
The steady-states of splitter networks1

Basile Couëtoux #2

Aix-Marseille Université, CNRS, LIS, Marseille, France3

Bastien Gastaldi #4

Télécom SudParis, Institut Polytechnique de Paris, Evry, France5

Guyslain Naves #�6

Aix-Marseille Université, CNRS, LIS, Marseille, France7

Abstract8

We introduce splitter networks, which abstract the behavior of conveyor belts found in the video9

game Factorio. Based on this definition, we show how to compute the steady-state of a splitter10

network. Then, leveraging insights from the players community, we provide multiple designs of splitter11

networks capable of load-balancing among several conveyor belts, and prove that any load-balancing12

network on n belts must have Ω(n log n) nodes. Incidentally, we establish connections between13

splitter networks and various concepts including flow algorithms, flows with equality constraints,14

Markov chains and the Knuth-Yao theorem about sampling over rational distributions using a fair15

coin.16

2012 ACM Subject Classification Theory of computation → Network flows; Mathematics of com-17

puting → Network flows; Mathematics of computing → Graph algorithms; Theory of computation18

→ Random walks and Markov chains19

Keywords and phrases Factorio, splitter networks, flow, balancer, steady-state20

Digital Object Identifier 10.4230/LIPIcs.FUN.2024.721

Category FUN with Algorithms22

1 Introduction23

The transportation of materials or data within various networks represents an inexhaustible24

source of mathematical problems, which has lead to almost as many solutions, theories and25

algorithms. These advancements have brought about significant improvements across diverse26

fields including supply chain management, logistics, network optimization. Transportation27

also serves as a central component in numerous games, as evidenced by the transportation28

category on BoardGameGeek which lists almost two thousand games [3]. In Factorio [24], a29

video game published in 2020 by Wube Software, players must mine natural resources to30

feed a rocket-building factory on an hostile planet. A major part of the gameplay involves31

the movement of resources within the factory, employing various mechanism: robotic arms,32

conveyor belts, drones or trains.33

In this work, we study the conveyor belts of Factorio. An item placed on a belt will34

move at a constant speed toward the end of the belt, until it reaches that end, or is blocked35

by an item preceding it. Belts in Factorio can be combined using a splitter, connecting36

one or two incoming belts to one or two outgoing belts. A splitter takes items from the37

incoming belts and places them on the outgoing belts, trying to split the flow as fairly as38

possible between the incident belts, while maximizing the throughput. Given the scale of39

a typical Factorio game, players frequently encounter the need to balance the loads across40

multiple belts, and the community has devised numerous efficient networks to address this41

load-balancing problem.42

An intriguing aspect of Factorio is its encouragement for players to construct vast systems43

of automation, requiring intensive planning and optimization. Ultimately, the limiting factor44

© Basile Couëtoux and Bastien Gastaldi and Guyslain Naves;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Fun with Algorithms (FUN 2024).
Editors: Andrei Z. Broder and Tami Tamir; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:basile.couetoux@univ-amu.fr
mailto:bastien.gastaldi@telecom-sudparis.fr
mailto:guyslain.naves@univ-amu.fr
https://orcid.org/0000-0001-5460-9995
https://doi.org/10.4230/LIPIcs.FUN.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The steady-states of splitter networks

0.6

0.6

0.4

1

0.6

0.6

0.4

0.8

0.8

0.5

0.4

0.8

0.7

0.5

0.4

0.8

1 1
0.5 1 0.5

0.5

(a) (b) (c)

Figure 1 Three splitter networks given with capacities and associated steady-states. Splitter
will be represented by circle vertices, terminals by square vertices. Each terminal is tagged by its
capacity, and each arc by its throughput. Saturated arcs are bolder than fluid arcs.

arises from the CPU load generated by game state updates. Consequently, players are45

incentivized to prioritize resource efficiency, particularly concerning gameplay elements that46

entail frequent computations such as splitters. This motivates the minimization of the number47

of splitters in load-balancing networks.48

Our goal is two-fold: first we model the steady-state of a network of splitters. The network49

of conveyor belts is abstracted as a directed graph, with nodes corresponding to splitters and50

arcs to belts. A steady-state is a throughput function on the arcs; a circulation with additional51

constraints to capture the fact that splitters are fair and locally optimizing. We present two52

polynomial-time algorithms for computing a steady-state in a splitter network. An analogy53

is made with two classical maximum-flow algorithms: the blocking-flow algorithm [8] and54

the push-relabel algorithm [10]. In contrast to maximum flows, the primary challenge arises55

when a belt reaches full capacity, as its supplying splitter may no longer stay both fair and56

maximizing. In that case, the splitter is allowed to become unfair, but that decision changes57

the constraints applied to the flow, making the problem fundamentally non-convex. In a58

second part, we showcase various load-balancing network designs sourced from the Internet,59

formalizing concepts defined by the players community. Furthermore, we prove that those60

designs approach optimality. Specifically, we prove that any balancing network on n belts61

must have Ω(n log n) splitters, by exhibiting a relation with the problem of sampling the62

uniform distribution over a set of n elements using only a fair coin. The core design is the63

Beneš network, a circuit-switching network well-known in the field of telecommunication [1, 2].64

The blocking-flow-like algorithm relies on finding circulations with equality constraints. A65

circulation on a directed graph is a flow without any excess at any vertex. Given a directed66

graph (G, A), we denote δ+(v) and δ−(v) the sets of outgoing and incoming arcs incident to67

a vertex v. Let C= be a partition of A such that for each part C ∈ C=, there is some vertex68

v with C ⊆ δ+(v). The C=-circulation problem is to decide whether there is a non-zero69

circulation f that is constant within each part. While this problem can easily be solved using70

linear programming, we require a good characterization of graphs admitting a C=-circulation,71

Additionaly a polynomial-time algorithm is needed to either construct a C=-circulation or72

identify an obstacle that prevents its existence. The algorithm relies on the computation of73

a stationary distribution of an auxiliary graph. In contrast, solving maximum integral flow74

problems with additional equality constraints is known to be NP-hard [17], even when the75

partition is exactly the sets of leaving arcs of each vertex [23, 18].76

Sorting networks [12] and Beneš networks have topologies similar to splitter networks,77

with nodes of in-degree and out-degree 2. In microfluidics, mixing graphs are used to produce78

droplets of specific concentration, using devices that produces two identical droplets from two79

B. Couëtoux and B. Gastaldi and G. Naves 7:3

droplets of any concentration [7]. The concentration values on the arcs are subject to equality80

constraints similar to those of splitter networks, but without a maximizing constraint. The81

topology of splitter networks is nonetheless more general than these examples, as splitter82

networks may have directed cycles, those being necessary in particular to achieve load-83

balancing with an arbitrary number of outputs.84

In an answer to a question on the mathematics section of stackexchange, David85

Ketcheson attempted to model and compute the throughputs of splitter networks [11].86

Rather than binary categorizing each belt as full or not, each arc is assigned a density and87

a velocity. The density will be monotonically increasing, and the velocity monotonically88

decreasing during the run of the algorithm, until a steady-state is reached. In fact the89

velocity increases only after the density reaches its maximum at one. Therefore this de-90

scription is equivalent to our solution, which involves a throughput function and a set of91

full belts. Unfortunately his algorithm does not always terminate, and its solutions do not92

satisfy that splitters use their incoming belts fairly. Ketcheson also gave a procedure, albeit93

non-polynomial, to determine whether a network (not necessarily load-balancing) may limit94

throughput. Hovewer, this procedure is applicable only to networks without directed cycle.95

In [15], Leue modeled splitter networks using Petri nets, and uses model checking to check96

the load-balancing properties of some small networks.97

The Factorio community is very active and creative. Players have designed load-balancing98

networks of various sizes, with efficient embeddings into the grid while respecting the99

constraints of the game. Additionally, they have developed general methods for constructing100

arbitrary large load-balancing networks. They introduced the concept of balancing networks,101

along with the more robust properties of being throughput unlimited or universal, and102

subsequently designed networks that exhibit these characterics. A notable example is the103

universal balancer presented by pocarski [20], although it uses non-fair splitters too; our104

universal balancer only uses fair splitters. They also discovered the relationship with Beneš105

networks. Factorio-SAT [21] is a project that uses a SAT-solver to find optimal embeddings106

of splitter networks in the grid. The project VeriFactory uses a SAT-solver to check various107

load-balancing properties of splitter networks [14]. Factorio belts are actually sufficiently108

complex to be Turing-complete [16]. There are many implementations of various devices109

inside Factorio, ranging from raytracers to programming language interpreters, using the110

diverse set of available gameplay mechanisms. Factorio has been the inspiration for several111

other academic works [22, 19, 4, 6, 9].112

The rest of this paper presents an overview of the main concepts and results of this work.113

An extended version [5] will contain more details, proofs and additional results. Splitter114

networks and their steady states are defined in Section 2. Section 3 describes two algorithms115

to compute the steady-state of a splitter network. The concept of balancer is defined in116

Section 4, which also contains a presentation of some balancer designs. Section 5 describes117

how to derive a lower bound on the number of splitters in a balancer network. Finally in118

Section 6 we will present some perspectives.119

2 Splitter networks and their steady-states120

We start by modeling networks of conveyor belts and splitters by directed graphs, where each121

single belt is an arc, and each splitter is a node (thus abstracting the length of the belts).122

▶ Definition 1. A splitter network is a directed graph G (with possible loops or parallel arcs)123

whose vertex set can be partitioned into three sets V (G) = I ⊎ S ⊎ O where124

(i) I is the set of inputs, and d+(i) = 1, d−(i) = 0 for any input i;125

FUN 2024

7:4 The steady-states of splitter networks

(ii) O is the set of outputs, and d−(o) = 1, d+(o) = 0 for any output o;126

(iii) S is the set of splitters, and d−(s) = d+(s) = 2 for any splitter s.127

We will use the word flow to informally describe the material transported by the network,128

and throughput for the amount of flow going through the arcs. Our work aims to understand129

the throughputs inside a splitter network at steady state, when some maximum throughputs130

are forced on its inputs and its outputs, which are respectively the sources and sinks of the131

flow passing through the network. To this end we will consider capacity functions on the132

input and output. A capacity c on an input means that the input has an incoming flow133

of throughput c. The input will try to push that much into the network, but no more. A134

capacity c on an output means that the output will accept a maximum throughput of c. We135

consider that the maximum throughput of any arc is 1, with all belts being identical.136

A splitter can be described using two operational rules. The first rule, which takes137

precedence, is to maximize the amount of flow that goes through it. The secondary rule138

is to be fair. A splitter is fair relatively to its outgoing arcs: it tries to push as much flow139

onto each of them. It is also fair relatively to its incoming arcs: it tries to pull as much140

flow from each of them. As the maximization rule takes precedence, it will not be fair when141

being unfair leads to higher throughput. For instance, consider the network in Figure 1 (a),142

depicting a network with a single splitter. As one of the output has a lower capacity, it143

pushes more flow toward the other output, thereby maximizing the total throughput, while144

still being as fair as possible as it minimizes the difference of throughputs on its outgoing145

arcs.146

The throughput of an arc may reach a limit when its head is an output with a low147

capacity. For example in Figure 1 (a), an output of capacity 0.4 acts as a bottleneck. In148

other cases the head of an arc is a splitter, which itself is limited by what its outgoing arcs149

can accept. For example in Figure 1 (b), as all the outputs have reached their capacities, the150

splitter cannot accept more flow, even if the bottom input could provide even more flow. In151

terms of conveyor belts, some belts will initially receive more items that they can deliver,152

causing them to fill up. Once full, they can only accept from upstream as much as they153

deliver downstream, which may in turn limit throughputs upstream. We say that such belts154

are saturated.155

The output capacities are not the only factor that limit the total throughput and create156

bottlenecks. This can be observed in Figure 1 (c). There, the rightmost splitter tries to157

be fair and send some of the flow back to the left. The leftmost splitter also tries to be158

fair, thus accept the flow coming from the right. This results in the stabilization into the159

given throughputs. This example illustrates that the throughput is not globally maximized,160

contrary to the expectation of a total throughput of 1 for this network. Instead, it is only161

0.5.162

The following definition formalizes the notions of capacity, throughput and saturations,163

as well as the behaviour of splitters related to the flow going through the network in a steady164

state.165

▶ Definition 2. Let G = (I ⊎ S ⊎ O, E) be a splitter network, and let c : I ∪ O → [0, 1] be166

the maximal capacities of each input and output node. A steady-state for (G, c) is a pair167

(t, F) where168

R1 t : E → [0, 1] is the throughput function;169

R2 F ⊆ E is the set of fluid arcs, E \ F is the set of saturated arcs;170

R3 for each i ∈ I with δ+(i) = {e}, t(e) ≤ c(i) and moreover if e ∈ F then t(e) = c(i);171

R4 for each o ∈ O with δ−(o) = {e}, t(e) ≤ c(o) and moreover if e /∈ F then t(e) = c(o);172

B. Couëtoux and B. Gastaldi and G. Naves 7:5

1 16/7

1

5/7

3/7
4/7

6/7

3/7

6/7

1

5/
7

1 16/7

1

5/7

3/7
4/7

6/7

3/7

6/7

1

5/
7

Figure 2 An example of steady-state in a moderately small network, and the reverse network
with its steady-state obtained by reversal. Notice that the reversed steady-state satisfies rule 8 but
not rule 9.

R5 for each s ∈ S, with δ−(s) = {e1, e2} and δ+(s) = {e3, e4}, t(e1) + t(e2) = t(e3) + t(e4);173

R6 for any e1, e2 ∈ E with {e1, e2} = δ−(s) and e1 /∈ F , t(e1) ≥ t(e2);174

R7 for any e1, e2 ∈ E with {e1, e2} = δ+(s) and e1 ∈ F , t(e1) ≥ t(e2);175

R8 for any uv ∈ E \ F and vw ∈ F , t(uv) = 1 or t(vw) = 1.176

Rules 3 and 4 say that the throughputs are limited at each input and each ouput, and177

moreover, an input pushes as much flow as allowed by its capacity on a fluid arc. Similarly178

an output absorbs as much flow as allowed by its capacity from a saturated arc. Rule 5179

imposes the conservation of flow. Rules 6 and 7 enforce the fairness constraints: a splitter180

consumes no less flow from a saturated arc than from another incoming arc. A saturated arc181

represents a belt that is full. Therefore, the splitter is not limited in how much flow it can182

pull from that arc, and thus cannot pull less than from the other incoming arc. Similarly it183

produces no less flow in a fluid outgoing arc than in another outgoing arc. In particular, if184

both incoming arcs are saturated, or if both outgoing arcs are fluid, they must have equal185

throughput, suggesting the following definition.186

▶ Definition 3. Given a splitter network G = (I ⊎ S ⊎ O, E), and a set F ⊆ E of fluid arcs,187

we say that two arcs e, e′ ∈ E are188

in-coupled if e, e′ /∈ F and there is a splitter vertex v ∈ S with δ−(v) = {e, e′},189

out-coupled if e, e′ ∈ F and there is a splitter vertex v ∈ S with δ+(v) = {e, e′},190

coupled if they are in-coupled or out-coupled.191

Finally rule 8 imposes the maximization of the throughput by each splitter. Indeed,192

a saturated arc can provide more flow, while a fluid arc can absorb more flow. Thus, a193

steady-state cannot contain a saturated arc followed by a fluid arc. The only exception is194

when one of them already has a throughput of 1. We will sometimes replace rule 8 by a195

stronger maximization rule :196

R9 for any arcs uv ∈ E \ F and vw ∈ F , t(vw) = 1.197

Rule 9 implies rule 8, and although the converse is not true, any steady-state can be198

modified into a steady-state for which rule 9 also holds.199

The definitions of splitter networks and steady-states exhibit a remarkable symmetry. By200

reversing each arc, exchanging the role of inputs and outputs, and complementing the set of201

fluid arcs, a steady-state is transformed into a steady-state of the reverse graph, as seen in202

Figure 2.203

For convenience, when defining or representing splitter networks, we will allow splitters204

with in-degree one or out-degree one (see Figure 2 for instance). This is justified by the205

FUN 2024

7:6 The steady-states of splitter networks

fact that if a splitter s has in-degree one, we can add a dummy input node i with capacity206

c(i) = 0. An arc from i to s can then be added, that will always remain fluid. Similarly207

if s has out-degree one, we can add a dummy output node o with capacity c(o) = 0, and208

an always-saturated arc from s to o. The throughputs on those arcs are forced to be 0.209

Therefore it does not induce any new constraint on the non-dummy arcs as rules 6 and 7 are210

clearly true for those arcs.211

Additionally, for convenience, for any input i ∈ I with outgoing arc e, we note t(i) := t(e),212

and similarly for any output o ∈ O with incoming arc e, t(o) := t(e). We also extend the213

capacities to arcs by setting c(e) to be either c(i) if e ∈ δ+(i), i ∈ I, or c(o) is e ∈ δ−(o), o ∈ O,214

or 1 otherwise.215

3 Existence and computation of steady-states216

Let F be a fixed set of fluid arcs. Then the set of possible throughput functions t of a217

steady-state (t, F) can be described as a polyhedron. Indeed, each of the rules 1, 3, 4, 5, 6,218

7 can be encoded by linear inequations. Rule 8 is non-convex, but we will later introduce219

its slight strengthening, rule 9. That stronger rule admits an encoding as a family of linear220

inequations. Thanks to linear programming, finding a steady-state thus reduces to finding a221

set of fluid arcs that admits a steady-state. Nevertheless, we still need to find F . We propose222

two algorithms to compute a steady-state, which relates to two families of maximum flow223

algorithm:224

a push-relabel-like algorithm, where we relax the conservation rule 5, thus defining a225

pre-steady-state by analogy with pre-flows. Given a set F , we use a linear program to226

compute an optimal pre-steady-state (t, F) (for some well-chosen objective), and prove227

that either (t, F) is a steady-state, or there is an arc e ∈ F such that (t, F \ e) is also a228

(non-optimal) pre-steady-state. Then after at most |E| steps we get a steady-state;229

a blocking-flow-like algorithm, where we relax the rule 3 on input capacities, removing230

the requirement that an input whose throughput is less than its capacity must have a231

saturated outgoing arc. This defines the notion of sub-steady-state. Given a set F , we232

solve a linear system to find a sub-steady-state t, and prove once again that either (t, F)233

is a steady-state or there is an arc e ∈ F such that (t, F \ e) is a sub-steady-state.234

The pre-steady-state algorithm is technically simpler but requires an LP-solver. The sub-235

steady-state only requires an algorithm to compute stationary distributions in directed graphs.236

We defer a complete presentation and proof of these algorithms to the extended version of237

this paper, and focus here on explaining the sub-steady-state algorithm.238

▶ Definition 4. Given G = (I ⊎ S ⊎ O, E) a splitter network with capacities c : I ⊎ O → [0, 1],239

a sub-steady-state for (G, c) is a pair (t, F) satisfying rules 1, 2, 4, 5, 6, 7 and the strong240

maximization rule 9, and for any i ∈ I and e ∈ δ+(i), t(e) ≤ c(i).241

The algorithm starts with the trivial sub-steady-state (t : e → 0, E), and will improve it242

iteratively until reaching a steady-state. At each iteration of the algorithm, we will be trying243

to increase the throughputs of the arcs without violating any rule. Unlike in maximum flows,244

we do not have the choice of which leaving arc to increase the flow on. Furthermore, rule 8245

forces each splitter to send as much flow forward as possible. A non-obvious consequence is246

that, when increasing the input capacities, throughputs can only increase on fluid arcs, and247

can only decrease on saturated arcs. This suggests a definition of the residual graph for the248

sub-steady-state (t, F). Its vertex set is {z} ∪ S, where z is obtained by identifying all the249

inputs and outputs into a single node. Its edge set contains some fluid arcs and the reverses250

of some saturated arcs.251

B. Couëtoux and B. Gastaldi and G. Naves 7:7

+ε
e1

e2

+
ε

2
e3

+ ε
2 e4

(a)

+ε
e1

e2

e3

+ε e4

(b)

+ε
e1

−ε
e2

e3

e4

(c)

− ε
2

e1

−
ε

2e2

−ε e3

e4

(d)

Figure 3 Four examples of throughput changes at a single splitter, depending on which arcs are
fluid.

Network:

Residual graph:

Figure 4 Configurations of splitters and the corresponding vertex in the residual graph. The
outgoing arcs from a vertex of the residual graphs are highlighted in red: notice that in a sub-steady-
state, the throughputs on these arcs must be equal.

Consider the splitters in Figure 3. We examine what happens when we increase the252

throughput on edge e1 by +ε, or in case (d) when we decrease t(e3) by ε. In case (a), by253

rule 7, the throughputs on the two leaving arcs must stay equal, hence both increases by254

ε/2. In case (b), only the throughput of the fluid leaving arc e4 can increase. In case (c),255

both leaving arc are saturated, the splitter cannot push more flow downward, hence it is256

forced to push back flow through its incoming saturated arcs. Thus t(e2) decreases while257

t(e1) increases, by no more than (t(e2) − t(e1))/2 because of rule 6. Finally in case (d), if we258

decrease t(e3), then t(e1) and t(e2) must decrease by half as much.259

Case (c) presents a challenge due to rule 6, which imposes t(e1) ≤ t(e2). When t(e1) =260

t(e2), the throughput of e1 cannot increase, and the throughput of e2 cannot decrease. We261

say that e1 and e2 are tight. In such a case, removing e1 from F is allowed by rule 6. Fluid262

arcs e with t(e) = c(e) or saturated arc with t(e) = 0 are also tight, since we cannot modify263

their throughput further. Then we define the edge-set of the residual graph to only contain264

non-tight fluid arcs and reverses of non-tight saturated arcs.265

Due to the conservation rule 5, any iterative change to the throughputs of the network266

must be in accordance with a circulation of the residual graph. Because of rules 6 and 7, some267

arcs are constrained to have the same throughput. Therefore the chosen circulation itself has268

similar constraints. This is illustrated in Figure 4, where the arcs that have equal throughput269

are highlighted in the residual graph. As may be readily checked, those constraints are270

exactly set on the leaving arcs in the residual graph of each vertex corresponding to a splitter.271

As for the special vertex z, obtained from the identification of the inputs and the outputs, we272

may non-deterministically select one of its leaving arc. Then we force all other arcs leaving z273

to have zero flow, by removing those arcs from the residual graph. From the residual graph,274

we compute a circulation satisfying each equality constraint. First compute a stationary275

distribution of a random walk on the residual graph. Then assign to each arc the probability276

of being the next arc in a random walk from that distribution. This results in a so-called277

stationary circulation (see Figure 5). One must be careful if the residual graph is not strongly278

connected. Then either we can find a strongly connected subgraph induced by the leaving279

arcs of some subset of vertices, or the residual graph contains a sink (as in Figure 6). In the280

FUN 2024

7:8 The steady-states of splitter networks

1 10

0

0

0
0

0

0

0

0
0

z z
1/12

1/
8

1/8

1/16

1/16

1/6

5/48

1/12

5/
48

1/
12

Figure 5 Starting from a trivial sub-steady-state, we compute a residual graph and a stationary
circulation in this graph (the two vertices marked z should be identified). Then we increase the
throughputs accordingly, as much as possible without violating a sub-steady-state rule, by adding
λ = 6 times the circulation at which point some edge reaches its capacity (see Figure 6).

1 1
1/2

3/
4

3/4

3/8
3/8

1

5/8

1/2

5/
8

1/
2

z z

Figure 6 We compute a new residual graph, which does not contain the arc with throughput
1, since this arc cannot increase. Then the existence of a sink prevents us to find a stationary
circulation in this residual graph (the two vertices marked z should be identified). We remove from
F the incoming arc to the sink with highest throughput, and go to the next iteration.

former case we can still find a circulation, while in the latter case, we will be able to remove281

some arc from F .282

Once a circulation is found, we increase the throughput as much as possible. This process283

will result in the creation of at least one sink in the updated residual graph. We show that284

when the residual graph contains a sink, some arc can be safely removed from F and becomes285

saturated. This bounds the number of steps until the algorithm stops, when z itself becomes286

a sink. At this point, any arc leaving an input node is either at full capacity or is saturated.287

Hence rule 3 is satisfied, (t, F) is a steady-state. Summarizing the discussion, we get:288

▶ Theorem 5. There is an algorithm that given a splitter network G = (I ⊎ S ⊎ O, E) with289

capacities c : I ⊎ O → [0, 1], finds a steady-state (t, F) in time O(|S|2 + |S| sd(Gz)), where290

Gz is the graph obtained by identifying I ∪ O into a single vertex z, and sd(Gz) denotes the291

time to compute a stationary distribution on any orientation of a subgraph of Gz.292

Steady-states are not unique: a directed cycle with no input or output can have any293

constant throughput on all its arcs. Figure 7 showcases a more interesting network, having294

one input, one output, and many possible steady-states. However, in this example, all steady-295

states have the same throughputs on the inputs and outputs. Is there a network with two296

steady-states having different throughputs on their inputs and outputs? We conjecture that297

this cannot happen: steady-states are unique up to minor modifications, as in Figure 7. Those298

modifications would be adding or removing some arcs from F , and adding or subtracting a299

circulation from the residual graph that leaves the inputs and outputs unchanged.300

B. Couëtoux and B. Gastaldi and G. Naves 7:9

1 11/4 1/2 1
1/2

1/2

1/4

1/4
1/2 + ε

1/4 + ε

1/4 1/2 1 1/2 1/4

1/2

1/4

Figure 7 A network having several steady-states. Any value for ε between 0 and 1
2 gives a

steady-state.

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 0

0.5

0.5
0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

0

0 0

0 0

1 1

1 1

0

0
0.5

0.5

0

0 0

1

0

0

0.5

0.5

Figure 8 On top, the simple balancer of order 3, with a steady-state that is not balanced when
some output capacity is not 1. The capacity of each input (resp. output) is given at their left (resp.
right). Below, a simple balancer of order 2, with a steady-state with total throughput less than both
the total input capacity and the total output capacity.

4 Balancers301

We now define load-balancing networks and their properties. The goal of a load-balancing302

network is to divide some input flow evenly between several output belts. In the simplest303

case, the output belts can receive an arbitrarily large flow (up to the capacity of the belt). In304

more general cases, some outputs may be restricted but we still want the flow to be divided305

as evenly as possible, without limiting the total throughput available. We distinguish three306

properties of load-balancing networks. The first of these properties considers networks where307

the output capacities are not constrained.308

▶ Definition 6. A splitter network G = (I ⊎S ⊎O, E) is a balancer if for any c : I ⊎O → [0, 1]309

such that for each output o ∈ O, c(o) = 1, there is a steady-state (t, F) for (G, c) with t310

constant on δ−(O). An (n, p)-balancer is defined as a balancer with |I| = n inputs and311

|O| = p outputs.312

FUN 2024

7:10 The steady-states of splitter networks

Figure 9 A Beneš network of order 4 with the recursive structure being made explicit.

When |I| = |O| = 2k, the simple balancer of order k is a balancer network. It can be313

defined recursively: a simple balancer of order k + 1 is made from two simple balancers of314

order k in parallel. We identify each pair of outputs with equal index from the two balancers,315

creating a new splitter whose leaving arcs go to new output nodes. The recursive process is316

highlighted by blue boxes in Figure 8. A drawback of the simple balancer occurs when the317

output capacities are not uniformly 1. Then the balancing property is lost, as can be seen on318

the network in the top half of Figure 8.319

Another limitation of simple balancers is that the total throughput at steady-state320

is not as much as we could expect. A simple upper bound on the total throughput is321

min{c(I), c(O)}. It is reasonable to expect from a load-balancing network to always reach322

that bound. However, simple balancers do not have this property, as shown by the example323

on the bottom half of Figure 8. Improving over the definition of simple balancer, the concept324

of throughput-unlimited balancer imposes a maximized global throughput.325

▶ Definition 7. A balancer G = (I ⊎ S ⊎ O, E) is throughput-unlimited if for any c :326

I ⊎ O → [0, 1], there is a steady-state (t, F) for (G, c) such that total throughput t(I) = t(O)327

is maximized at min{c(I), c(O)}.328

Notice that it has to be balancing only when the output capacities are uniformly 1. Beneš329

networks are throughput-unlimited networks with |O| = |I| = 2k. They can be described as330

gluing two simple balancers, where the second balancer is reversed, see Figure 9. Observe331

that Beneš networks are their own reverses.332

On the negative side, Beneš network are still not balancing when output capacities are333

not uniformly 1, for instance one could extend the steady-state in the network on the left334

side of Figure 8 to a steady-state in a Beneš network with the same throughputs. This calls335

for a stronger property, that a network should be load-balancing and throughput-unlimited336

for any capacity function. This is the notion of universal balancer.337

▶ Definition 8. A splitter network G = (I ⊎ S ⊎ O, E) is universally balancing if for each338

capacity c : I ⊎ O → [0, 1], there is a steady-state (t, F) and α, β ∈ R≥0 such that339

(i) for each input i, t(δ+(i)) = min{c(i), α},340

(ii) for each output o, t(δ−(o)) = min{c(o), β}.341

(iii) the total throughput T := t(δ+(I)) equals min{c(I), c(O)}.342

In the extended version of this work, we will show how to build a universal balancer with343

|I| = |O| = 2k. From such a universal balancer, by ignoring any set of inputs and outputs344

B. Couëtoux and B. Gastaldi and G. Naves 7:11

(setting their capacities to 0), we can make balancers with arbitrary numbers of inputs and345

outputs. We will also prove that every balancer presented here contains Θ(n log n) splitters346

where n is the number of inputs and outputs.347

▶ Proposition 9. The number of splitters in the simple balancer, Beneš network and universal348

network of order k are respectively S(k) = k · 2k−1, B(k) = (2k − 1) · 2k−1, and U(k) =349

(k + 1)2k+2.350

5 Lower bounds on the number of splitters351

Our next goal is to provide an Ω((n + p) log(n + p)) lower bound on the number of splitters352

in a (n, p)-balancer. We begin with what may seem as an unrelated problem: sampling in a353

discrete probability distribution. Given a fair coin that can be tossed arbitrarily often, how354

to choose an outcome in {1, . . . , d}, with probabilities given by a distribution π ∈ [0, 1]d?355

First, consider the case when π(i) is a rational for each i ∈ {1, . . . , d}, say π(i) = pi/q where356

q is a common denominator. Then a sequence of coin tossing can be described as a (possibly357

infinite) binary decision tree, with each leaf labeled with a sampled value. Here we present a358

construction of such a tree. Start from a single vertex, which serves as the root. Grow the359

tree in repeated iterations. At each iteration, add two children to every unlabelled leaf. As360

soon as the deepest level of the tree contains at least q leaves, label pi of these leaves with i,361

for each i ∈ {1, . . . , d}. Once labeled, each leaf becomes definitive and will not grow anymore.362

The process goes on by once again growing the unlabelled leaves, as long (possibly infinitely)363

as some unlabelled leaf exists. After the tree is completed, the tree can be optimized using a364

simple trick repeated multiple times. If at any depth d, two leaves share a common label,365

move them under a common parent, then replace these two leaves with a single leaf at depth366

d − 1 bearing the same label. This process can be generalized to irrational probabilities, and367

gives a sampling algorithm that minimizes the number of coins tossed:368

▶ Theorem 10 ([13]). Let π ∈ [0, 1]d a discrete probability distribution (so 1π = 1). Then369

the minimum expected number of coin tosses necessary to sample an element with probability370

distribution π is
∑d

i=1
∑

k∈N
k

2k binaryk (πi). This minimum is achieved by a binary decision371

tree where at each depth k and for each i ∈ J1, dK, the number of leaves with label i is372

binaryk (πi) (the value of the bit of weight 2k in the binary expansion of πi).373

Consider a splitter network, and think of the flow as discrete, arbitrarily small items.374

An item enters the network from some input, then meets splitters repeatedly until reaching375

an output. When an item arrives at a splitter with both outgoing arcs being fluid, it will376

continue on any of the two outgoing arcs, without preference for one over the other because377

the splitter is fair. It implies that, from the perspective of this single item, the splitter378

network behaves like a coin-tossing network, with each splitter corresponding to a coin toss.379

If the network is a balancer, the sampled distribution is the uniform distribution on O.380

Formally, when all the arcs remains fluid, increasing a single input capacity from 0 to381

1 results in a non-decreasing throughput on each arc. Because all arcs are still fluid, the382

sub-steady-state algorithm performs a single iteration. Therefore the increase in throughputs383

follows a single stationary circulation. As illustrated on Figure 10, it is obtained from the384

embedding of a binary decision tree T onto the splitter network. The increase in throughput385

on an arc e is the sum of probabilities of the edges mapped to e. Furthermore, in a balancer386

network, the increase of throughput is the same on every output. This implies that, as387

we progressively increase each input capacity from 0 to 1, each binary decision tree must388

uniformly sample from O.389

FUN 2024

7:12 The steady-states of splitter networks

1
1/2

1/4

1/41/2
1/4

1/4

1/
8

1/8

1/16

1/16

1/16

1/16

c

b

a

1/2
1/2

1/
4 1/4 1/

4 1/4

1/8
1/8

1/
16

1/16 1/
16

a b c

a b c

Figure 10 The infinite decision tree (in blue) used to sample uniformly over a three-element
set {a, b, c} can be embedded from any input into a (3, 3)-balancer. Moreover, the sum of the
probabilities of the 3 trees, one from each input, will be at most one on any arc, which shows that
this network is indeed a simple balancer.

In each binary decision tree, label each edge e with the probability of its usage during390

sampling. The sum of these labels represents the expected number of tosses, and can be391

bounded as shown in Theorem 10. When mapped into the splitter network, for an arc e, the392

sum of these labels on each edge of the tree mapped to e is the additional throughput on e.393

By summing over all the binary decision tree, we get that the sum of all labels is at most the394

number of outgoing arcs of all splitters, that is 2|S|. Applied on balancers, it yields:395

▶ Theorem 11. Let G = (I ⊎ S ⊎ O, E) be an (n, p)-balancer, such that when all input396

capacities are 1, the steady-state has no saturated arc. Then397

|S| ≥ 1
2 |I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)
398

For a balancer with |I| = |O| = 2k, since
∑

k∈N
k

2k binaryk

(
1

|O|

)
= k

2k , we get a lower399

bound of k2k−1 splitters, matching the value of S(k). Therefore the simple balancer of order k400

is optimal among all balancer networks without any saturated arcs in their steady-states. By401

extending this argument to steady-states with saturated arcs, we can remove that restriction,402

albeit at the cost of halving the lower bound.403

Consider the various configurations of fluid and saturated arcs incident to a splitter,404

illustrated in Figure 3. If a splitter has two fluid outgoing arcs, any additional flow is evenly405

distributed between the two outputs, akin to the probabilities of a coin toss. If a splitter has406

two incoming saturated arcs, by rule 8, its outgoing arcs are saturated or at full capacity.407

In an augmenting circulation, the throughput on those arcs may only decrease by the same408

quantity by rule 6: the splitter still acts as a coin toss, but on the flow that is pushed409

back. Otherwise, a positive change in throughput on an incoming arc will be followed by410

an increase on a single outgoing fluid arc or a decrease on a single incoming saturated arc.411

Similarly a negative change of throughput on an outgoing saturated arc will impact only one412

other arc. Any additional unit of flow entering the splitter would be routed deterministically.413

Therefore, in the embedding of a binary decision tree into the splitter network, a node cannot414

B. Couëtoux and B. Gastaldi and G. Naves 7:13

be mapped to such a vertex, and no coin toss occurs here. Thus any splitter, depending on415

which of its incident arcs are fluid, acts as either a coin toss or a deterministic router. Thus,416

even in the presence of saturated arcs, we can embed a binary decision tree, by mapping417

each edge to a directed path in the residual graph. The inner nodes of any such path are418

deterministic splitters, while its extremities are tossing splitters. As a consequence of the419

sub-steady-stat algorithm, the throughput on each arc increases until it becomes saturated,420

then decreases. Therefore its throughput varies by at most 2 during the whole algorithm.421

This limits the extent to which an arc can be utilized by the embeddings of binary decision422

trees, leading us to the following conclusion:423

▶ Theorem 12. Let G = (I ⊎ S ⊎ O, E) be an (n, p)-balancer. Then424

|S| ≥ 1
4 |I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)
425

6 Perspectives426

We formalized splitter networks and their steady-states, and presented various load-balancing427

designs. The ability to design universal balancers enables the simulation of networks with428

integral capacities: each arc is replicated according to its capacity, and each splitter is429

replaced by a universal balancer. A universal balancer is fair by the balancing property, and430

maximizing by the unlimited-throughput property, effectively generalizing splitters. Our431

definition of splitter network can also be extended to support arc capacities natively, with432

most of the proofs requiring only minor modifications. In an extended version of this paper [5],433

we will demonstrate how to simulate any rational capacity. Given an arbitrary rational value434

between 0 and 1, we will design a splitter network, with a single input and a single output,435

and achieving this value as maximal throughput. However, simulating irrational capacities is436

not feasible, as the steady-state throughput is a solution to a linear system of inequations.437

Although our continuous model is convenient for modeling the expected throughput438

of splitter networks, Factorio’s belt systems operates discretely. Therefore, the observed439

throughputs in Factorio’s splitter networks are only approximations of those theorized by440

our model. Further investigation into the disparities between the discrete and continuous441

splitter networks is necessary to accurately apply our findings to Factorio.442

We have let several questions unanswered. The most fundamental remains regarding the443

uniqueness of the steady-state throughput. While it is possible for a single splitter network444

to admit multiple steady-states, we have yet to encounter a network with two steady-states445

that yield different throughputs on their outputs.446

Our lower bounds for the number of splitters in balancers have a constant multiplicative447

gap across all designs, indicating they are not tight. For simple balancers of order k, this gap448

is closed when we forbid saturated arcs in the steady-state of the balancer. Consequently,449

leveraging saturation is necessary to further reduce the number of splitters in load-balancing450

networks. Furthermore, it is worth investigating stronger lower bounds in the context of451

universal balancers.452

Factorio allows splitters to be configured to prioritize either an outgoing arc, or an453

incoming arc. Utilizing this feature, the universal network described in [20] achieves a454

significantly smaller size compared to our design. Our technique still establishes a lower455

bound on the number of fair splitters. In general, what is the minimum size achievable for456

networks utilizing these more general splitters? It is straightforward to extend the definition457

of steady-state to accomodate unfair splitters. Additionally, in the extended version of this458

FUN 2024

7:14 The steady-states of splitter networks

paper, we will provide complexity results for the problem of global throughput maximization,459

when we can choose which arcs to prioritize in each splitter or a subset of those splitters.460

As a last series of questions, consider a network whose steady-state, when all inputs and461

outputs have capacity 1, has no saturated arcs. If the augmenting flow from any single input462

is uniformly distributed across the outputs, then the network is a balancer. This provides a463

polynomial-time procedure for determining whether a network is a balancer, subject to the464

absence of saturation. Is it feasible to devise a general procedure to decide whether a splitter465

network is balancing, throughput unlimited or universal?466

References467

1 Václav E Beneš. On rearrangeable three-stage connecting networks. The Bell System Technical468

Journal, 41(5):1481–1492, 1962.469

2 Václav E Beneš. Permutation groups, complexes, and rearrangeable connecting networks. Bell470

System Technical Journal, 43(4):1619–1640, 1964.471

3 BoardGameGeek. Boardgame category: transportation. https://boardgamegeek.com/472

boardgamecategory/1011/transportation.473

4 Bonnie S. Boardman and Caroline C. Krejci. Simulation of production and inventory control474

using the computer game factorio. In ASEE 2021 Gulf-Southwest Annual Conference, 2021.475

5 Basile Couëtoux, Bastien Gastaldi, and Guyslain Naves. The steady-states of splitter networks.476

https://arxiv.org/abs/2404.05472, 2024.477

6 Chase Covello, Hyunjang Jung, and Bryan C. Watson. Using graph theory to investigate the478

role of expertise on infrastructure evolution: A case study examining the game factorio. In479

Conference on Systems Engineering Research, pages 297–311. Springer, 2023.480

7 Miguel Coviello Gonzalez and Marek Chrobak. Towards a theory of mixing graphs: A481

characterization of perfect mixability. Theoretical Computer Science, 845:98–121, 2020.482

8 Yefim A. Dinits. The method of scaling and transportation problems. Studies in Discrete483

Mathematics, Moscow, pages 46–57, 1973.484

9 Shivam Duhan, Chengming Zhang, Wenyu Jing, and Mingqi Li. Factory optimization using485

deep reinforcement learning ai. Purdue Undergraduate Research Conference, 57, 2019.486

10 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.487

Journal of the ACM (JACM), 35(4):921–940, 1988.488

11 Ketcheson, David. Mathematics Stackexchange: Belt Balancer problem (Factorio). https:489

//math.stackexchange.com/questions/1775378/belt-balancer-problem-factorio.490

12 Donald E Knuth. The Art of Computer Programming: Sorting and Searching, Volume 3.491

Pearson Education, 1998.492

13 Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number493

generation. In JF Traub, editor, Algorithms and Complexity: New Directions and Recent494

Results, pages 357–428. Addison-Wesley, 1976.495

14 Legnagi, Alessandro and Montini, Axel. VeriFactory. https://github.com/alegnagi/496

verifactory/.497

15 Andre Leue. Verification of Factorio Belt Balancers using Petri Nets. PhD thesis, Bachelor-498

arbeit, Darmstadt, Technische Universität Darmstadt, 2021.499

16 MatthaeusHarris. Factorio belts are Turing-complete. https://www.reddit.com/r/factorio/500

comments/lc25cx/factorio_belts_are_turing_complete/.501

17 Carol A. Meyers and Andreas S. Schulz. Integer equal flows. Operations Research Letters,502

37(4):245–249, 2009.503

18 Amandeep Parmar. Integer programming approaches for equal-split network flow problems.504

PhD thesis, Georgia Institute of Technology, 2007.505

19 Sean Patterson, Joan Espasa, Mun See Chang, and Ruth Hoffmann. Towards automatic design506

of factorio blueprints. arXiv preprint arXiv:2310.01505, 2023.507

https://boardgamegeek.com/boardgamecategory/1011/transportation
https://boardgamegeek.com/boardgamecategory/1011/transportation
https://boardgamegeek.com/boardgamecategory/1011/transportation
https://arxiv.org/abs/2404.05472
https://math.stackexchange.com/questions/1775378/belt-balancer-problem-factorio
https://math.stackexchange.com/questions/1775378/belt-balancer-problem-factorio
https://math.stackexchange.com/questions/1775378/belt-balancer-problem-factorio
https://github.com/alegnagi/verifactory/
https://github.com/alegnagi/verifactory/
https://github.com/alegnagi/verifactory/
https://www.reddit.com/r/factorio/comments/lc25cx/factorio_belts_are_turing_complete/
https://www.reddit.com/r/factorio/comments/lc25cx/factorio_belts_are_turing_complete/
https://www.reddit.com/r/factorio/comments/lc25cx/factorio_belts_are_turing_complete/

B. Couëtoux and B. Gastaldi and G. Naves 7:15

20 pocarski. Universal 8-8: Perfectly Balanced, as All Things Should Be. https://web.archive.508

org/web/20230922022806/https://alt-f4.blog/ALTF4-27/.509

21 R-O-C-K-E-T. factorio-SAT: Enhancing the Factorio experience with SAT solvers. https:510

//github.com/R-O-C-K-E-T/Factorio-SAT.511

22 Kenneth N. Reid, Iliya Miralavy, Stephen Kelly, Wolfgang Banzhaf, and Cedric Gondro. The512

factory must grow: automation in factorio. In Proceedings of the Genetic and Evolutionary513

Computation Conference Companion, pages 243–244, 2021.514

23 K. Srinathan, Pranava R. Goundan, MVN Ashwin Kumar, R. Nandakumar, and C. Pandu515

Rangan. Theory of equal-flows in networks. In Computing and Combinatorics: 8th Annual516

International Conference, COCOON 2002 Singapore, August 15–17, 2002 Proceedings 8, pages517

514–524. Springer, 2002.518

24 Wube Software. Factorio. https://www.factorio.com/.519

FUN 2024

https://web.archive.org/web/20230922022806/https://alt-f4.blog/ALTF4-27/
https://web.archive.org/web/20230922022806/https://alt-f4.blog/ALTF4-27/
https://web.archive.org/web/20230922022806/https://alt-f4.blog/ALTF4-27/
https://github.com/R-O-C-K-E-T/Factorio-SAT
https://github.com/R-O-C-K-E-T/Factorio-SAT
https://github.com/R-O-C-K-E-T/Factorio-SAT
https://www.factorio.com/

	1 Introduction
	2 Splitter networks and their steady-states
	3 Existence and computation of steady-states
	4 Balancers
	5 Lower bounds on the number of splitters
	6 Perspectives

