property if not done carefully).

L1

RN

75

Rate-limiters

Lia

Rate-limiters

Another design, used to limit the throughput on a single belt.

» For a rational r, design a single-input, single-output
splitter network;

> there is a steady-state with throughput min{c(i), r, c(0)};
» with a minimum number of splitters;

» Motivation: reduce the maximum throughput in a single
belt;

» Not possible for irrational r (throughputs are solutions of
rational linear systems).

L1
76

RN

77

Rate-limiter:

naive idea

L |“5

78

v

v

Improving over the binary tree

Naive construction as O(q) splitters;

can contract some subtrees into single nodes, to get
O(log q) spIitterS'

works for 2 2 , can be modified to work with 2 < =

Another construct|on with number of splitters Iogarlthmic
in the binary representation of r = g

L1

RN

A binary-based construction.

Construction for r = 1% = 0.010(101011)~
0 1 0 1 0 1 0 1 1
1 3 173 169
TR — TR YL A— 204 n
o 1 2 L
2 1 1 18 4 |63 1 |126 1
.$.44,.?.£,._2,.L. 257, o
1 8 (|4 63 |1 L
4 63 53 252 504
1
[T { 70 >@ 169 | 504
4 252 252 252 504

79

L 14‘5

80

Balancers (lower bounds)

Ly

o

81

Minimize the number of splitters

Number of splitters in balancers on 2% inputs and outputs:
» Simple balancer: S(k) = k - 2k71;
» Benes network: B(k) = (2k — 1)2k-1;
» Universal balancer: U(k) = (k + 1)2%*1.

Goal: an Q(k2*) lower bound would prove that these designs
are almost optimal.

L |"5

Splitter networks are coin-tossing network

82

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

83

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

84

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

8

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

86

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

87

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

88

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

89

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

90

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

Splitter networks are coin-tossing network

o1

Point of view of a single item, going through a splitter:
» probability 0.5 to go left;
» probability 0.5 to go right.

A splitter acts as a coin toss.

R

L |“5

02

Balancers are uniformly-distributing

In an arbitrary balancer network:
» set all input capacities to O except one;
» set all output capacities to 1;

» set the last input capacity sufficiently small to avoid
saturated arcs.

Then items from the single active input are uniformly
distributed over the outputs.

Balancer networks are uniformly-distributing coin-tossing
network.

L1

R

03

Binary decision tree maps into balancer

Lia

04

Coin-tossing potential

Sub-steady-state algorithm: augment along stationary
distribution.

Random walks induce that stationary distribution.

Taking into account the capacities and the saturated arcs:

» each splitter acts as a coin-tossing device for its fluid
outgoing belts, up to 2 units of flow;

» each splitter acts as a coin-tossing device for its saturated
incoming belts, up to 2 units of flow.

Total coin-tossing potential is 4|S].

L1

RN

05

Knuth-Yao sampling algorithm

Sampling in (a, g), (b, %), (c, 27—4):

O 0O O kR, H O WD
R O O R, O o

O H O O+ O 0
\§)
\§)

L |4‘5

06

Knuth-Yao bound

Minimum expected number of coins tosses to sample a
distribution 7 over all possible algorithm is

d
E= Z Z 2—kkbinaryk (77)

i=1 keN

We need % splitters to get the same throughput outputs.

Lower-bound for balancers on 2 belts: k2k—2

L |“5

o7

v

Lower-bound analysis

Simple balancers have twice as many splitters as the lower
bound;

lower-bound based on a potential of 4 per splitter, that is
using saturation;

if we want an all-fluid balancer, then simple balancers are
optimal!
Design balancers using saturation?

Cost of throughput-unlimitedness (factor 4)? of
universality (factor 16)?

L1

RN

08

Priority splitters

Lia

99

Priority splitters

In Factorio, splitters may be set with priorities:

» out-priority: the splitter send as many items as possible
to some outgoing belt. What is left goes on the other
outgoing belt.

» in-priority: the splitter takes as many items as possible
from some incoming belt. If possible it also takes from
the other incoming belt.

» choose out-priority or out-fair, in-priority or in-fair
independently.
New questions:
» Steady-state and algorithms?

» Better designs? Lower bounds?
L

Gk

» Complexity: choose priorities to achieve some goal.

100

Steady-states with priorities

Rules for priority splitters with priorities
(pt,p7):S—EU{L}:
€1

/'

> out-priority: if\ with e; fluid,
€

> if pT(s) = e1 then t(e1) =1 or t(e2) = 0;
> if pT(s) # e then t(e1) > t(e2);

~,
&

> if p~(s) = ey then t(e1) =1 or t(e2) = 0;
> if p~(s) # e then t(e1) > t(e);

» in-priority: if e with e; saturated,

The algorithms can easily be adapted.

L |“5

101

Maximizing the total throughput

Problem: given a splitter network with capacities, find
priorities to maximize the sum of throughputs on the outputs.

» (uniform choose all) polynomial-time algorithm when all
capacities are 1;

» (uniform choose out) polynomial-time algorithm when all
capacities are 1 and all splitter are in-fair;

» (force-choose out) NP-hard to choose output priorities,
when output capacities are 1, all splitters are in-fair and
must not be out-fair:

» (uniform restricted choose out) NP-hard to choose output
priorities for a subset of splitters, when all capacities are

1, all splitters are in-fair. L
1

RN

102

Force choose-out

Reduction from PARTITION of {ay, ap, ..., a,} with sum 2.

a]_.—>

32.—>

an.—>

L|’5

103

Uniform restricted choose-out

Reduction from 3-SATISFIABILITY. Variable gadget:

1
. u
4 1
Im———e—>e 1 I o om0
3 1 \.A 2 11 0
7 4 1 4 /) A \ 2) 1
1I<870%0 % % % 04>042>I1
7 1
3 T lg
n n
1 1

L 14‘5

104

Uniform restricted choose-out

Reduction from 3-SATISFIABILITY. Variable gadget:

.
1 1 1 1
1 2 4 1 3 1 4 2 1
o SR »\4 32| 3 40 ¢ H;
1 1 P SN / 1 1
5 4 . 2 /“ * "\ 2 . 4 5
8
1M o« @& 1 % % o o —H]
5 5
8) ls
] n
1 1

L |4‘5

Uniform restricted choose-out

Reduction from 3-SATISFIABILITY. Variable gadget:

~

—
s

105

L |“5

Uniform restricted choose-out

Clause gadget:

X y z
(‘ R
7 Wi 7
8 I9 8 1
16 2
t3 Y Y
[B > @< -
7 7 11
16 16 16 11
tr 16
9
2 3% 11 5 1
t ‘ % 38 3 s
[B - - 0~ L
p 23 |
32 1 1 1 23
32 16 8 32
P ~@
4 L 1 1 1 1 1
16 8 21 2
1 4 9
32 32
®
. J

106

L1

RN

107

Designing balancers with priorities

Lower bound still applies to bound the number of out-fair
and in-fair splitters;

may use priority splitters to reduce the number of
splitters;

universal balancer splitter invented by players has 4 times
less splitters, with a small number of priority splitters;
there is a splitter network with almost optimal

(k 4 2)2%=2 fair splitters, using (too many) priority
splitters, leveraging saturation to balance.

L1

RN

A saturating balancer

ot 7

fhre -

et st o
é&&&&a&é\\\ NN —
10999999 S\NA\NIVE .
Iegegeeee: o\ . —

é 1999999 Y X .
1099999999 ¢ CERN —

bbb bbbdbbdd o -
SELELELEL L LS X —
DD gg 5555 \\5‘0 n
SEELE IS EL e DN
ISRy Ly

Gk

109

Conclusion

Ly

o

110

v

Perspectives

Purely combinatorial algorithm (without Laplacian
solver)?

Stronger lower bounds, better designs for balancers.
Complexity for the non-uniform choose-all throughput
maximization problem.

How to check the balancing property? OK for
non-saturating balancers.

L1

Gk

	Computing a steady-state
	Balancer networks (definitions and upper bounds)
	Rate-limiters
	Balancers (lower bounds)
	Priority splitters
	Conclusion

