
Discrete Optimization

Guyslain Naves

Fall 2010

Contents

1 The simplex method 5
1.1 The simplex method . 5

1.1.1 Standard linear program 9
1.1.2 Dictionaries . 11
1.1.3 Pivoting . 13

1.2 Termination of the simplex method 19
1.2.1 Optimality . 19
1.2.2 Degeneracy . 20
1.2.3 Cycling . 23
1.2.4 Bland’s rule . 24
1.2.5 The perturbation method 25
1.2.6 Complexity . 27

1.3 Initialisation . 30
1.3.1 Two-phase simplex . 31

2 Duality 34
2.1 Geometry . 34

2.1.1 Why linear programming is a geometric problem . . . 34
2.1.2 Fundamental theorem 43
2.1.3 The structure of polyhedra 49
2.1.4 Farkas’ Lemma . 50

2.2 Weak and strong duality . 53
2.2.1 Looking for an upper bound 53
2.2.2 Weak duality . 57
2.2.3 Strong duality . 57
2.2.4 Geometric interpretation 61
2.2.5 Complementary slackness 62
2.2.6 Economic interpretation 64

1

3 Advanced topics on the simplex method 66
3.1 The revised simplex method 66

3.1.1 Factorizing matrices 66
3.1.2 Rewriting the simplex method 69

3.2 Implementation details . 75
3.2.1 Complexity . 75
3.2.2 Accuracy . 77

3.3 Boxed simplex . 78
3.4 Dual simplex . 83
3.5 Sensitivity Analysis . 87

3.5.1 Changing the objective 87
3.5.2 Changing the right-hand side 88
3.5.3 Changing everything 88
3.5.4 Changing parameters without changing the solution . 90

4 Applications 92
4.1 Matrix games . 92
4.2 Column generation . 99

5 The network simplex 105
5.1 Introduction to graph theory 105
5.2 Network flows: basis . 110

5.2.1 What do we want to solve? 110
5.2.2 The basis . 113

5.3 Description of the network simplex 117
5.3.1 Iteration . 117
5.3.2 Initialization . 124
5.3.3 Cycling and termination 125
5.3.4 Implementation of the network simplex method 125

5.4 Applications and consequences 126
5.4.1 Maximum flow . 127
5.4.2 The assignment problem 128

2

Introduction to linear programming

Mathematical programming is the part of applied mathematics that deals
with finding solutions to mathematical problem in the most efficient way.
Mathematical programming takes its origin in the second world war. At that
time, the German submarines were inflicting considerable damages to the
allied navy. This was greatly affecting the war effort, in particular in Great
Britain which was very dependant on the supply from the other continents.
The allied had to organize their logistic in a scientific way to counter German
strategy. This leads mathematicians to develop efficient methods to solve
pratical optimization problems. It was at that time that were founded the
basis of linear programming. After the war, mathematical programming
became a major tool for increasing the productivity of companies, and found
other domains of applications, for example in economy. To illustrate the
importance of mathematical programming, let’s just say that one of the
major companies in this domain, Ilog, has been bought recently by IBM for
$340 millions.

A mathematical program is given by a set of variable X, and some
function f : RX → R+ that we want to maximize, that is we want to
give a value to each variable, giving a vector x, such that f(x) is max-
imum. Moreover, the values for x can be submitted to additional con-
straints, given functions g1, . . . gk. We only accept the solution x that sat-
isfy g1(x) = g2(x) = . . . = gk(x) = 0. No need to say that it is not possible
to give a method that solve any such problem. This is why we only look
at particular cases, where f , g1, . . . , gk have some additional properties.
This course is about linear programming, that is mathematical program-
ming where the functions are linear: f(x+ y) = f(x) + f(y) for all x and y.
There are several reasons why linear programming is interesting.

• It is sufficiently expressive to deal with most of the problems that we
want to solve in practice.

• It relies on basic linear algebra, hence it has a beautiful yet accessible
theory.

• Solvers are really efficient on linear programs: solving linear programs
with tens of thousands of constraints and variables is considered as an
easy task by now.

• It is very reliable: even when the datas are not very accurate, the
solution computed by a linear solver is not too far from the correct
answer.

3

Figure 1: A non-convex function can have local optima that are not globally
optimum.

• It supports post-analysis efficiently, allowing to make small changes to
the model without recomputing a solution from scratch.

One of the most important properties of linear programs is the convexity
of the constraints: given two vectors x and y satisfying the constraints
of a linear program, the mean x+y

2 of these two vectors also satifies the
constraints. The consequence is that if we have a solution x that is not
optimal, and y is an optimal solution, we can improve our solution x by
slightly moving in the direction of y. This will indeed improve the solution
by the linearity of the objective function. Thus, a non-optimal solution can
always be improved locally, there are no local optima that are not global.
For example, in Figure 1, there are three local maximum, but only one global
maximum for f . This would not happen with a convex function.

A very important result was obtained by Khachiyan in 1979. Linear pro-
gramming can be solved in polynomial-time (under some technical require-
ments). The importance of this result is more theoretical than practical, his
algorithm being inefficient in practice. But it shows that convexity is what
makes mathematical programming works in many cases. As a consequence,
it is theoretically possible to solve problems more general than linear pro-
gramming. But linear programming happens to be more scalable and is still
the major tool in operations research.

This course introduces linear programming, its method and some of its

4

applications. The goal is to explain how practial problems can be modelized
as linear programs and how to solve a linear programs efficiently. We will be-
gin by an introduction of linear programming, and a first resolution method
in Chapter 1. At that point, our algorithm will still look magical. Chapter 2
will go deeper into the mathematical theory. We will explain the relation be-
tween linear programming and geometry and find simple ways to prove the
optimality of a solution. We will also see how some intriguing mathematical
concepts are related to economic considerations. Then, in Chapter 3, we will
basically make our algorithm faster and accurate, and show how to perform
efficient post-analysis on a solution. Chapter 4 is dedicated to two classi-
cal applications of linear programming: matrix games and the cutting-stock
problem. Chapter 5 studies the network simplex algorithm, a special case
of our algorithm for solving transportation problems. From that, we will
deduce some classical results of combinatorial optimization.

5

Chapter 1

The simplex method

1.1 The simplex method

Example: The iron foundry (Bradley, Hax, Magnanti)

• An iron foundry must produce 1000 pounds of casting,

• the casting must contain more than 0, 45% percents of manganese, and
between 3.25% and 5.5% of silicone,

• the price of the casting is $0.45 per pound,

• the price to melt down a pound of iron is $0.5 per pound of pig iron,

• there are three different kinds of iron pigs available (the prices are
given per thousand pounds):

A B C

Silicon 4% 1% 0.6%
Manganese 0.45% 0.5% 0.4%

Price $21 $25 $15

• moreover, we can use pure manganese, at the price of $8 per pound.

Question: How can the foundry maximize its profit?

To solve this problem in a mathematical way, one must first find de-
cision variables. Finding good values for these variables will then be our
main objective. In this example, the decision variables are the quantity of
each iron pig plus the quantity of manganese used to produce the thousand

6

pounds of casting. Hence, let x1, x2 and x3 denotes respectively the number
of thousands of pounds of pigs A, B, and C respectively, and x4 the number
of pounds of pure manganese used in the production.

Despite the uncertainty about the quantity of manganese and silicone in
the final product, they do not constitute decision variables. We just have
some freedom for the composition of the alloy, but the final product will
depend only on the values taken by the four decision variable. Actually, we
will introduce them latter in order to find a solution.

The next step is to find the objective of the program. For which quantity
do we want to find an optimum (minimum or maximum)? In our problem,
we want to maximize the profit made by selling this alloy. It is easily estab-
lished from the price of the different pigs, of the manganese, and the price
of the casting, plus the price of the melting down.

max 4500− 21.5x1 − 25.5x2 − 15.5x3 − 8x4

Note that the constant in the objective is useless, so we rewrite our objective
as:

max−21.5x1 − 25.5x2 − 15.5x3 − 8x4 = min 21.5x1 + 25.5x2 + 15.5x3 + 8x4

That is, the maximal profit is reached when the cost of production is mini-
mal.

Then, we must express the different requirements of the problem:

• on the quantity of manganese, we can write it as:

4.5x1 + 5x2 + 4x3 + x4 ≥ 4.5

• on the quantity of silicone, we can decompose it in two inequalities:

40x1 + 10x2 + 6x3 ≥ 32.5

40x1 + 10x2 + 6x3 ≤ 55

• on the total quantity produced:

1000x1 + 1000x2 + 1000x3 + x4 = 1000

• finally, we must give the domain of each variable. Here, variables
denote quantity of ressources, and the ressources are not limited. We
can then choose any non-negative value:

x1, x2, x3, x4 ≥ 0

7

We thus obtain a purely mathematical problem, which we state as:

min 21.5x1 + 25.5x2 + 15.5x3 + 8x4 s.t.
4.5x1 + 5x2 + 4x3 + x4 ≥ 4.5
40x1 + 10x2 + 6x3 ≥ 32.5
40x1 + 10x2 + 6x3 ≤ 55

1000x1 + 1000x2 + 1000x3 + x4 = 1000
x1, x2, x3, x4 ≥ 0

(1.1)

Let’s give formal definitions for linear programming.

Definition 1.1.1. A linear constraint over a set {x1, . . . , xn} of variable is
an inequation (or an equation) of the following form:

n∑
i=1

a1x1 ∼ b

where a1, . . . , an, b are scalars and ∼∈ {≤,≥,=}.

Definition 1.1.2. A linear program is a problem of the form: given a set of
variable, maximize (or minimize) a linear form over these variables, while
respecting some linear constraints. The linear form to optimize is called the
objective of the linear program.

Definition 1.1.3. Given a linear program, a choice of values for the vari-
ables is a feasible solution if it satisfies all the constraints of the linear
program. An optimal solution is a feasible solution that optimizes the objec-
tive.

Our goal is, given a linear program, to find an optimal solution. Not
all linear programs have an optimal solution, as is shown by the following
examples.

Remark. We did not precised yet on which field we are working. All the
results of this course hold for Q and R, which is enough for us.

Example: The following linear program has no feasible solution, and so
no optimal solution.

max x1 − x2 s.t.
−x1 + x2 ≥ 1
x1 − x2 ≥ 2

8

Indeed, by adding the two constraints, we get 0 ≥ 3. Such a system is called
infeasible.

Example: Having a feasible solution is not even sufficient to have an
optimal solution. Consider the following linear program.

max x1 s.t.
x1 + x2 ≥ 1
x1 − x2 ≤ 2

For any value t ≥ −1, the vector (t+ 2, t) is a feasible solution of the linear
program, with objective t+ 2. Thus, there is no optimal solution. A linear
program for which there are solutions of arbitrary large (or small in the case
of a minimization program) is called unbounded.

Example: Even if we find an optimal solution, it is generally not unique.

max 3x1 + x2 + x3 s.t.
x1 + x2 + x3 ≤ 2
x1 ≤ 1

x1, x2, x3 ≥ 0

Here, any vector (1, t, 1 − t), for 0 ≤ t ≤ 1, achieves a value of 4, which is
the optimal solution. We thus have infinitely many solutions.

Hence, our goal is not just to find an optimal solution, but to do one of
the following:

• find an optimal solution, and prove its optimality,

• or prove that there is no feasible solution,

• or prove that the linear program is unbounded, by giving a way to
build arbitrarily large solutions.

We do not know yet what are the certificate for optimality. unfeasibility
and unboundedness. But we can try to make an educated guess, based on
the previous example. To prove infeasibility, it would be sufficient to deduce
a contradiction from the system of inequation. A certificate would then
describe how to combine the constraints into a new constraint like 1 ≤ 0.

9

For unboundedness, we would like to exhibit a solution x — (2, 0) in the
previous example — and a a vector v with cv > 0 — (1, 1) here — such that
x+ λv is a feasible solution for all λ non-negative.

Remark. We particularly insist on the notion of certificate. As it is well-
known in computer science, there is no fundamental difference between a
proof and a program, hence a program giving just the answer “yes” or “no”
could be considered as sufficient by many people. However, we believe that
such an algorithm is very inferior to an algorithm answering “yes and this
is the solution” or “no because of this”. A practical reason is that such
an algorithm gives a far more interesting information. A more theoretical
reason is that every polynomial-time algorithm is in NP ∩ coNP , that is,
there actually are such certificate for the existence or non-existence of a so-
lution. Finding those certificates generally explains why the problem is easy
to solve, and gives the mathematical structure behind it. Understanding
this structure is usually the best way to find efficient resolution algorithms.

1.1.1 Standard linear program

In order to apply the simplex method, we need to write the linear program
into a special form, called the standard form.

Definition 1.1.4. A linear program is in standard form if

• it is a maximisation program,

• all its variables are non-negative,

• all the other constraints are of the form
∑

i aixi ≤ b.

Definition 1.1.5. A variable of a linear program is free if there is no con-
straint on the positivity of the variable.

Here are some rules to transform any linear program to an equivalent
linear program in standard form.
Objective:
if the objective is to minimize a linear form, it is sufficient to multiply it by
−1 to get a maximization problem.

Variables:

• A free variable x can be replaced by two new variables, x = x+ −
x−. We substitute x in each constraint, and add the non-negativity
constraint for the two new variable. Note that for a possible value of
x, there are infinitely many possible values for x+ and x−.

10

• A non-positive variable x can be replaced by x′ = −x, where x′ is then
non-negative.

• Additionally, a variable x with a constraint x ≥ b can be replaced by
x′ = x− b. We substitute x by x′+ b everywhere to get a non-negative
variable.

Constraints:

• Equalities can be separated into two inequalities.

• Then we can multiply by −1 the greater-or-equal constraints to get
lesser-or-equal constraints.

Non-linear objects:
Sometimes, linear constraints can be hidden behind more general constraints,
as in the following examples.

• Absolute values can hide linear constraints. For instance, |
∑

i aixi| ≤ b
can be written as −b ≤

∑
i aixi ≤ b. But sometimes absolute values

are not linear, like in the constraint |x| ≥ 3. In that case the possible
domain of x is not convex, so this constraint cannot be expressed by
linear constraints.

• A maximum (or minimum) over linear forms may also sometimes be
rewritten as a conjunction of linear constraints. Consider the con-
straint min{3x1+2x2, 4x1−x2}+x3 ≥ 5. We introduce a new variable
x′ for the minimum, with constraints x′ ≤ 3x1+2x2 and x′ ≤ 4x1−x2.
Then the original constraint can be written as x′+x3 ≥ 5. This works
because to get the last constraint true, we want to find x′ as big as
possible, but less than the two original linear forms in the minimum,
so we may assume that x′ is the minimum.

Remark. We make a break in our process, and take some time to understand
the meaning of the object we are manipulating. We are faced to the following
problem (in matricial notations):

min cx s.t.Ax ≤ b, x ≥ 0

There are two different ways to read the part Ax ≤ b,≥ 0. The first is to
read it line by line, as we did so far. That is, we are looking for a vector that
satisfies simultaneously m different linear inequalities. A second possibility,
and perhaps more interesting, is to read it by columns: we are trying to
find a positive combination of the columns of A, that is dominated by b.

11

For example, consider a feasible solution x0. We have that Ax0 = b′ ≤ b
and cx0 = z for some constant z and some vector b′. But then, any solution
to Ax = b′, cx = z is a solution with the same objective value. By seeing
it as a combination of columns, there is a linear combination with at most
rankA+ 1 non-zero coordinates (by linear algebra). As we are looking only
for positive combination, it is not useful by itself, but it will appears in the
following that looking to feasible solutions with only m non-zero entries is
enough to find an optimal solution.

Let’s end this section by rewriting the linear program for the iron foundry
in standard form:

max −21.5x1 − 25.5x2 − 15.5x3 − 8x4
s.t. −4.5x1 − 5x2 − 4x3 − x4 ≤ 4.5

−40x1 − 10x2 − 6x3 ≤ 32.5
40x1 + 10x2 + 6x3 ≤ 55

−1000x1 − 1000x2 − 1000x3 − x4 ≤ −1000
1000x1 + 1000x2 + 1000x3 + x4 ≤ 1000

x1, x2, x3, x4 ≥ 0

1.1.2 Dictionaries

We begin to study how to solve a linear program, that is, find an optimal
solution, or assert its unboundness or infeasibility, and give a certificate. To
do this, we store the linear program in a special form that can be easily
manipulated. Consider the following linear program in standard form:

max 3x1 + x2 + 2x3
s.t. 2x1 + 3x2 − x3 ≤ 10

x1 + 5x2 + x3 ≤ 15
x1, x2, x3 ≥ 0

(1.2)

To obtain a dictionary, we introduce first a new variable called z, which
represents the value of the objective. This variable is mainly conventional,
and does not play a relevant role in the simplex method. It just eases the
notations.

Then, for each constraint, we add a new variable, the slack variable,
measuring how far the constraint is from being tight1. Formally, for a con-
straint

∑
i aixi ≤ b, we introduce the variable x := b −

∑
i aixi. Hence the

constraint can now be written:∑
i

aixi + x = b

1an inequality is tight for an assignment of its variables if it is satisfied with equality

12

Remark. Remember the iron foundry example. We did not introduce vari-
ables for the quantities of silicone and manganese in the final product, as
it was not considered as decision variables. The significance of slack vari-
ables is actually how far we are from the upper or lower bound given in the
statement of the problem, so they denote those quantities.

Remark. We will usually denote the slack variable by xn+1, . . . , xn+m, where
n is the number of original variables, and m is the number of constraints.
This is to emphasize that in the simplex method, we do not make a dif-
ference between original variables and slack variables; they are treated in
the exact same way. Nonetheless, in some proofs, it can be useful to make
the distinction. In those cases, we will sometimes switch to the notation
s1, . . . , sm for slack variables.

If we impose that the slack variable are non-negative, adding slack vari-
ables for each constraint does not change the set of optimal solutions (by
projecting the solutions of the enhanced program to the original variables).
Linear program (1.2) is equivalent to:

max z = 3x1 + x2 + 2x3
s.t. 2x1 + 3x2 − x3 + x4 = 10

x1 + 5x2 + x3 + x5 = 15
x1, x2, x3, x4, x5 ≥ 0

(1.3)

Sometimes, a linear program in this form is said to be in canonical form.
By a slight rearrangement of these equations, and by neglecting the non-
negativity constraints (which are implicit in dictionaries), we get:

x4 = 10 − 2x1 − 3x2 + x3
x5 = 15 − x1 − 5x2 − x3
z = 3x1 + x2 + 2x3

(1.4)

The equations of (1.4) is what we call a dictionary, that is a represen-
tation of a linear program in a easy-to-use format. The following definition
precises what we mean.

Definition 1.1.6. A dictionary is a list of linear equations whose left-hand
side (LHS) is made of a single variable that does not appear elsewhere, and
z must be one of the LHS (by convention, in the last equation). The variable
appearing in the right-had sides (RHS) are called non-basic, those appearing
in the left-hand sides, except z, are called basic.

Remark. Usually, the right-hand sides are given with the same order on the
variables, and beginning by the constant.

13

Remark. Non-negativity constraints are implicit in dictionaries. Do not
forget them!

Remark. The basic variables of a dictionary correspond to a subset of columns
of the original matrix forming a basis. From the point of view of finding
positive combinations, it means that we try to find a positive combination
of the columns associated with basic variables, while keeping the other vari-
ables at zero. We know that there exists a (unique) linear combination, as
long as the columns are linearly independant. but the coefficients are not
generally non-negative.

What do we earn by changing our representation of linear programs to
dictionaries? The (first) answer is that dictionaries make it clear that by
fixing the value of some variables, the other can be deduced immediately.
Indeed, if we choose the values of non-basic variables, the values of the basic
variables (and the objective) can be computed straightforwardly from each
equation. This leads us to define the following.

Definition 1.1.7. A dictionary is feasible if the solution obtained by fix-
ing the non-basic variables to zero is feasible. If a feasible solution can be
obtained in this way from some dictionary, this solution is said to be basic.

The dictionary of our example is thus feasible. Actually, if the RHS
of the linear program in standard form are non-negatives, the dictionary
obtained by our construction is feasible. The basic solution obtained just
set every original variable to zero, which is obviously feasible under the
previous condition.

Moreover, given a feasible dictionary equivalent to the linear program,
we can get a lower bound on the maximum achievable by the LP. Indeed,
the constant in the objective line of the dictionary is the objective reached
by the basic solution corresponding to this dictionary.

The simplex method transforms a feasible dictionary into an equivalent
feasible dictionary, and try to increase the lower bound given by the dictio-
naries. The hope is that the lower bound can be increased to the optimum,
and then the basic solution given by the last dictionary would be optimal.
For now, we forget the problem of finding a first feasible dictionary, this
question will be address later.

1.1.3 Pivoting

Given a feasible dictionary, we want to improve it by finding an equiva-
lent feasible dictionary, whose basic solution is closer to the optimum. The

14

dictionary (1.4), with feasible solution (0, 0, 0, 10, 15), gives us the formula
x = 3x1 + x2 + 2x3. This suggests that we could improve our solution by
increasing the values of x1, x2 and x3. It would even be great just to increase
x1, as for each unit x1 is increased, the objective is increased by 3. Hence,
we are looking for a new feasible solution by increasing x1, while keeping x2
and x3 to their current values. Suppose we set x3 = t, then we have:

x4 = 10 − 2t
x5 = 15 − t
x1 = t

(1.5)

Remember now that in a dictionary, the non-negativity constraints are
implicit. we must keep our variables non-negative, so t must be less than 5.
By the way, choosing t = 5 will give a zero value to x4. This means that we
replace the non-basic variable x1 by x4. That is:

• x1 changes from non-basic to basic,

• x4 changes from basic to non-basic.

How to find a feasible dictionary whose basic solution is our new solution
(5, 0, 0, 0, 10)? We must express x1, x5 and z depending on x2, x3 and x4.
We can use the line containing x4 to get an expression of x1 depending on
the new non-basic variables:

x1 = 5− 1.5x2 + 0.5x3 − 0.5x4 (1.6)

From this, we can substitute x1 in the lines of x5 and z by using 1.6. It
gives:

x5 = 15 − (5− 1.5x2 + 0.5x3 − 0.5x4) − 5x2 − x3
x1 = 5 − 0.5x4 − 1.5x2 + 0.5x3
z = 3(5− 1.5x2 + 0.5x3 − 0.5x4) + x2 + 2x3

(1.7)
which gives after simplification:

x5 = 10 + 0.5x4 − 3.5x2 − 1.5x3
x1 = 5 − 0.5x4 − 1.5x2 + 0.5x3
z = 15 − 1.5x4 − 3.5x2 + 3.5x3

(1.8)

To obtain the dictionary (1.8), we have only rewritten the line defining
x4 in (1.4), and add to the line corresponding to x5 and to z one time and

15

three times respectively the line of x4 (the substitution formula). These
operations being reversible, the new dictionary (1.8) is equivalent to the
previous one (1.4). As expected, its basic solution is (5, 0, 0, 0, 10) with an
objective of 15.

By inspecting the objective line of (1.8), we find that the objective could
be again increased by increasing the value of x3. Once again, we can increase
it as long as no other variable becomes negative, and we want to make at
least one variable equal to zero to get a new non-basic variable. If we increase
x3 by one unit, x1 is increased by half a unit, so won’t become negative. x5
though would be decreased by 1.5, and its current value is 10, hence we must
increase x5 by 20

3 . x5 becomes non-basic, we use the equation containing x5
in (1.8) to get a substitution formula for the new basic variable x3. We get:

x3 = 6.67 + 0.333x4 − 2.33x2 − 0.667x5
x1 = 5 − 0.5x4 − 1.5x2 +

+ 0.5(6.67 + 0.333x4 − 2.33x2 − 0.667x5)

z = 15 − 1.5x4 − 3.5x2 +
+ 3.5(6.67 + 0.333x4 − 2.33x2 − 0.667x5)

(1.9)

After simplification, the new dictionary is:

x3 = 6.67 + 0.333x4 − 2.33x2 − 0.667x5
x1 = 8.33 − 0.333x4 − 2.67x2 − 0.333x5
z = 38.3 − 0.333x4 − 11.7x2 − 2.33x5

(1.10)

Again, all the operations that we did are reversible, thus the new dictio-
nary (1.10) is equivalent the the previous ones. Moreover, the objective line
has a very special form: all the variables appears with a negative factor. It
means that 38.3 (more exactly 115

3) is an upper bound on the optimal so-
lution, as each solution must satisfy the equation of dictionary (1.10). But
the basic solution determined by (1.10) attains this value. So an optimal
solution for our linear program is given by (253 , 0,

20
3 , 0, 0).

Remark. In this example, we may even conclude that this is the best solution,
as it is the only possible solution with variables x2, x4 and x5 having value
0. There could have been other optimal solutions if the coeffcients of some
non-basic variables in the objective had been zero.

Remark. We gave the dictionaries with only three significant decimals. Al-
gorithms used in practice work with floating point arithmetic, thus have also
a limited number of decimals. This can cause errors in the accuracy of the
result. We postpone the treatment of accuracy to a latter section.

16

We summarize what we did to improve our dictionaries. Each step, we
did the following:

1. find a non-basic variable xn with positive coefficient in the objective,

2. find a basic variable xb which constraints the most the increase of the
non-basic variable.

3. use the line containing xb as a substitution formula for xn,

4. substitute xn in each other line of the dictionary.

These operations are refered as pivoting a dictionary. The simplex method
is just successive pivoting until reaching the optimal solution (or possibly
failing somewhere during the process).

Remark. There can be many variables with positive coefficients in the ob-
jective line. The simplex method does not specify which of them must be
chosen. Similarly, there can also be many basic variables in the second step,
and again we do not precise which one is chosen. The simplex method is not
an algorithm, and we have some freedom in the choice of pivoting variables.
A way to chose a variable deterministically is called a rule.

We give a general description of the simplex method. First, we distin-
guish the sets xN and xB of non-basic and basic variables, respectively.
Then our original dictionary can be written as (in matricial notations):

xB = b − AxN

z = z∗ + cxN
(1.11)

Let xj ∈ xN be a variable whose associated coefficient in is positive. If
there is none, we claim that the solution which sets variables of xN to 0
and xB = b is optimal, which is clear from the fact that variables must
be positive. Unfortunately, it is not clear at this point to prove that the
dictionary is equivalent to the initial linear program (in the case of the
dictionary has been obtained after many steps of computation). We will see
later of to give a certificate of optimality from the optimal dictionary.

Definition 1.1.8. If xj is the non-basic variable chosen in the first step of
pivoting, xi is called the entering variable of the pivoting process.

Entering refers to the fact that this variable will enter the basis.
Once an entering variable has been chosen, we must determine which

variable will leave the basis. Let aj be the column of A corresponding to
the entering variable xj . Each unit added to xi changes the values of xB by
−a, but the change is limited by the values in b. Let I be the indices of the

17

variables in xB. Hence a basic variable xi, i ∈ I imposes a constraint on the
change of at most bi

aij
if aij is positive (if aij is negative, there is no constraint

as the value of the basic variable would be increased by the change of xj).
The maximal possible change for xj is thus given by the minimum of the
bi
aij

, i ∈ I with aij positive. Let i ∈ I attaining this minimum.

Definition 1.1.9. If xi is the basic variable chosen in the second step of piv-
oting, xi is called the leaving variable of the pivoting process. The equation
xi = bi − aixN is known as the pivot row.

Let A′ be obtained from matrix A by removing row i and column j. The
original dictionary can be rewritten with the good definitions:

x′
B = b′ − A′x′

N − a jxj
xi = bi − ai x

′
N − aijxj

z = z∗ + c′x′
N + cjxj

(1.12)

And the new dictionary is then obtained by substituting xi by xj everywhere
except in the pivot row, which is just transform to have xj isolated on the
LHS. It means that the kth line, k 6= i, is obtained from the original kth
line by adding

akj
aij

times the line containing xi, and the objective by adding
cj
aij

. Note that by the choice of i, aij must be positive, and thus non-zero.

We obtain:

x′
B = b′ − A′x′

N

− a−1ij a j(bi − ai x
′
N − xi)

xj = a−1ij bi − a−1ij ai x
′
N − a−1ij xi

z = z∗ + c′x′
N

+ a−1ij cj(bi − ai x
′
N − xi)

(1.13)

which then can be simplified to:

x′
B = b′ − bi

aij
a j − (A′ − a−1ij a jai)x′

N + a−1ij a jxi

xj =
bj
aij

− a−1ij ai x
′
N − a−1ij xi

z = z∗ +
cjbi
aij

+ (c′ − cj
aij
ai)x′

N − cj
aij
xi

(1.14)

This is clearly a dictionary with basic variables (xB \ {xi}) ∪ {xj}. If the
original dictionary was feasible, that is b′ ≥ 0 and bi ≥ 0, then the new
dictionary is also feasible. To see this, we need to prove that bi

aij
≥ 0, and

that:

b′ − bi
aij

a j ≥ 0

18

The former follows from the non-negativity of bi and aij . The latter follows
from the choice of i; we chose i minimizing bi

aij
, which means that

bk −
bi
aij

akj ≥ bk −
bk
akj

akj = 0

and so the constants of each line of the new dictionary are non-negative.
Last, the objective of the basic solution has not been decreased. Indeed

cjbi
aij

is non-negative, as cj is non-negative and the two other factors are positive.
During the tranformation, all the operations that we do are replacing

some line by its sum with a multiple of another line. As a consequence,
these operations are reversible, and thus the set of feasible solutions is not
altered. It also means that any line in a dictionary obtained after many
pivoting step, can be obtain by a linear combination of lines of the original
dictionary (or of any equivalent dictionary by the way). It is even quite easy
to find those combinations: if

∑
i∈I aixi +

∑
j∈J ajxj = b is a line of the

current dictionary, with I the indices of the basic variables of the original
dictionary and J = J1, nK \ I, then this line must have been obtained by
adding ai times the line of the original dictionary containing xi, for each
i ∈ I, as this is the only line containing xi in the original dictionary.

What is perhaps more surprising is that every choice of basic variables
leads to a unique dictionary. Indeed, suppose that we express the basic
variable xb as an affine combination of non-basic variables xj , j ∈ J , in two
different ways: xb = b −

∑
j∈J ajxj and xb = b′ −

∑
j∈J a

′
jxj . As the two

systems of linear equations are equivalent, xb must have the same value for
every choice of xj , j ∈ J , that is:∑

j∈J
(aj − a′j)xj = 0, for all choices of xj ’s

and so aj = a′j for each j ∈ J . We should state this as a lemma, saying that
dictionaries are determined by their basis:

Lemma 1.1.10. Two equivalent dictionaries with the same set of basic
variables are equal.

We conclude this section by giving a formal statement of the pivoting
process.

19

Let xB = b−AxN , z = z∗ + cxN be a feasible dictionary D.

1. Choose a non-basic variable xj whose coefficient in the objective line
cj is positive.

2. Choose a basic variable xj , with aij > 0, minimizing bi
aij

.

3. Return the dictionary composed of the following lines:

• for each line k 6= i of D, the sum of that line and
akj
aij

times the

line i,
• the line i of D divided by aij ,
• the sum of the objective line and

cj
aij

times the line i.

The new dictionary D′ is a feasible dictionary equivalent to D, with a con-
stant in the objective line greater than or equal to the one of D.

1.2 Termination of the simplex method

Once pivoting is defined, the simplex method is just the successive appli-
cation of pivoting, until the objective has only negative terms (that is, the
basic solution is optimal). But as we already know, some LPs do not have
optimal solutions. What happens then? And will we ever reach the opti-
mal solution if there is one? How can we build a first dictionary? We will
address the question of optimality first, then the complexity, and then the
initialization.

1.2.1 Optimality

There is obviously two ways how the pivoting may fail. The first is if there
is no candidate variable for entering the basis, and we have already proved
that this shows the optimality of the basic solution. By the way, we also
have a not-so-complicated certificate for optimality (as long as we have a
starting dictionary): by giving the optimal dictionary, it is easy to check
the optimality of the solution, and we can also easily check the equivalence
between this dictionary and the original dictionary (following a previous
remark stating how the lines of a dictionary obtained after many pivoting
relates to the original dictionary).

The second way the pivoting may fail is when no candidate is found
for leaving the basis. It means that for each basic variable xi, if xj is the
entering variable, aij is non-positive. Let x be the basic solution encoded
by the dictionary. Let u be the vector obtained by setting every non-basic

20

variable to 0, except xj which is set to 1, and every basic variable xi to
−aij . Because the aij are non-positive, u has only positive coordinates.
Then, every vector x + tu for t ∈ R+ is a feasible solution, as it is valid
for the dictionary, and all its coordinates are non-negative. Moreover, the
objective value for x + tu is z∗ + tcj , where cj is positive. This proves the
unboundedness of the linear program.

So when the pivoting fails, either we have a solution, or the program is
unbounded and we have a proof of this fact.

Remark. Our certificate for unboundedness here is a feasible solution x plus
a direction u. What can be the meaning of this direction in the original linear
program? Each constraint stays satisfied by adding any positive factor of
this direction. We deduce that:

• for an equality constraint ax = b, it implies au = 0,

• for a less-than constraint ax ≤ b, we have au ≤ 0,

• for a more-than constraint ax ≥ b, au ≥ 0.

Moreover, this direction must improve the objective, thus we need also to
have cu > 0. If such an u exists, it is easy to see that if there is a feasible
solution, the problem is unbounded.

1.2.2 Degeneracy

We turn to the question of the termination and the complexity of the simplex
method. We already have two valuable tools to prove that the simplex
method terminates. First, we know that the objective value achieved by the
basic solutions is non-decreasing. Second, the Lemma 1.1.10 tells us that
each dictionary depends only of its basis, which means that the simplex
method has at most

(
n+m
m

)
different states. To conclude, we would only

need to prove that the objective value is increasing, that is, it is increased
by a small but non-zero amount at each step.

Unfortunately, it is not the case. The objective may stay unchanged
during a pivoting, and this phenomenon is called degeneracy. How can it
happen? Remember that the idea of pivoting is to increase the objective
value by increasing a non-basic variable. The leaving variable gives us the
maximum possible increase that does not violate non-negativity constraints.
So as long as this value is positive, the objective is also increased. The bad
point is that this maximum increase bi

aij
can be null, if bi is zero. This

happens if the basic solution has some basic variables with value 0. Such a
dictionary is called degenerate. Let’s see an example.

21

max 10x1 + x2 s.t.
x1 − x2 ≤ 2

4x1 + x2 ≤ 10
x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6
x1, x2 ≥ 0

(1.15)

We build a feasible dictionary (as the RHS are all positive, it is easy):

x4 = 2 − x1 + x2
x5 = 10 − 4x1 − x2
x6 = 6 − x1 − 2x2
x7 = 6 − 2x1 − x2
z = 10x1 + x2

(1.16)

We can choose x1 or x2 as entering variable. Let’s take x2. Then, x6 must
leave the basis. It gives:

x2 = 3 − 0.5x1 − 0.5x6
x4 = 5 − 1.5x1 − 0.5x6
x5 = 7 − 3.5x1 + 0.5x6
x7 = 3 − 1.5x1 + 0.5x6
z = 3 + 9.5x1 − 0.5x6

(1.17)

Then x1 enters. It happens now that the non-negativity of both x5 and x7
impose the most stringent bound on the increase of x1. We choose to remove
x7. We get:

x1 = 2 − 2.33x7 + 0.33x6
x2 = 2 + 0.33x7 − 0.67x6
x4 = 2 + x7 − x6
x5 = 2.33x7 − 0.67x6
z = 22 − 6.33x7 + 2.67x6

(1.18)

The immediate consequence of having many choices for the leaving variable
is that all the not-chosen possibilities have value 0 in the basic solution of
the next dictionary. This leads to a bad effect in the following step. Here
we must choose x6 to enter and x5 to leave, as x5 is already to zero and x6
appears negatively on its line.

Definition 1.2.1. Basic solutions with a basic variable having a value 0
are called degenerate. Feasible dictionaries whose basic solution is degener-
ate, and simplex steps that do not change the basic solution are also called
degenerate.

22

The next dictionary is then:

x6 = 3.5x7 − 1.5x5
x1 = 2 + 0.5x7 − 0.5x5
x2 = 2 − 2x7 + x5
x4 = 2 − 2.5x7 + 1.5x5
z = 22 + 3x7 − 4x5

(1.19)

Thus, the objective value has not been increased during this step. Fortu-
nately, in the next step, x7 leaves, and x7 appears positively in the line
containing x6, hence the objective will increase again. And we get the fol-
lowing dictionary, which is optimal:

x7 = 0.8 − 0.4x4 + 0.6x5
x6 = 4.8 − 1.4x4 + 1.6x5
x1 = 2.4 − 0.2x4 + 0.7x5
x2 = 0.4 + 0.8x4 + 0.3x5
z = 24.4 − 1.2x4 − 2.2x5

(1.20)

As we have seen, degeneracy occurs when there are more than one can-
didate variables for leaving the basis. In the example, we could have avoided
degeneracy, by choosing x1 as entering variable in the first step, or by choos-
ing x5 instead of x7 as leaving variable during the third step (exercise: check
that this would not have led to a degenerate step). This shows that degen-
eracy is dependant on the rules for choosing entering and leaving variable.
However, sometimes, degenerate steps cannot be avoided, even by carefully
choosing the entering and leaving variables. Here is an example:

x4 = 1 − x1 − x2 + x3
x5 = 1 − x1 + x2 − x3
x6 = 1 + x1 − x2 − x3
z = x1 + x2 + x3

(1.21)

By symmetry, it is equivalent to choose any entering variable, so let’s take
x1. Similarly, among x4 and x5, we choose x4 to leave the basis. We get the
following dictionary:

x1 = 1 − x4 − x2 + x3
x5 = + x4 + 2x2 − 2x3
x6 = 2 − x4 − 2x2
z = 1 − x4 + 2x3

(1.22)

And then, the next step is degenerate.

23

Degeneracy is not a problem by itself, but it means that we cannot
deduce the termination of the algorithm by the fact that there is only a finite
number of possible state. Indeed, if the objective value does not change, it
might happens that the simplex method cycles between them. And actually,
in some cases, it does cycle.

1.2.3 Cycling

We mention an example of cycling, just to prove that it can happen, and
then we will see how to avoid cycling. We start with the following dictionary,
and then, apply the simplex method with the rules:
entering: we break ties by choosing the smallest subscript variable,
leaving: we choose the bottom-most possible line of the dictionary.

x2 = 7x3 + 3x4 − 7x5 − 2x6
x1 = −2x3 − x4 + 3x5 + x6
z = 2x3 + 2x4 − 8x5 − 2x6

(1.23)

After the first iteration, choosing x3 to enter the basis:

x3 = −1
2x1 − 1

2x4 + 3
2x5 + 1

2x6
x2 = −7

2x1 − 1
2x4 + 7

2x5 + 3
2x6

z = −x1 + x4 − 5x5 − x6

(1.24)

After the second iteration, choosing x2 to leave:

x4 = −7x1 − 2x2 + 7x5 + 3x6
x3 = 3x1 + x2 − 2x5 − x6
z = −8x1 − 2x2 + 2x5 + 2x6

(1.25)

After the third iteration:

x5 = 3
2x1 + 1

2x2 − 1
2x3 − 1

2x6
x4 = 7

2x1 + 3
2x2 − 7

2x3 − 1
2x6

z = −5x1 − x2 − x3 + x6

(1.26)

After the fourth iteration:

x6 = 7x1 + 3x2 − 7x3 − 2x4
x5 = −2x1 − x2 + 3x3 + x4
z = 2x1 + 2x2 − 8x3 − 2x4

(1.27)

24

After the fifth iteration:

x1 = −1
2x2 + 3

2x3 + 1
2x4 − 1

2x5
x6 = −1

2x2 + 7
2x3 + 3

2x4 − 7
2x5

z = x2 − 5x3 − x4 − x5

(1.28)

After the sixth iteration:

x2 = 7x3 + 3x4 − 7x5 − 2x6
x1 = −2x3 − x4 + 3x5 + x6
z = 2x3 + 2x4 − 8x5 − 2x6

(1.29)

which is just the original dictionary. We can then go on applying the simplex
method with these rules without ever reaching the optimal. But the optimal
could have been reached in only one iteration, by choosing x4 as entering
variable. We would have obtained:

x4 = −x1 − 2x3 + 3x5 + x6
x2 = −3x1 + x3 + 2x5 + x6
z = −2x1 − 2x3 − 2x5

(1.30)

Actually, in this example, the third dictionary is symmetric to the first
one, so we can see that it will cycle just by checking the two first iterations.

1.2.4 Bland’s rule

Fortunately, cycling is not a fatality, there are rules that do not cycle. One
of the simplest rule is Bland’s rule:

entering: choose the smallest subscript variable with a positive coefficient
in the objective lines.

leaving: choose among the candidate the variable with smallest subscript.

So Bland’s rule is familiarly known as the smallest subscript rule.

Theorem 1.2.2 (Bland, 1977). The simplex method with Bland’s rule al-
ways terminates.

Proof. By contradiction, suppose that starting from such dictionary D1, we
obtain the dictionaries D2, . . . , Dk, where Di+1 is the image of D1 by a
simplex step with Bland’s rule, and Dk = D1.

Among the variables, consider one, xi, which is basic at least once, and
non-basic at least once, in D1, . . . , Dk, and choose it such that i is maximal.
That is, every variable xj with j > i is either always basic, or always non-
basic. We may assume that xi leaves the basis between Ds and Ds+1, and

25

enters the basis between Dt and Dt+1 with s < t. We denote Bs the basis
of Ds and Bt the basis of Dt, and we write Ds as:

xBs = b′ − A′xNs

z = z∗ + c′xNs

(1.31)

and Dt as :
xBt = b′′ − A′′xNt

z = z∗ + c′′xNt

(1.32)

let u be the vector obtained by increasing by one unit the entering vari-
able xj for the sth iteration, when xi leaves the basis. That is:

uk =

b′k − a′kj if k ∈ Bs,
1 if k = j,
0 otherwise.

(1.33)

The objective value of this (unfeasible) solution is z∗ + c′j , and so by evalu-
ating it with the objective line of Dt we have:∑

k∈Nt

c′′kuk = c′j ≥ 0 (1.34)

which we unfold and rewrite as:∑
k∈Bs−i

c′′k(b
′
k − a′kj) + c′′i (b

′
i − a′ij) ≥ 0 (1.35)

and then, because for a given k, c′′k 6= 0 and b′k 6= 0 means that k ∈ Bs ∩Nt,
implying that xk is a leaving variable in some iteration of the cycle and
so the kth coordinate of the basic solution of these dictionary is zero by
degeneracy: ∑

k∈Bs∩Nt−i
c′′ka
′
kj + c′′i a

′
ij ≤ 0 (1.36)

But then, by the choice of entering and leaving variables, c′′i and a′ij are
positive, and c′′k is non-positive for each valid k. And a′kj is negative, because
b′k is zero and k was not chosen as a leaving variable for the sth iteration.
Thus the previous inequality is a contradiction as the LHS is positive.

1.2.5 The perturbation method

We present here an alternative to Bland’s rule. The idea is to completely
avoid degeneracy, As we have seen in Section 1.2.2, this is not possible while

26

keeping unchanged the linear program. But actually, degeneracy can only
happen in some very special cases (even if they can be quite frequent in
practice, due to the special structure of practical problems).

Degeneracy is by definition the appearance of a zero in the constant
column of a dictionary. This happens when by summing lines of the initial
dictionary, the constants cancel each other. The idea of the perturbation
method is to slightly change the value of the RHS of the original linear
program, hoping that in this case, the constants will not cancel each other
anymore. If moreover we add only very very small coefficient, there is some
chance that the optimal solutions will only be very very slightly different.

How to implement this idea? Remember Lemma 1.1.10 and the discus-
sion preceding it: Given a line of a dictionary D′ obtained after any number
of pivoting from an initial dictionary, this line can be describe quite easily as
a sum of the line of the original dictionary, just by looking at the coefficients
of the original basic variables in our line. And so the constant is obtained
by taking the sum of the constants of the first dictionary, with the same
coefficient.

First, we can scale the linear program by a sufficently large constant
(the gcd of all the denominators of all feasible dictionaries), such that every
coefficient of a feasible dictionary is integral. Then let M be the largest
possible coefficient that can occur in the description of a line as a linear
combination of lines of the original dictionary. Define ε = min{ 1

2M , 10−9}.
Let εi = εi for 1 ≤ i ≤ m, and add εi to the ith line of the first dictionary.
Then, we prove that there are no more degeneracy, because for any linear
combination of lines y1, . . . , ym, we have that the constant obtained is:

b′j =
∑
i

yibi +
∑
i

yiε
i (1.37)

By the choice of ε, we have that |
∑

i yiε
i| < 1 and

∑
i yibi is integral, thus

b′j = 0 implies that
∑

i yibi = 0. Then, suppose that j the smallest coefficient
with yj non-null, we would have:

yj =
∑
i>j

yiε
i−j (1.38)

The right-hand side has absolute value less than one, while the left-hand
side is integral, contradicting the definition of j. All the yi’s must be zero,
which is never the case for a line of a dictionary.

Moreover, the effect on the objective is also quite small: for the same
reason, the slack between the original optimal solution and the optimal

27

solution obtained by perturbation is strictly less that 1
2 , so by rounding the

solution we would get the optimal value of the original problem.
Now the trick is that we do not need to scale the system or to find ε,

as we can just keep the εi’s as symbols in the lines, because by their choice,
they will never cancel each other. With symbols, this method is known as
the lexicographic method. Actually, we do not even have to keep them as
symbols, because as we mentionned, they are quite easy to find from any
dictionary: the factor of εi in a line is the same as the factor of the ith basic
variable of the original dictionary in the same line.

1.2.6 Complexity

At this point, we know that the simplex terminates, and that it can do at
most

(
n+m
m

)
iterations from a dictionary with m rows and n columns. But

this value can be quite large: for a linear program with 100 variables and
100 constraints (which is considered as very small by current standards),
this represents more than 9 · 1058.

In practical applications, the number of iterations seems to depend lin-
early on m, which is quite better (see Chvátal’s book for more details).
When dealing with implementation questions, we will assume that the num-
ber of iterations is O(m log n), as this is what is empirically observed. But
unfortunately, this bound is no true in theory. Actually, we can even find
examples where the number of iteration is closer to the

(
n+m
n

)
qualitatively,

than to m log n. These examples are dependant on the tie-breaking rules
of the simple method. so we will only study an example for the largest-
coefficient rule:
entering Choose the variable with largest coefficient in the objective line.

(we will not need a rule for leaving variable as we will not have degeneracy)
The following example is due to Klee and Minty (1972). They proved

that we need 2n − 1 iterations with the largest-coefficient rule to solve the
following linear program:

max
∑n

j=1 10n−jxj subject to

2
(∑i−1

j=1 10i−jxj

)
+ xi ≤ 100i−1 for all i ∈ J1, nK
xi ≥ 0 for all i ∈ J1, nK

(1.39)

Theorem 1.2.3 (Klee, Minty). The simplex method with largest coefficient
rule takes 2n−1 operations to solve the linear program (1.39).

Proof. We denote s1, . . . , xn the slack variables. First, we prove that in any
feasible dictionary, exactly one of si, xi is basic, for each i ∈ J1, nK. Indeed,

28

by summing the ith equation with −10 times the i− 1th equation we get:

100i−1 − 100i−2 = xi + si + 2
∑
j<i

10i−jxj

−10xi−1 − 10si−1 − 20
∑
j<i−1

10i−1−jxj (1.40)

= xi + si + 10xi−1 − 10si−1 (1.41)

As si−1 is non-negative, and xi−1 is at most 100i−2 by the i−1th inequality,
xi + si >= 100i−1 − 2 · 100i−2 so one of them must be basic. As there are
exactly n basic variables, the other one must be non-basic.

For a feasible dictionary, the basic variable are {xi, i ∈ I} ∪ {si, i /∈ I}
for some set I ⊆ J1, nK. Let’s find the objective line of this dictionary. We
know that it is a sum of the original objective with the lines of the original
dictionary. As si is basic if i /∈ I, it does not occur in the objective, so
we must take a linear combination of the lines with indexes in I. So the
objective can be written :

z =
n∑
j=1

10n−jxj +
∑
i∈I

λi

2
i−1∑
j=1

10i−jxj + xi + si − 100i−1

 (1.42)

Because xi is basic when i ∈ I, its coefficient must be zero in (1.42), that is:

10n−i + λi − 2
∑
j>i

λj10j−i = 0 (1.43)

which we rewrite as:

λi = −10n−i + 2
∑
j>i

λj10j−i (1.44)

This is an upper triangular system, thus we can compute easily the values
for the λi. Denoting I = {i1 < i2 . . . < ik}, we prove iteratively that:

λij = (−1)k+1−j10n−ij (1.45)

Indeed:

λij = −10n−ij + 2

l∑
l=j+1

(−1)k+1−j10n−il10il−ij

= −10n−ij + 2

l∑
l=j+1

(−1)k+1−j10n−ij

= (−1)k+1−j10n−ij

29

Note that λi is the coefficient of si in the objective line (1.42). We want to
know the other coefficient. Let i /∈ I, the coefficient of xi is then:

ci = 10n−i +
∑

j∈I,j>i
λj

= 10n−i +
k∑

l=k′

(−1)k+1−l10n−il · 2 · 10il−j

= 10n−i +
k∑

l=k′

(−1)k+1−l2 · 10n−i

=

{
−10n−i if k − k′ + 1 is odd,
10n−1 otherwise.

(1.46)

where k′ is the smallest index such that ik′ is bigger than i.
We remark the following:

• the absolute value of the coefficient for xi or si is always 10n−i, so we
always choose the variable with positive coefficient and smallest index
to enter,

• the sign of the ith variable depends on the parity of the number of
non-basic slack variables with bigger indices only,

• if xi enters, si leaves, and inversely if si enters, xi leaves the basis, as
exactly one of them is in the basis,

• thus if the non-basic variable with index i enters the basis, then the
signs of all the coefficients of variables of indices j ≤ i is changed to
their respective opposite, and the others are conserved.

Now, it is an easy exercise to prove that to get all variables appearing neg-
atively from a dictionary where they all appears positively, we need exactly
2n − 1 iterations.

2n − 1 is qualitatively not better than
(
n+m
m

)
: for n = 100, this is more

than 1030. So this Klee-Minty example is a bad news. One could hope that
by choosing another rule, we could be able to prove a better bound on the
maximal number of iterations. Unfortunately, it seems empirically that for
every simple rule there is a bad example, like the Klee-Minty one. It is not
known at present if there is a rule for the simplex method that only uses a
polynomial number of iterations in the worst case.

Remark. In computer science, complexity of algorithms is measured as a
function of the size of the problem. Informally, the size of the problem is

30

the number of symbols in a written description of this problem. For a linear
program with n variables, m constraints, this length is O(nm) (as we usually
use floating point values in computations, the size of a constant is the size
of a float, so it is a constant and we do not mention it, but if we want to
solve an LP with exact values, we should add the size of the constants). The
complexity of an algorithm is the function which associates to each integer
n the maximum running time of the algorithm over an instance of size n.
This is refered as the worst-case complexity. Determining the complexity of
an algorithm usually consists in giving an asymptotic upper bound for its
complexity. Moreover, to be considered practical, an algorithm must have
a complexity bounded by a polynomial in its size. With that point of view,
the simplex method should be considered useless.

However, this classical definition of complexity only measures the worst-
case scenario, while it may happen that most of the instances are signifi-
cantly easier to solve than these hardest cases. In particular, problems from
industrial applications have generally very special structures, that could
make them easier to solve (we will study how to use one of the possible
structures with the network simplex method). Moreover, the complexity is
usually determined asymptotically which means that it is correct for suf-
ficiently large instances, but it could be completely different for practical
instances.

It happens that in the case of the simplex method, even if the theoretical
complexity is exponential, it works very well in practice. In particular, it
works significantly better than the equivalent polynomial algorithms.

Another teaching from complexity theory is that to be easy to solve, a
problem must be easy to certify. That is, we can be able to give short proofs
(or certificates) for the solution (in complexity terms, P ⊆ NP ∩ coNP),
whether it is positive or negative. In our case, it means that we would like
to be able to give short proofs of optimality, unboundedness or infeasibility.
We have already seen how to certify optimality (even if we will see a better
way for that latter) and unboundedness (by giving a feasible solution and a
direction of improvement).

1.3 Initialisation

Given a feasible dictionary, we can use the simplex method to give an optimal
solution, or prove that the problem is unbounded. But how can we get a
feasible dictionary, or prove that the problem is infeasible? The answer is
easy: by applying the simplex method on a feasible dictionary! This is the

31

two-phases simplex method

1.3.1 Two-phase simplex

Let max cx s.t. Ax ≤ b be a linear program, where b has negative coefficient.
The idea is to try to find a solution that violates as least as possible the
constraints of this program. One way to loosen the constraints is to add a
positive value to the RHS of the program. So we want to find a solution
for which we add the minimum value to the RHS, that is we must solve the
following problem:

max −x0 subject to
Ax ≤ b+ x0

(1.47)

This problem has clearly a feasible solution, which consists in setting all
variables to zero, save x0 which is set to the absolute value of the minimum
RHS constant.

Then we can write the corresponding dictionary:

s = b − Ax + x0
z = − x0

(1.48)

This is still an infeasible dictionary. But we know that we can get a feasible
dictionary by setting x0 basic, while keeping all the other original variables
non-basic. So we only have to pivot x0 to get a feasible dictionary. If si is
the leaving slack variable, that is bi is minimum, we get:

x0 = −bi + ai x − si
s′ = (b′ − bi) − (A′ − 1ai)x − si
z = bi − ai x + si

(1.49)

As bi is the minimal negative constant in the LHS of the linear program,
this dictionay is indeed feasible. Now we use the simplex method to find the
optimal solution. If it is zero, then we should get a feasible solution for the
original linear program, while if it is negative, it was infeasible.

First, suppose we get a solution with value zero. Then x0 has value 0.
Hence x0 should be non-basic, if we select x0 as a leaving variable as soon as
it is possible. We can now just remove the x0 column to get the constraint
lines of a dictionary for the original problem. All we have to do now is to
find what is the objective line. For that, we substitute the basic variables
of the original objective by using the constraint lines of the dictionary.

Next, suppose that we reach an optimal solution with value less than
zero. The problem is then infeasible, and the final dictionary is a certificate

32

of unfeasibility, as it is easy to show the equivalence between it and (1.48),
and the equivalence between the fact that the original problem is feasible
and the optimum of (1.47) is zero. Anyway, we will see a even simpler
certificate latter.

This method consisting in a first phase where we find a feasible solution,
then a second phase to compute the optimal solution, is called the two-phase
simplex. To conclude this part, we present an example of computation of
the two-phase simplex. We solve the following LP:

max 4x1 + 3x2 − x3 + 5x4 s.t.
x1 + 3x3 + 2x4 ≤ 12

2x1 + x2 + x3 + 2x4 ≤ 10
−2x1 − x2 − x3 − 2x4 ≤ −10

x1, x2, x3, x4 ≥ 0

(1.50)

The first dictionary for the first phase is:

x5 = −10 + 2x1 + x2 + x3 + 2x4 + x0
x6 = 10 − 2x1 − x2 − x3 − 2x4 + x0
x7 = 12 − x1 − 3x3 − 2x4 + x0
z = − x0

(1.51)

As expected, it is infeasible, but we can make x0 enter the basis. This
corresponds to increasing the value of x0 until a basic variable becomes null.
It happens when x0 reaches 10, and x5 becomes non-basic. this gives:

x0 = 10 + x5 − 2x1 − x2 − x3 − 2x4
x6 = 20 + x5 − 4x1 − 2x2 − 2x3 − 4x4
x7 = 22 + x5 − 3x1 − x2 − 4x3 − 4x4
z = −10 − x5 + 2x1 + x2 + x3 + 2x4

(1.52)

If we choose x2 as entering variable, we will be able to make x0 leaving
the basis, which means that we will reach the optimum for the auxiliary
program:

x2 = 10 − x0 + x5 − 2x1 − x3 − 2x4
x6 = + 2x0 − x5
x7 = 12 + x0 − x1 − 3x3 − 2x4
z = − x0

(1.53)

This gives us a feasible solution for the original program: (0, 10, 0, 0), and a

33

feasible dictionary with the following lines;

x2 = 10 + x5 − 2x1 − x3 − 2x4
x6 = − x5
x7 = 12 − x1 − 3x3 − 2x4
z = 30 + 3x5 − 2x1 − 4x3 − x4

(1.54)

The last line is obtained by taking the objective of (1.50), 4x1+3x2−x3+5x4,
and by replacing x2 using the line of the dictionary containing x2, which is
x2 = 10 + x5 − 2x1 − x3 − 2x4.

We may then apply the second phase of the simplex method. x5 is clearly
the only possibility for entering variable, and then x6 must leave, and we
get:

x5 = − x6
x2 = 10 − x6 − 2x1 − x3 − 2x4
x7 = 12 − x1 − 3x3 − 2x4
z = 30 − 3x6 − 2x1 − 4x3 − x4

(1.55)

We can conclude this chapter with the following theorem:

Theorem 1.3.1. For a linear program max cx s.t. ax ≤ b, x ≥ 0, exactly
one of these propositions is true:

• there is an optimal solution x∗,

• it is infeasible,

• it is unbounded: there is a feasible solution x0 and a vector u ≥ 0 with
cu > 0, Au ≤ 0.

This is just a direct consequence of the two-phase simplex method. We
will have to strengthen the two first cases to have nice certificates (we already
have short certificates, but we can do better, this is the subject of the next
chapter).

34

Chapter 2

Duality

2.1 Geometry

2.1.1 Why linear programming is a geometric problem

Until now, we have only manipulated linear equations and inequations in a
purely algebraic way. But linear algebra is intimately related to Euclidian
geometry. We develop in this chapter the geometric interpretation of the
simplex method, and we will deduce from this point of view new certificates
of optimality and infeasibility.

Let’s start with some basic observations. Given a set of inequalities Ax ≤
b with n variables, we can represent solutions as vectors of a n dimensional
vector space. Given a orthonormal basis (e1, . . . , en), x is associated with
the vector

∑n
i=1 xiei (we denote it x as well).

What is the significance of a constraint ax ≤ b (where a is a row and
b a scalar)? First, recall that the set H = {x | ax = b} is by definition
an affine hyperplane of the vectorial space. This hyperplane separates the
space in two parts: {x | ax > b} and {x | ax < b}. Thus ax ≤ b is one of
the two half-spaces defined by the hyperplane H. Hence a system Ax ≤ b,
with A an m × n matrix, and b a column vector of size m, represents the
intersection of m half-spaces.

Definition 2.1.1. A polyhedron is the intersection of finitely many closed
affine half-spaces of a vectorial space. That is, a set P := {x | Ax ≤ b} for
some matrix A and vector b.

Solving a linear program is just finding a particular point in a polyhedron
P . But which one? We want to maximize a linear form given by a row vector
c of dimension n. It means that we want to be as far as possible from the

35

origin, in the direction of c. One way of representing this is to take the
hyperplane whose normal vector is c, that is, the set of point cx = 0, and
to translate it as far as possible in the direction of c, while intersecting the
polyhedron P .

Let’s see this with pictures in dimension 2. In that case, a hyperplane
is a line, a half-space is the set of point in one side of the line. Take the
following linear program:

max x + y s.t.
3x − y ≤ 3
−x + 2y ≤ 5

x, y ≥ 0

(2.1)

The set of feasible solution can be represented as in Figure 2.1. It is
the intersection of the two non-negativity constraint (the first quadrant),
with the two half-spaces defined by the blue and red lines. That gives the
polygonal purple surface.

x

y

3x
−
y

=
3

−x
+ 2y

= 5

Figure 2.1: The polyhedron defined by the inequalities of linear program (2.1).
It is the intersection of four half-spaces, one by inequality.

Among all the points of this polyhedron, we want to find one maximizing

36

x+ y. Figure 2.2 shows the hyperplanes x+ y = d, for d = 0, 1, 3.

x

y

x
+
y

=
0

x
+
y

=
1

x
+
y

=
3

c

Figure 2.2: Continuing Figure (2.1), the three parallel black lines represents
constant value lines for the objective function.

From the picture, it is clear that the optimum will be reached by the
intersection of the blue and the red lines. By solving the linear system of
inequalities, we get the coordinates (2.2, 3.6) of this point, and we deduce
the optimum value 5.8. If we draw the line x + y = 5.8, the polyhedron
of feasible solutions is completely on one side of this line, see Figure 2.3,
proving that it is indeed the only optimal solution.

What is the significance of the simplex method geometrically? For that,
we must find a geometrical object equivalent to dictionaries. Dictionaries
are determined by a set of basic variables, and defined a basic solution.
The basic solution is clearly a point of the feasible polyhedron. Non-basic
variables define the inequalities that are tight: if x is a non-basic slack
variable corresponding to inequality ax ≤ b, then the basic solution is on
the hyperplane ax = b. And if x is a non-slack non-basic variable, the
basic solution is on the hyperplane x = 0. Hence, each of the n non-basic
variable defines a hyperplane on which the basic solution lies. As we are

37

x

y

x
+
y

=
5.8

Figure 2.3: The feasible solutions are all on the same side of the black line,
hence any feasible solution has value at most 5.8. The intersec-
tion of the black line and the polyhedron is thus the only optimal
solution.

38

in a vector space of dimension n (when we consider the non-slack variables
only), the intersection of n independant affine hyperplane contains at most
one point, which must be the basic solution (and reciprocally, the existence
of the basic solution proves that the affine hyperplanes are independant).
And the points defined by the intersection of n constraints are the vertices of
the polyhedron. This is the main characteristic of the simplex method: the
simplex method deals with the vertices of the feasible polyhedron of a linear
program.

What does a pivot operation mean? We change from one vertex to
another. But more precisely what is the relation between these two vertices?
A pivot makes one non-basic variable entering the basis, which means that
we had a point on some hyperplane, and we leave that hyperplane. And
there is a basic variable becoming non-basic, which means on the contrary
that we are going to an other hyperplane. Finally, all the other non-basic
variables stay non-basic, hence we stay on all the other hyperplanes in which
is our first vertices. This means that we are moving along the edge incident
to the first vertex, until reaching a new constraint defining a new vertices.
We are moving along the edges of the polyhedron.

This is true as long as there is no degeneracy. Degeneracy happens when
a vertex of the polyhedron intersects more than n supporting1 hyperplane.
As we only need n hyperplane to describe the solution, we have many differ-
ent possibilities, and a degenerate step is just changing the representation
to another one.

We illustrate these ideas by continuing the graphical example of linear
program (2.1). We start with the solution (0, 0), the intersection of the lines
corresponding to the non-negativity constraints. Then, we must replace one
of the two constraints by another one. We can replace the non-negativity
of y, it corresponds to increasing the value of y in the dictionary, and a
displacement along the y-axis, until another constraint becomes tight, here
−x + 2y ≤ 5. The second slack variable, associated with this inequality,
becomes non-basic. We obtain from the dictionary:

s1 = 3 − 3x + y
s2 = 5 + x − 2y

z = x + y

1An affine hyperplane supports a polyhedron if the polyhedron is contained in one of
the two closed half-spaces defined by the hyperplane, and intersects the hyperplane.

39

to the dictionary:

y = 2.5 + 0.5x − 0.5s2
s1 = 5.5 − 2.5x − 0.5s2
z = 2.5 + 1.5x − 0.5s2

whose basic solution is A = (0, 2.5). We can then replace the non-negativity
of x by the first constraint of the LP. It means that we increase the value
of x in the dictionary. We can do this until we reach the line corresponding
to first constraint, reaching the basic solution Z = (2.2, 3.6) of the following
dictionary:

x = 2.2 − 0.4s1 − 0.2s2
y = 3.6 − 0.2s1 − 0.6s2
z = 5.8 − 0.6s1 − 0.8s2

x

y

O

A

B

Z

Figure 2.4: The simplex method consists in travelling from vertices to vertices
along the edges of a polyhedron, in the direction given by the ob-
jective function.

During the first iteration, we could have follow the x-axis instead of the

40

y-axis, this would have given the dictionary, with basic solution B = (1, 0):

x = 1 − 0.33s1 + 0.33y
s2 = 6 − 0.33s1 − 1.67y

z = 1 − 0.33s1 + 1.33y

We summarize these considerations in Figure 2.4.
Degeneracy is the fact of having a vertex of a polyhedron that can be

described in different ways as the intersection of tight constraints. Recall
the example (1.15):

max 10x + y s.t.
x − y ≤ 2 (a)

4x + y ≤ 10 (b)
x + 2y ≤ 6 (c)

2x + y ≤ 6 (d)
x1, x2 ≥ 0

After the third iteration, we got a basic solution described by the intersec-
tion of the tight constraints corresponding to the third and fourth original
inequalities:

x = 2 − 2.33sd + 0.33sc
y = 2 + 0.33sd − 0.67sc
sa = 2 + sd − sc
sb = 2.33sd − 0.67sc
z = 22 − 6.33sd + 2.67sc

Let’s look at a picture of the situation, in Figure 2.5. The degenerate dic-
tionary happens when we are at point A, as three different constraints have
their supporting hyperplane containing this point. It means that A can be
described as the intersection of (b) and (c), of (b) and (d), or of (c) and (d).
Here we have a description in terms of the (c) and (d), as the non-basic
variable are xc and xd. But the next point is the intersection of (a) and (b).
We can only exchange one constraint for another one during a pivot, hence
we need two pivots here to get to the new point: the first one just changes
the representation of A to one having xb non-basic. The second goes to the
optimal point Z.

In that special example, the degeneracy is due to a useless constraint:
(d). We could remove (d) without changing the set of feasible solutions.

Definition 2.1.2. A constraint of a system of inequalities is redundant if
for every vector satisfying all the other inequalities, this constraint is also
satisfied.

41

x

y

(a)

(b)

(c)

(d)

c

A

Z

Figure 2.5: An illustration of degeneracy.

42

In dimension 2, degeneracy happens only when there are redundant
constraints. This is not true in higher dimension, for example, the dic-
tionary (1.21) for which we showed that degeneracy must happen during
the resolution, correspond to the polyhedron of Figure 2.6, which has no
redundant constraints.

max x1 + x2 + x3 s.t.
x1 + x2 − x3 ≤ 2
x1 − x2 + x3 ≤ 2
−x1 + x2 + x3 ≤ 2

x1, x2, x3 ≥ 0

Figure 2.6: Degeneracy can be a consequence of having too many facets con-
taining a single vertex of the polyhedron: here some vertices are
the intersection of 4 facets.

max 2x + 2y s.t.
−x + 2y ≤ 0
−2x + y ≤ −3

3x − y ≤ −2
x, y ≥ 0

x

y

(1)

(2)(3)

c

Figure 2.7: This linear program is clearly unbounded. If we apply the simplex
method, we will find the feasible solution (0, 2) plus the direction
(1, 3), or the feasible solution (2, 1) and the direction (1, 2).

To conclude this part, we mention an example where the linear program
is unbounded, in Figure 2.7.

43

2.1.2 Fundamental theorem

The reader should now be convinced that the simplex method, and more
generally linear programming, are strongly related to geometry. The follow-
ing theorem will be our main tool for the geometrical study of polyhedron
and linear programming:

Theorem 2.1.3 (Farkas 1894, Minkowsky 1896, Carathéodory 1911, Weyl
1935). Let a1, a2, . . . , an be column vectors of dimension m, and b a column
vector of dimension m. Then, exactly one of the following is true:

(i) either b is a non-negative combination of linearly independant vectors
of a1, . . . , an,

(ii) or there is a vector c with cai ≤ 0 for all 1 ≤ i ≤ n, and cb > 0.
Moreover, c can be chosen such that cai = 0 for d− 1 different values
of i, where d = rank{a1, . . . , an, b}.

Example: Condition (i) states that b is a conic combination2 of indepen-
dant vectors a1, . . . , an. The important part is that we do not need more
vectors than d. Condition (ii) says that there is a hyperplane, with normal
vector c, such that b is in one side of the hyperplane, while a1, . . . , an are on
the other side.

Figure 2.8 gives an example of both conditions.

Proof. First, the two conditions are not compatible, as the existence of c
implies that if λi ≥ 0 for all i ∈ J1, nK, then c · (

∑n
i=1 λiai) ≥ 0 while cb < 0,

discriminating b from
∑n

i=1 λiai.
If b is not a linear combination of a1, . . . , an, then any hyperplane con-

taining the vectorial space generated by a1, . . . , an would provide a nor-
mal vector c satifying statement (ii). We consider now that b is in the
vectorial space generated by a1, . . . an, hence b =

∑
i∈I λiai = b, with

|I| = d = rank{a1, . . . , an}.
We describe the following procedure:

2By definition, a conic combination is a non-negative combination.

44

x

y

a1

a2

a3

Figure 2.8: The vectors a1, a2, a3 generate the cone in blue. If a vector is inside
the cone (like the green one), it is a non-negative combination of
linearly independant vectors (here, 0.5a1 + 1.5a2). If a vector is
outside the cone, there is a hyperspace separating it from the cone.
Here, the black vector is separated by the red line, containg 2 − 1
vectors among a1, a2, a3.

45

If λi ≥ 0 for all i ∈ I, then statement (i) is checked.
Otherwise, we choose a minimal j ∈ I with λi < 0. Let
c 6= 0 be the projection of aj on the orthogonal space of
vect{ai, i ∈ I − j}. That is c · ai = 0 for all i ∈ I − j, and
c · aj > 0, and then c · b = λj < 0.

Then, if c · ak ≥ 0 for all k ∈ J1, nK, statement (ii) is
satisfied. Else, there is a vector ai, i ∈ J1, nK with c · ai < 0.
ai is not in vect{ak, k ∈ I − j}. We choose i minimal. Hence
b is a linear combination

∑
k∈I−j+i γkak. We start again the

procedure with this new decomposition of b.

To conclude the proof, it is sufficient to prove the termination of the
previous procedure. As there are finitely many choices for the set I, if the
procedure fails to terminate, there is a cycle I0, I1, . . . , Ik = I0, such that
Il+1 is obtained from Il by one step of the procedure. Let l be the biggest
index that is in some Is, but not in some It, choose s and t such that i is
in It+1 but not in Is+1. Denote λk, i, j, c the values taken by the variables
during the procedure applied to Is, and λ′k, i

′, j′, c′ the values during the
procedure applied to It. Thus we have j = l and i′ = l. Then:

0 > c′ · b = c′

∑
k∈Is

λkak

 =
∑

k∈Is,k<l
λkc‘ak ≥ 0 (2.2)

where the first inequation comes from the choice of c. The second equality
is a consequence of the fact that if l < k ∈ Is, then k ∈ It by the choice of
l, and then c′ak = 0 by the choice of c′. Then the last inequality of (2.2)
follows as l is the smallest index with c′ak < 0 when applying the procedure
on Is. This is a contradiction, hence the procedure terminates.

Remark. The procedure in the proof is just a disguised form of the simplex
method with Bland’s rule. It is not completely constructive, as we need to
find an initial decomposition for b, but it can easily be obtained using basic
linear algebra.

Many beautiful geometric results follow from this theorem. We state
some of them.

Definition 2.1.4. A polytope is the convex hull of a finite set of points in
Rn. That is,

P = {
k∑
i=1

λixi | ∀i ∈ J1, kK, λi ≥ 0,

k∑
i=1

λi = 1}

46

It happens that polytopes are a special forms of polyhedron: they are
bounded polyhedron. The converse is also true.

Theorem 2.1.5 (Minkowsky 1896). P is a polytope iff P is a bounded
polyhedron.

The proof of this theorem is not easy, and we need several other results
to get it. We introduce some definitions about cones.

Definition 2.1.6. A set C is a cone if for each pair of vectors x, y ∈ C and
any non-negative value t, x+ ty ∈ C.

Definition 2.1.7. A cone C is finitely generated if there are finitely many
vectors x1, . . . , xn such that C = {

∑n
i=1 λixi | λ ≥ 0}. A set C is a poly-

hedral cone if it is a cone and it is the intersection of finitely many linear
half-spaces C = {x | Ax ≤ 0}.

Theorem 2.1.8 (Farkas, Minkowsky, Weyl). A cone is finitely generated iff
it is polyhedral.

Proof. We prove it for full-rank cones only. Let C be a finitely generated
cone, generated by vectors a1, . . . , am. For any subset {ai, i ∈ I} of n−1 lin-
early independant vectors, there is exactly one hyperplane H = {x, cx = 0}
containing these vectors. Consider these hyperplanes for which the vectors
a1, . . . , am are on the same side {x, cx ≤ 0}, this defines c1, c2, . . . , ck. Note
that k is bounded as there are only finitely many ways to choose n− 1 lin-
early independant vectors. Then, Theorem 2.1.3 states that x /∈ C implies
cix < 0 for some i, which means that P := {x | cix ≤ 0, 1 ≤ i ≤ k} is con-
tained in C. Conversely, any vector v in C can be written as v =

∑n
i=1 λiai,

with λ ≥ 0. As cjai ≤ 0 for all j, cjv ≤ 0.
Now, let C be a polyhedral cone, C = {x | cix ≤ 0, 1 ≤ i ≤ n}. Then

consider the cone generated by cT1 , . . . , c
T
n , by the first part of the proof, it

is a polyhedral cone {x | aix ≤ 0, 1 ≤ i ≤ k}. We prove that C is generated
by aT1 , . . . , a

T
k . First note that aTj is in C, as cia

T
j = ajc

T
i ≤ 0 for all i.

Suppose there is a vector x in C, but not generated by aT1 , . . . , a
T
k . Then by

Theorem 2.1.3, there is a vector b such that baTi ≤ 0 for all i, but bx > 0.
Then bT is in the cone generated by cT1 , . . . , c

T
n , that is bT =

∑
i γic

T
i , and

then bx =
∑

i γicix ≤ 0, contradiction. Thus, C is finitely generated.

Transforming a result about cones into a result about polyhedron is quite
easy: Let Ax ≤ b be a system of inequalities defining a polyhedron P . We
add a new non-negative variable λ, and study the system Ax−λb ≤ 0, λ ≥ 0.

47

This is clearly a polyhedral cone, thus a finitely generated cone, generated
by some vectors u1, . . . , un, v1, . . . , vp, where the ui’s have λ-value 0, and
the vi’s have λ-value 1 (by scaling). Then, the original polyhedron is just
the intersection with the hyperplane λ = 1. Thus, any vector of P can be
decomposed as:∑

λiui +
∑

γivi, with
∑
i

γi = 1, γ ≥ 0, λ ≥ 0

This proves half of the following famous theorem, that implies Theorem 2.1.5:

Theorem 2.1.9 (Minkowsky-Weyl). A set P is a polyhedron iff P = C+Q
where C is a polyhedral cone and Q is a polytope.

Proof. It remains to prove that the sum of a polytope and a cone is a
polyhedron. We use the same idea: add a new variable. There are vectors
u1, . . . , un, v1, . . . , vm such that x ∈ C + Q iff there are λ, γ ≥ 0,

∑
γi = 1

and
x =

∑
i

λiui +
∑
j

γjvj

We denote u′i =
(
ui
0

)
and v′i =

(
vi
1

)
. Then x ∈ P + C iff(

x

1

)
=
∑
i

λiu
′
i +
∑
i

γiv
′
i

The cone generated by the u′i’s and v′i’s can be written as {
(
x
α

)
| Ax−αb ≤ 0}

by Theorem 2.1.8, and so C +Q = {x | Ax = b} is a polyhedron.

We will not use directly the Minkowsky-Weyl theorem, but it gives us
many ideas about what we are doing when we solve linear programs, as can
be seen in Figure 2.9. The next section develops the nature of polyhedra.

Another example where a result on cone leads to a result on polytope is
the following:

Theorem 2.1.10 (Carathéodory). If v is in the cone generated by a1, . . . , am,
then v is a non-negative combination of rank{a1, . . . , am} vectors among
a1, . . . , am. If v is in a polytope of dimension n generated by k points, then
v is a convex combination of only n+ 1 of these points.

The proof is left as an exercise.

48

Q

(a) (b)

Figure 2.9: Feasible set of a linear program before Minkowsky-Weyl (a), and
after Minkowsky-Weyl (b). In the latter, we have vertices, facets,
extremal rays for the cone,. . . The black polyhedron is the sum of the
inner triangle, convex hull of three vertices, and the cone generated
by the red vectors.

(c) (d)

Figure 2.10: The Minkowsky decomposition of the polyhedron of Figure 2.9, (a).
In red, its characteristic cone C in the left, and the polytope Q in
the right.

49

Figure 2.11: A polyhedron in blue, with three facets and no vertices, its lineality
space is the y-axis {(0, λ, 0), λ ∈ R}.

2.1.3 The structure of polyhedra

We know that a polyhedron is decomposable into the sum of a cone and a
polytope. We call characteristic cone C (or recession cone) of the polyhe-
dron P = {x | Ax ≤ b} the set {x | ∀y ∈ P, x + y ∈ P}. This is exactly
the cone of the Minkowsky-Weyl theorem. In particular, if we find that a
linear program is unbounded, we get a direction of unboundedness u. This
vector u must be in the characteristic cone of the polyhedron associated to
the linear program. If there is a vector u in the characteristic cone with
cu > 0, then the program consisting in maximizing cx over P is unbounded.
It implies that if for every vector u in the characteristic cone, cu ≤ 0, then
the linear program cannot be unbounded.

If the characteristic cone contains a vector x 6= 0 and its opposite −x,
then it contains the subspace {λx, λ ∈ R}. The lineality space of P is
{x ∈ C | − x ∈ C} = {x | Ax = 0}. If the dimension of the lineality
space is 0, then P may have vertices (or P is empty). For example, for
P = {(x, y) | x+ y ≤ 1} has a lineality space L = {(λ,−λ), λ ∈ R}.

50

The polyhedron P is not always of full-rank. An inequation ax ≤ bi
from Ax ≤ b is implicit if for every feasible solution x, ax = bi. The set of
implicit inequalities defines an affine subspace in which lie P , this subspace
is called the affine hull of P .

A face of P is a set F = {x | Ax ≤ b, cx = µ}, where µ is the maximum
of the linear program max cx s.t. ax ≤ b, when this maximum is finite. By
definition, a face is a polyhedron, and F ⊆ P . P is also a face of P (take
c = 0). A face of a face of P is a face of P .

If the lineality space has dimension 0, then the minimal faces of P have
dimension 0, that is they are points. Such points are called vertices. Then,
in the Minkowsky-Weyl decomposition Q is the convex hull of the vertices of
P . The optimum of a linear program will be reached by a face of P , hence
by a minimal face.

Maximal faces distinct from P are called facets. If Ax ≤ b has no
redundant inequality, then facets are in correspondance with inequalities
ax ≤ bi. We will prove later that the number of faces (and hence facets,
vertices) of a polyhedron is finite.

2.1.4 Farkas’ Lemma

Another consequence of Theorem 2.1.3 is a certificate for proving that a
system of inequalities is not feasible.

Corollary 2.1.11 (Farkas’ lemma). The linear system Ax = b, x ≥ 0 is
infeasible if and only if there is a vector y ∈ Rm such that yA ≥ 0 and
yb < 0.

Proof. The necessity is obvious: if such a y exists, then for any x ≥ 0,
y(Ax) = (yA)x ≥ 0, and yb < 0 implies that AX 6= b. For the sufficiency,
if the system Ax = b, x ≥ 0 has no solution, it means that b is not in the
cone genrated by the column of A, then by Theorem 2.1.3, there is a vector
y with yb < 0 and yA ≥ 0.

We are more interested by the following version

Corollary 2.1.12. The linear system Ax ≤ b, x ≥ 0 is infeasible if and
only if there is a vector y ∈ Rm+ such that yA ≥ 0 and yb < 0.

Proof. By adding slack variables, Ax ≤ b, x ≥ 0 is equivalent to Ax− x̂ = b,
x, x̂ ≥ 0. Then by Farkas’ lemma, this is infeasible if and only if there is a
vector y with yA ≥ 0, y ≥ 0 and yb < 0.

51

Remark. We are making progress toward a nice certificate for infeasibility:
we only have to find a non-negative combination of the lines of a linear
program (this is what yA means), such that the left-hand-side has only non-
negative coefficient, and the right-hand side is negative. But we still need
to explain how to find this combination. One way to do so would be to use
the fact that we gave a constructive proof for Theorem 2.1.3. We will show
later how to obtain y directly from the first phase of the two-phase simplex
method.

We state a last variant of Farkas’ lemma, before giving a geometric in-
terpretation. All thse variants are equivalent.

Corollary 2.1.13. The linear system Ax ≤ b is infeasible if and only if
there is a vector y ∈ Rm+ such that yA = 0 and yb < 0.

Proof. Ax ≤ b is equivalent to A(x − x̂) ≤ b, x, x̂ ≥ 0. Then we can apply
the previous variant of Farkas’ lemma.

Remark. Moreover, if there is a vector y∗, then we can also choose any vector
solution of the system yA = 0, yb = y∗b, By Carathéodory’s theorem, y can
then be chosen with at most d+ 1 non-zero coefficient, where d is the rank
of the rows of A. This is actually valid for all the variants of Farkas’ lemma.

Example: Geometric interpretation of Farkas’ lemma.
Consider the inequalities drawn in Figure 2.12, that can be written:

(X −A) · ~u ≥ 0
(X −B) · ~v ≥ 0
(X − C) · ~w ≥ 0

Farkas’ lemma says that if the system is infeasible, we can scale the normal
vectors ~u, ~v and ~w by positive coefficient, such that their sum is ~u+~v+ ~w = 0,
and the sum of the constant terms is positive, i.e. A · ~u+B · ~v +C · ~w > 0.
In that case, by summing the three inequalities, we get:

X · (~u+ ~v + ~w) +A · ~u+B · ~v + C · ~v ≥ 0

The first term is zero, the three last terms sum to a negative number (yb),
this inequality is a contradiction.

When a system of inequalities is infeasible, there is a subset of at most
d + 1 inequalities that is also infeasible (by the previous remark using
Carathéodory’s theorem 2.1.10). Then, we can scale the normal vectors

52

~u

~v

~w A

B

C

Figure 2.12: An infeasible system of three inequations, with normal vectors for
each of the hyperplane.

53

of the hyperplane so that their sum is zero (the scaling vector is y). More-
over, by taking a point D that violates all the inequalities (one in the white
zone in Figure 2.12), we have:

(D −A) · ~u < 0
(D −B) · ~v < 0
(D − C) · ~w < 0

By summing these inequalities, we get:

D · (~u+ ~v + ~w)−A · ~u−B · ~v − C · ~w < 0

By removing the first term, we get −yb > 0.

2.2 Weak and strong duality

2.2.1 Looking for an upper bound

Thanks to Farkas’ lemma, we know how to prove that a system of linear
inequalities is infeasible. We would like to apply this result to check the
optimality of a solution. This leads to do the following: for a linear program
max cx subject to Ax ≤ b, x ≥ 0, suppose that we have a solution of value k.
Then, the following system of inequalities in infeasible iff k is the maximum:

Ax ≤ b, x ≥ 0, cx > k

Unfortunately, there is a strict inequality in this system, and we do not know
how to handle them. Anyway, for any k we can ask if there is a solution of
value at least k, i.e. is the following system feasible:

Ax ≤ b, x ≥ 0,−cx ≤ −k

To this problem we can apply Farkas’ lemma: there is a solution of value at
least k, or there is a vector y and a real z with the following properties:

y, z ≥ 0

yA− zc ≥ 0

yb− zk < 0

By scaling y and z, we can suppose that z = 1, and with some rewriting,
it means that we want a vector y ≥ 0 such that yA ≥ c and yb = k.

54

Actually, any vector y ≥ 0 with yA ≥ c gives us an upper bound yb on
the solution: to see this, recall that y in this context is the coefficients of a
positive combination of the lines of the linear program. The constraints tell
us that the resulting inequation dominates c (every coefficient is greater in
yA than in c), and as x must be positive, yAx ≥ cx (in other words, this
is the easy direction of Farkas’ lemma). But the right-hand side that we
obtain is yb, so cx ≤ yAx ≤ yb.

Example: Consider the linear program:

max x1 + 2x2 + 3x3 subject to
+ x2 + 3x3 ≤ 21

2x1 + x2 + x3 ≤ 13
x1, x2, x3 ≥ 0

If we multiply by three the second constraint, we get:

x1 + 2x2 + 3x3 ≤ 6x1 + 3x2 + 3x3 ≤ 39

This gives us an upper bound of 39 on the solution. We could be smarter
by just adding the two first lines:

x1 + 2x2 + 3x3 ≤ 2x1 + 2x2 + 3x3 ≤ 34

This time, we have an upper bound of 34. Actually, we can get an even
better upper bound by adding 1

2 times the first constraint with 3
2 times the

second one:
x1 + 2x2 + 3x3 ≤ 3x1 + 2x2 + 3x3 ≤ 30

Is that the best possible? By using the simplex method, we find an optimal
solution (0, 9, 4), whose value is 30.

How can we find the best possible solution that can be obtained by
summing inequalities of the original problem? As y represents a linear com-
bination of the original constraints, it is natural to express this problem as
a linear program, whose objective is to minimize the upper bound. Hence,
we want to solve the following problem:

min yb subject to
yA ≥ c
y ≥ 0

(D)

We are lucky, this program is indeed linear, so we know how to solve it with
the simplex method.

55

Definition 2.2.1. Given a linear program:

max cx subject to
Ax ≤ b
x ≥ 0

(P)

the program (D) is known as the dual program of (P). By opposition, (P)
is called the primal program. Objectives, variables, constraints are refered
as primal or dual, depending on the program on which they appear.

Computing the dual.
As it is not always convenient to rewrite to program in standard form to

compute the dual program, it is useful to know some simple rules to compute
the dual of any linear program directly.

First, as the dual represents combination of constraints of the primal, the
variable of the dual are associated to the constraints of the primal, hence we
choose one variable for each constraint of the primal. As an exception, the
non-negativity constraints or non-positivity constraints are dealt by another
way, so they do not have associated dual variables.

How do we know if a dual variable is free, non-negative or non-positive?
Again, the idea is to sum inequalities, so they must all have the same sign.
Thus,

• if a variable is associated with a less-than constraint, this variable is
taken non-negative,

• if a variable is associated with a greater-than constraint, it is taken
non-positive,

• if a variable is associated with an equality constraint, it is taken free.

Then, for each variable x of the primal, we have an associated con-
straint C, whose right-hand side is the scalar appearing in the term of the
primal variable in the primal objective. The left-hand side is given in the
following way. There is one term for each constraint of the primal, except
non-negativity or non-positivity, the dual variable y is the one associated
with that constraint. The coefficient of y is the same as the coefficient of
the primal variable x in the primal constraint associated to y. Simpler: the
coefficient of y in the dual constraint associated with x is the coefficient of
x in the primal constraint associated to y.

The sign of a dual constraint depends on the positivity of the associated
primal variable:

56

• if x is free, the dual constraint is an equality,

• if x is non-negative, the sign of the dual constraint is a greater-than,

• if x is non-positive, the sign of the dual constraint is a less-than.

This choice is determined by the fact that we want an upper bound of the
objective: we want that for each term cixi in the objective, cixi ≤ c′ixi for all
possible vector x satisfying the positivity constraints. If we do not know the
sign of xi, then we must impose ci = c′i, thus the corresponding constraint
is an equality. If xi is non-negative, then c′i ≥ ci is enough, and similarly for
xi non-positive.

Finally, the objective of the dual is just given by the right-hand side of
the primal. We summarize these observations in the following array:

Primal Dual

max min

min max

ai x ≤ bi yi ≥ 0

ai x = bi yi free

ai x ≥ bi yi ≤ 0

xj ≥ 0 ya j ≥ c
xj free ya j = c

xj ≤ 0 ya j ≤ c

From this array, it is clear that the symmetries in the rule for computing
a dual implies that the dual of the dual program is nothing else than the
primal program:

Proposition 2.2.2. Taking the dual is an involution: the dual of the dual of
a program P is P .

As a consequence, we will say that two programs are dual if one is the
dual of the other.

Remark. About the term duality : in linear algebra, duality corresponds to
the equivalence between vectors and linear forms x 7→ cx. Both objects are
determined by n scalars; the coordinates of the vector, and the coefficients of
c for the linear form. A hyperplane is the inverse image of 0 by a linear form,
and thus in some sense duality is also a correspondance between vectors and
hyperplanes. The dual program is just about manipulating the hyperplanes
supporting the polyhedron of the primal program, to get a new hyperplane

57

“parallel” to the objective linear form. (the dual of max cx s.t. ax ≤ b is
min yb s.t. yA = c, y ≥ 0, so we want to get exactly the objective function).
We will see geometric examples later.

Minkowsky-Weyl Theorem 2.1.9 is a typical example of a duality result:
the same object (a polyhedron) can be described by conjonction of inequal-
ities, or by combination of vectors. Farkas’ Lemma (and the fundamental
theorem) is also a duality result: a vector is described as a non-negative
combination of given vectors, or there is a separating hyperplane.

2.2.2 Weak duality

We summarize our discussion in the following lemma:

Lemma 2.2.3. Let max cx s.t. Ax ≤ b, x ≥ 0 and min yb s.t.yA ≥ c, y ≥ 0
be a pair of feasible dual linear programs. Then, for any solutions x and y
to these programs, cx ≤ yb.

Proof.
cx ≤ (yA)x = y(Ax) ≤ yb (2.3)

Remark. The main consequence of weak duality is that if we have solutions
x and y with cx = yb then both x and y are optimal to their respective
programs.

2.2.3 Strong duality

The most important result of this chapter for us is the following result. It
is due to Von Neumann (1947), Gale, Kuhn and Tucker (1951):

Theorem 2.2.4 (The duality theorem of linear programming). Let A be a
m× n matrix, b ∈ Rm, c ∈ Rn. Then,

max{cx | Ax ≤ b, x ≥ 0} = min{yb | yA ≥ c, y ≥ 0} (2.4)

as long as the two linear programs in (2.4) are feasible.

Proof. By Lemma 2.2.3, if both programs are feasible, any pair of solutions
x∗ and y∗ checks cx∗ ≤ y∗b, proving that the program are bounded, and
that the maximum is less than the minimum in (2.4), so we only have to

58

check the reverse inequality. We want to prove the existence of vectors x
and y such that:

Ax ≤ b
yA ≥ c

cx − yb ≤ 0
x, y ≥ 0

(2.5)

By Farkas’ Lemma, the system (2.5) is feasible iff for all vectors u, v, λ,
ub− cv ≥ 0 whenever:

uA + λc ≥ 0
−Av − bλ ≥ 0

u, v, λ ≥ 0
(2.6)

Let u, v, λ satisfying inequations (2.6).

• if λ = 0, then :

ub− cv ≥ u(Ax∗)− (y∗A)v = (uA)x∗ + y∗(−Av) ≥ 0

• if λ ≥ 0, by scaling we can choose λ = 1, and then we have uA ≥ c,
Av ≤ b and u, v ≥ 0. Thus, u and v are feasible dual and primal
solution. by weak duality we have ub− cv ≥ 0.

This proves the feasibility of (2.5), and hence the theorem follows.

Remark. We state and prove the duality theorem for a standard program,
but it can easily be extended to any kind of primal-dual pair of linear pro-
grams.

That is good! It means that we can find very clear and very simple
optimality certificates, by solving the dual program. The dual solution gives
us how to combine the inequations of the primal to get a bound on the primal
program, and this bound reach the primal optimum. The only bad point
is that we need to compute another simplex, to get this dual solution. Do
we really need actually? It is time to give a second proof of the duality
theorem, only in terms of dictionaries:

Proof. (dictionary version)
If both programs are optimal, then the primal has an optimal solution

that can be found by the simplex method. Hence we get an optimal dictio-
nary, where the objective line is:

z = z∗ −
∑
i

λixi −
∑
i

µisi

59

where the si’s are the slack variables, and λ, µ ≥ 0. This line has been
obtained by adding to the original objective line z = cx, the original lines
of the variables. More exactly, the ith line, with slack variable si, has been
added exactly µi times. Consider the line obtained by adding µi times the
ith line, for each i, to the empty line 0 = 0, we get:∑

i

µisi =
∑
i

µibi −
∑
j

(
∑
i

µiaij)xj

But this is exactly the difference between the final objective line and the
original objective line, thus we have that:∑

i

µibi = z∗ (2.7)

and for each j ∈ J1, nK,

λj =
∑
i

µiaij − cj ≥ 0

and so: ∑
i

µiaij ≥ cj (2.8)

Combining inequations (2.7) and (2.8), we have that µ is a dual solution
with value z∗, proving the theorem.

This second proof gives us a very simple way to get the dual solution,
only by looking at the last dictionary of the simplex method on the primal
program: the dual solution is given by the coefficient of the slack variables
in the objective lines, multiplied by −1. Here is the example (1.2) taken
from the first chapter:

max 3x1 + x2 + 2x3
s.t. 2x1 + 3x2 − x3 ≤ 10

x1 + 5x2 + x3 ≤ 15
x1, x2, x3 ≥ 0

First, we write the dual program:

min 10y1 + 15y2 subject to
2y1 + y2 ≥ 3
3y1 + 5y2 ≥ 1
−y1 + y2 ≥ 2

y1, y2 ≥ 0

60

The final dictionary was:

x3 = 10
3 + 1

3x4 − 7
3x2 − 2

3x5
x1 = 25

3 − 1
3x4 − 8

3x2 − 1
3x5

z = 115
3 − 1

3x4 − 35
3 x2 − 7

3x5

The dual solution is then y1 = 1
3 , y2 = 7

3 . We can check that it is indeed a
solution of the dual by checking all the inequalities:

2
1

3
+

7

3
= 3 ≥ 3

3
1

3
+ 5

7

3
=

38

3
≥ 1

−1

3
+

7

3
= 2 ≥ 2

It gives a dual value of 1
310 + 7

315 = 115
3 , hence the solutions are optimal.

This can also be seen directly by combining the inequations of (1.2):

1

3
(2x1 + 3x2 − x3) +

7

3
(x1 + 5x2 + x3) = 3x1 +

38

3
x2 + 2x3

1

3
10 +

7

3
15 =

115

3

And thus the following inequation is implicit in the primal:

3x1 +
38

3
x2 + 2x3 ≤

115

3

Hence we are done.

What happens when one of the two programs is not feasible or un-
bounded? From the proofs, if a linear program has an optimal solution,
then its dual also have an optimal solution. Then there are at most 3 cases:

• both programs are unbounded. Actually, this case is not possible by
the weak duality: we would be able to choose a feasible solution for the
maximization problem as large as we want (say positive), and for the
minimization problem as small as we want (say negative), this would
give a contradiction.

• both programs are unfeasible, for example:

max x + y s.t.
x ≤ 1
−x ≤ −3

x, y ≥ 0

min u + 3v s.t.
u − v ≥ 1

0 ≥ 1
u, v ≥ 0

61

x

y

a1x
≤ b1

a2x ≤ b2

a1

a2

cx = z∗

c

Figure 2.13: Interpreting the duality theorem geometrically.

• one is unfeasible, the other is unbounded.

max 5x + 7y s.t.
x + y ≤ 2

−y ≤ −2
−2x + y ≤ −3

x, y ≥ 0

min 2u − 2v − 3w s.t.
u − 2w ≥ 5
u − v + w ≥ 7

u, v, w ≥ 0

2.2.4 Geometric interpretation

The duality theorem can also be interpreted geometrically. We explain it
with an example in two dimensions, which can be extended to any finite
dimension.

As said before, finding an optimum max cx of a polyhedron P can be done
by shifting the hyperplane {x | cx = 0} as long as it intersects the polyhedron
P . Then, any point in the intersection of the affine hyperplane constructed
in this way, and the polyhedron, is optimal. Consider Figure 2.13.

The optimum x∗ is given by the intersection of the lines ∆1 : a1x =
b1 and ∆2 : a2x = b2. The affine hyperplane parallel to {x | cx = 0}

62

containing the optimal solution must have the polyhedron in only one of
its side, otherwise it would contradict the optimality. But this is clearly
equivalent for the normal vectors to the fact that c is in the cone generated by
a1 and a2. In particular, the point x∗ is an optimum for any objective vector
λa1 + µa2, with λ, µ ≥ 0. As c = λa1 + µa2, the constraint (λa1 + µa2)x ≤
λb1 + µb2 is valid for the linear program, and it also gives a dual solution
with value λb1 +µb2. Now, as the point x∗ is on the two lines ∆1 and ∆2, it
must satisfy with equality the equation of the new line cx = (λa1 +µa2)x =
λb1 + µb2, so the primal value of x∗ is also λb1 + µb2, which is a dual value,
proving the optimality of both solutions.

2.2.5 Complementary slackness

Pairs of optimal primal/dual solutions have a very special relationship, that
is given by the following theorem:

Theorem 2.2.5 (Complementary slackness). Let x∗ and y∗ be solutions to
the primal problem (P) and dual problem (D) respectively. Then x∗ and y∗

are optimal if and only if:

(y∗A− c)x∗ = 0 (2.9)

y∗(Ax∗ − b) = 0 (2.10)

Proof. We use inequations (2.3). By Theorem 2.2.4, these inequations are
equations for optimal solutions, this means that x∗ and y∗ are optimal so-
lution iff:

cx∗ = y∗Ax∗

y∗Ax∗ = y∗b

The complementary slackness follows.

Complementary slackness is about tight constraints for the optimal so-
lution. We need this definition:

Definition 2.2.6. A non-negative variable is active in a solution if it has
value non-zero in that solution. Otherwise, it is inactive.

Hence, non-basic variables of a dictionary are inactive variables. Com-
plementary slackness tells us that a dual variable can be active only if its
associated constraint in the primal is tight for the primal solution, and con-
versely, a primal variable can be active only if the dual constraint is tight
or the dual solution. Back to geometrical interpretation, we cannot get an

63

upper bound by combining lines that do not intersect the optimal solution:
we can only use lines that contains the optimal solution.

Complementary slackness comforts us in the intuition that an optimal
solution is obtained by choosing some constraints and try to find an extreme
solution for these constraints, i.e. make these constraints tight, while the
other constraints are irrelevant: they are not really constraining us.

How can we use complementary slackness? Suppose we have a linear
program, and a solution x∗ that could be the optimal solution, and we want
to check the optimality of x∗. Then, we only have to find a vector y satisfying
the equations (2.9) and (2.10). The second system (2.10) immediately gives
us which coefficients of y must be zero, so we only have to determine the
other coefficients. Then the first system (2.9) gives us which dual constraints
are tight: the dual constraint corresponding to non-zero primal variables.
By solving the sub-system of yA = c, restricted to the lines corresponding to
tight primal constraint and the columns corresponding to non-zero primal
variable, we may get the dual optimal solution. If we find a feasible dual
solution, we are done, x∗ is optimal. Conversely, if there is no solution, or
the value we get is not dual-feasible (with negative coefficients), then x∗ is
not optimal.

Remark. With the duality theorem and complementary slackness, we can
improve our understanding of what is a face. Remember the definition
of a face of P = {x | Ax ≤ b}, F is a face if F = {x | Ax ≤ b, cx =
µ}, for some c, and µ is the maximum of cx over P . By duality µ =
min{yc|yA = c, y ≥ 0}, call this linear program the dual. Then, for
any optimal solution y to the dual, and any vector x ∈ F , we have by
complementary slackness yi = 0 ⇒ aix = bi. Hence we define the set
I = {i | yi = 0 for some optimal solution y of the dual}, and the polyhe-
dron F ′ = {x | ∀i ∈ I, aix = bi}. Then, the complementary slackness says
exactly that F = F ′. It means that a face of P is the intersection of P
and the solutions of a tight subsystem A′x = b′ of the system describing P :
Ax ≤ b, that is F = P ∩ F ′ It also implies that the number of faces of a
polyhedron is finite, and even less that 2m where m is the number of rows
defining P .

Remark. Complementary slackness plays a special role when trying to solve
problems in a combinatorial way. Many algorithms exploit complementary
slackness to reach an optimal solution. Starting from a primal (or dual)
solution, we check the complementary slackness. If the solution is optimal,
we are done. Otherwise, we have some untight dual constraint corresponding
to an active variable. This constraint usually gives us a natural way to

64

improve our solution. Then, by iterating this procedure, we will finally
reach an optimal solution.

2.2.6 Economic interpretation

In this section, we explain the economical significance of dual variables. For
that, we consider the linear program to be a classical ressource allocation
problem: given a set of materials indexed by I = J1,mK, we want to pro-
duce objects indexed by J = J1, nK. Each object is made with some given
quantities of each material aij , each material is available in limited quantity
bi, and the profit cj made for each object is known. As usual, our motives
are only financial, so we want to solve the following problem:

max cx subject to
Ax ≤ b
x ≥ 0

(2.11)

First, let’s make more precise some facts about this program. The con-
stants all have a particular meaning: aij is the quantity of ressource i needed
to make one object j, so the physical unit of aij is “unit of i per unit of j”.
Then bi is the quantity of i available, its unit is thus “unit of i”. We will get
a homogeneous inequation if each xj is given in “unit of j”, which is indeed
the case. Then, the unit of cj is “dollars per unit of j”. Now, we give the
dual program:

min yb subject to
yA ≥ c
y ≥ 0

(2.12)

With the insight of our first remark, we get that the unit of yi must be
“dollars by unit of i”, so the dual variables are values given to ressources.
But we can actually fully interpret the dual, in the following way. yi corre-
sponds to a value that we give to the ressource i. The constraints say that
these values must be chosen such that the cost of each object is more than
its price. We can understand it as the price at which we would made no
profit by buying it. Then the objective is to minimize the value of the stock
of ressources.

The duality theorem tells us that by choosing good prices for each
ressource, we get that we will earn the exact value of our stock given by
the optimum dual solution. In some sense, the dual values give the econom-
ical value of a ressource: if we can buy one at less than its dual price, we will
make profit, however if the price of it is more than the dual price, we have

65

no interest in buying it. This also implies that each object produced must
be sold at the price of the ressources consumed to make it, and that each
ressource that is not fully consumed is worth nothing; this is complementary
slackness. If a ressource is not fully consumed, it means that we have more
than enough of it, so we do not want to buy it at any price, its dual price is
zero. If the dual price of the ressources needed for a product is more than
the final price of it, then we should not sell this product, and so not produce
it.

Another way to explain it is the following. Suppose that somebody
wants to buy our stock of ressources. He wants to find the minimum price
at which we will accept the deal. He gives prices to each kind of ressource.
He knows that if the prices are such that we earn more by making one of
our product, than by directly selling to him the exact quantity of ressources
needed to make this product, we will certainly refuse. This is why he has
the inequalities of the form yai ≥ ci, it must be better for us to sell him than
to make any of our product. Clearly, each price must be positive. Because
he wants the best price, he minimizes yb, the total cost of our stock. This
gives exactly the dual program. The duality theorem shows that he cannot
propose us a price less than what we can earn anyway, which is completely
coherent.

Definition 2.2.7. The value of a dual variable corresponding to a constraint
i is called the shadow price, or the marginal cost of i (i usually corresponds
to a ressource).

Remark. The contribution of bi in the objective of the last dictionary is
exactly the coefficient of si times bi, where si is the slack variable of the line
i. This can be seen as usual from the fact that si is basic in the original
dictionary. But the coefficient of si is, as we have seen, the value of yi
in the optimal dual solution, so the ressource i contributes to exactly yibi,
and what we earn from each unit of ressource i is indeed yi, confirming our
discussion above.

Another consequence is that if someone want to sell us the ressource i at
a price below yi, we should accept it, and we will earn yi times the number
of units bought, and thus make a positive profit. Unfortunately, we should
not buy too much of this ressource, as at some point we will be limited by
another ressource, and the value of i will decrease. And we do not know
yet how much we should buy. The marginal cost must be understood as
a derivative of the objective with respect to bi: if we increase our stock of
ressource i by ε, we will earn εyi, for ε → 0 (this is the meaning of the
marginal).

66

Chapter 3

Advanced topics on the
simplex method

3.1 The revised simplex method

Commercial implementations of the simplex method do not deal with dictio-
naries, as their implementation is not very efficient in practice. The revised
simplex method is an implementation of the simplex method that do not
keep in memory the whole dictonary, but only the basic solution and the
basis.

3.1.1 Factorizing matrices

The efficiency of the revised simplex method relies on our ability to quickly
find solutions y to a system of equality Ax = b. We recall the Gaussian
method and the decomposition that it gives.

Given a system Ax = b, where A is a non-singular square matrix of
dimension n and b a column vector with n rows, we know that there is a
unique x satisfying the equation. Moreover, x can be found by the so-called
Gaussian elimination, that we describe here.

Definition 3.1.1. A matrix A is upper triangular if all its coefficient below
the diagonal are zero, that is aij = 0 for all i > j.

If A is upper triangular, it is easy to solve Ax = b: indeed, xn = bn is im-
mediate. Then, substituting xn by bn leads to a new equivalent system with
an upper triangular matrix with dimension n − 1. We thus iteratively find
xn−1, xn−2,. . . ,x1. The Gaussian elimination consists in transforming any
system Ax = b in an equivalent system A′x = b′ with A′ upper triangular.

67

During the process, we will compute matrices Ak with the property:

for all i ≤ k, and j > i, akij = 0

The matrix Ak, informally, looks triangular in its k first columns. It is then
clear that A = A0 checks this property, and that An is upper triangular.
We only have to show how to compute Ak+1 given Ak. Because we want
to keep a system equivalent to Ax = b, we will also compute vectors Bk for
each k, with b0 = b. Thus we want that for each k, Ax = b is equivalent to
Akx = bk. In order to keep this equivalence, we will only do operations on
the rows of Ak (multiplying a row by a non-zero scalar, adding one row to
another,permuting rows), and we will do the same operation on bk, to get
Ak+1 and bk+1.

Suppose then that we have computed Ak and bk. To compute Ak+1, we
must get zero coefficients at position i, k + 1, for i greater than k + 1. If
aki(k+1) = 0 for all i ≥ k + 1, then we are done, Ak+1 = Ak and bk+1 = bk

(actually, if A is non-singular, this case cannot happen, but the Gaussian
elimination can be applied to singular matrices as well). Else there is a row
i with aki(k+1) 6= 0. By performing a permutation of the rows k + 1 and i,
we can assume that i = k + 1. Then we substract to each row i > k + 1 as
many times the row k + 1 as we need to cancel the coefficient aki(k+1), that

is
ak
i(k+1)

ak
(k+1)(k+1)

. This gives the matrix Ak+1, and by the same row operations

we also get bk+1.

Example: We apply Gaussian elimination to the following system:
2 3 1 2
2 3 0 1
1 2 1 2
4 7 0 0

x =

1
3
−2
4

 (3.1)

We substract the first row to the second, half the first to the third, and twice
the first to the last row:

2 3 1 2
0 0 −1 −1
0 0.5 0.5 1
0 1 −2 −4

x =

1
2
−2.5

2

 (3.2)

Then, we permute the second and third rows, and then substract twice the

68

second row to fourth:
2 3 1 2
0 0.5 0.5 1
0 0 −1 −1
0 0 −3 −6

x =

1
−2.5

2
7

 (3.3)

Finally, we substract three times the third row from the fourth row:
2 3 1 2
0 0.5 0.5 1
0 0 −1 −1
0 0 0 −3

x =

1
−2.5

2
1

 (3.4)

The different matrices A that we will use are related to each other in
a special way. To improve our method, we want to avoid to recompute
the Gaussian elimination completely each time that we slightly change our
matrix A. The solution is to keep a factorization of A in terms of the upper
triangular matrices plus the matrices corresponding to the row operations
that we made. More exactly, at each step of the Gaussian elimination,
we multiply both Ak and bk by a permutation matrix1 Pk, corresponding
to the permutation of the rows, and one simple matrix Lk corresponding
to the addition of the row k + 1 to each row i > k + 1. We have that
Ak+1 = Lk+1P k+1Ak and bk+1 = LkP kbk, and thus:

U = An−1 = Ln−1Pn−1Ln−2Pn−2 . . . L1P 1A

bn−1 = Ln−1Pn−1Ln−2Pn−2 . . . L1P 1b

The matrix Lk is given by:

1
. . .

1
1

−ak
(k+1)k

akkk
1

...
. . .

−aknk

akkk
1

(3.5)

This matrix is lower triangular2. The only non-zero coefficients are in the

1A permutation matrix is a matrix with exactly one ’1’ in each row and each column,
the other coefficients being 0.

2The transpose of an upper triangular matrix

69

diagonal and the kth column. The permutation matrix P for exchanging
tows i and j is given by pkl = 1 if i 6= k = l 6= j or {k, l} = {i, j}, and
pkl = 0 else.

Suppose that we know the decomposition U = LnPn . . . L1P 1A, how
can we easily solve the system of equations Ax = b? As all the matrices
Lk and P k are non-singular, it is equivalent to solve Ux = LnPn . . . L1P 1b.
But U being upper triangular, it is easy to compute the solution, once we
have computed the right-hand side. Remark that all the matrices of the
decomposition have a very special structure. Multiplying by a permutation
matrices is just exchanging the columns of the vector, while multiplying one
of the Lk requires only n − k multiplication and n − k additions. Hence,
the computation of the right-hand side requires only O(n2) arithmetic op-
erations. Then, solving the upper triangular system also requires O(n2)
operations. Solving the same system by Gaussian elimination would have
required O(n3) arithmetic operations, hence keeping the factorisation of A
and using it many times is obviously a great improvement upon just solving
everything from the beginning.

3.1.2 Rewriting the simplex method

The idea behind the revised simplex method is to get rid of all the bureau-
cracy consisting in updating a dictionary at each iteration: a dictionary has
n×m elements, but we already know that the basic solution is determined
by the tight constraints of this solution, that is only m elements. Actually,
we will give an algorithm that keep in memory the basis (of size m), the
basic solution (of size m also), and a factorized matrix of dimension m×m:
the submatrix corresponding to the basic variable. For now, just remember
that we want to work only with the basis I ∈ J1, n + mK, and a feasible
solution x with xi = 0 if i /∈ I.

We still want to solve the standard form program:

max cx s.t. Ax ≤ b, x ≥ 0

The first step of the simplex method is to find an entering variable. For this
we want to find a non-basic variable xj , j /∈ I with positive coefficient in the
objective line. Unfortunately, we do not have the objective line anymore.
But we can get it by replacing the basic variables in the original objective
by non-basic variables. For this, we need to find substitution formulas for
the basic variable, that is, we need the upper part of the dictionary. This
upper part is equivalent to: (

A I
)
x = b

70

where in this expression x contains the slack variables also. We distinguish
between the basic variables xB and the non-basic variables xN , and rewrite
it:

BxB +ANxN = b

Here, B consists in the column of (A I) corresponding to the basic variables,
and AN the columns corresponding to non-basic variables. To get the sub-
stitution formulas, we isolate the basic variables, and inverse B, to get the
upper part of the dictionary:

xB = B−1b−B−1ANxN

Then, by substitution, the objective line is:

z = cNxN + cBxB = cBB
−1b+ (cN − cBB−1AN)xN

To choose the entering variable, we need to evaluate cN − cBB−1AN ,
but for that we only need to know what are B and AN , that is to know the
basis. So we are done.

Then, we must find a leaving variable. Let xj , j /∈ I be the non-basic
entering variable. All that we need is B−1b, but that is the basic solution
and we assumed that we know it, and the column corresponding to xj in
B−1ANxN . If a is the column of xj in AN , then we want to compute
d = B−1a. We can do this as we know B and a, so we are done, we can
compute the ratios and choose the leaving variable xi.

To conclude the revised simplex method, we need to compute the new
basis, that is I ′ = (I \{i})∪{j}, and the new basic solution B−1b− td+ tej ,
which is easy.

Instead of updating the whole dictionary, we have to compute at each
iteration cn− cBB−1An and B−1a. At first glance, it seems that the revised
version requires more computation than the classical version. To get an
improvement, we must show how to compute these two values efficiently.
The main difficulty is to inverse the matrix B, as this is the most expensive
operation. Fortunately, we do not have to inverse B. To get d = B−1a and
y = cBB

−1, we only need to perform a Gaussian elimination, more exactly
to solve Bd = a and yB = cB. But again, Gaussian elimination is expensive,
so the next idea is to keep in memory a factorization of B. Our hope is that
with this factorization, solving systems like Bd = a and yB = cB will be
cheap, and updating the factorization at the end of each iteration is easy.

In the original dictionary, B = B0 = I, as the basic variables are the
slack variables. More generally, we could start from any basis, that is any

71

subset of m variables whose corresponding columns induce a non-singular
matrix B0, and perform a Gaussian elimination on B0 to get a factorization
U = LmPm . . . L1P 1B0. At the end of an iteration, one variable leaves the
basis, so we must remove the corresponding column, and another one enters
the basis, so we must add a new column. This new column is given the
column a corresponding to the entering variable in the original matrix. But
as we want to keep a factorization of B and not only B, we must find matrix
operations that replace the old column by the new one. For this, we need
to express a as a combination of the columns of B, but that is exactly what
we did when we solved Bd = a. Then, the new matrix B′ is obtained from
B by keeping the same column, except the one corresponding to xi which
is replaced by Bd. In matricial notation, if the ith column of A appears in
the kth column of B it gives:

B′ = B

1 d1
. . .

...
1 dk−1

dk
dk+1 1

...
. . .

dm 1

This matrix is very simple as all coefficients except in the diagonal and one
column are zero. So multiplying a vector by this matrix can be done in
O(m) operations only. Matrices of this form are called eta-matrices.

In the general case, we will have that the kth base matrix Bk is described
by:

Bk = Bk−1Ek = B0E1 . . . Ek

Solving Bka = d is then the same as solving:

UE1 . . . Eka = LmPm . . . L1P 1d

and both sides only involve simple calculations as all the matrices have a
special structure that makes matrix multiplication easy and efficient.

Similarly, solving yBk = cB gives:

yB0E1 . . . Ek = c

We introduce y′ defined by y = y′LmPm . . . L1P 1, then we only have to
solve:

y = y′LmPm . . . L1P 1

72

y′UE1 . . . Ek = cB

We first find y′ and then deduce the value of y. Again, only easy computa-
tions are needed here.

We finally give the complete description of an iteration of the revised
simplex method, and an example of computation:

Let U = LmPm . . . L1P 1B0, Bk = B0E1 . . . Ek, and xk a basic solution
with basis the column of A appearing in Bk.

1. Compute the solution y of the system y = y′LmPm . . . L1P 1,
y′UE1 . . . Ek = cB. If cN − yAN is non-positive, xk is optimal and
the method ends. Otherwise, choose a non-basic variable xj whose
coefficient is positive.

2. Compute the solution d of the system UE1 . . . Ekd =
LmPm . . . L1P 1a. If d is non-positive, the linear program is
unbounded with basic solution xk and feasible direction d + ej ,
and the method ends. Else, find a basic variable xi with di > 0

minimizing the ratio
xki
di

.

3. Define Bk+1 = B0E1 . . . EkEk+1 where Ek+1 is obtained by replacing
the column l of the identity matrix by a, with l being the index of the
column of Bk containing the ith of (A I). Define xk+1 = xk−td+tej .

Example: We solve the following program with the revised simplex
method:

max x1 + 3x2 − x3 + x4 subject to
2x1 − x2 + x3 − 2x4 ≤ 6
x1 + x2 − 3x3 + x4 ≤ 4
−x1 + 2x2 + x3 + 2x4 ≤ 12

x1, x2, x3, x4 ≥ 0

(3.6)

We introduce slack variables x5, x6 and x7, for the first, second and third
constraints respectively. Then we get the following matrix A:

A =

 2 −1 1 −2 1 0 0
1 1 −3 1 0 1 0
−1 2 1 2 0 0 1

73

The first basis is given by the slack variables, I0 = [5, 6, 7]. The matrix B0

is defined by:

B0 =

1 0 0
0 1 0
0 0 1

The first basic solution is then x0 = (0, 0, 0, 0, 6, 4, 12). This is enough to
start the revised simplex method.

First iteration. We solve the system yB0 = cB. B0 is the identity, hence
y = (0, 0, 0). Then cN − yAN = cN = (1, 3,−1, 1). Among x1, x2 or x4, we
choose x1 as entering variable.

Then we solve B0d = (2, 1,−1)T . Again, B0 = I, then dT = (2, 1,−1).
The leaving variable must be x5 with a ratio of 6

2 = 3.
We compute x1 = x0 − 3d + 3e1 = (3, 0, 0, 0, 0, 1, 15). The new basis is

defined by I1 = [1, 6, 7], and the basis matrix is:

B1 = B0

 2 0 0
1 1 0
−1 0 1

Second iteration. We solve yB1 = cB, that is:

y

 2 0 0
1 1 0
−1 0 1

 = (1, 0, 0)

The two last components of y are zero, and then the first is 1
2 , thus y =(

1
2 , 0, 0

)
. Then

cN −yAN = (3,−1, 1, 0)−
(

1

2
, 0, 0

)−1 1 −2 1
1 −3 1 0
2 1 2 0

 =

(
7

2
,−3

2
, 2,−1

2

)
Hence, we can choose between x2 and x4, x2 is our entering variable.

We solve B1d = (−1, 1, 2)T : 2 0 0
1 1 0
−1 0 1

 d = (−1, 1, 2)T

The first component is clearly −1
2 , then we get dT =

(
−1

2 ,
3
2 ,

3
2

)
. The ratio

for x6 is better that for x7, so x6 leaves with ratio 2
3 .

74

We update our partial solution. x2 =
(
10
3 ,

2
3 , 0, 0, 0, 0, 14

)
, I2 = [1, 2, 7]

and:

B2 = B0

 2 0 0
1 1 0
−1 0 1

1 −1
2 0

0 3
2 0

0 3
2 1

Third iteration. We solve yB2 = cB:

y

 2 0 0
1 1 0
−1 0 1

1 −1
2 0

0 3
2 0

0 3
2 1

 = (1, 3, 0)

First we compute y′ with:

y′

1 −1
2 0

0 3
2 0

0 3
2 1

 = (1, 3, 0)

We easily find that y′ =
(
1, 73 , 0

)
. Then we have:

y

 2 0 0
1 1 0
−1 0 1

 = y′ =

(
1,

7

3
, 0

)

Hence we deduce y =
(
−2

3 ,
7
3 , 0
)
. Then:

cN − yAN = (−1, 1, 0, 0)−
(
−23

3
,
11

3
,−2

3
,
7

3

)
=

(
20

3
,−8

3
,
2

3
,−7

3

)
x3 or x5 can enter, we choose x3.

Then we solve B2d = (1,−3, 1). First, we solve: 2 0 0
1 1 0
−1 0 1

 d′ = a

It gives d′ =
(
1
2 ,−

7
2 ,

3
2

)T
. Then we have:1 −1

2 0
0 3

2 0
0 3

2 1

 d = d′

We get d =
(
−2

3 ,−
7
3 , 5
)T

. x7 is the leaving variable, the ratio is 14
5 .

75

We update the partial solution: x3 =
(
26
5 ,

36
5 ,

14
5 , 0, 0, 0, 0

)
, I3 = [1, 2, 3],

and:

B3 =

 2 0 0
1 1 0
−1 0 1

1 −1
2 0

0 3
2 0

0 3
2 1

1 0 −2
3

0 1 −7
3

0 0 5

Fourth iteration. We must first solve yB3 = cB:

y

 2 0 0
1 1 0
−1 0 1

1 −1
2 0

0 3
2 0

0 3
2 1

1 0 −2
3

0 1 −7
3

0 0 5

 = (1, 3,−1)

We use intermediate solution y1 =
(
1, 3, 43

)
, y2 =

(
1, 1, 43

)
and finally y =(

2
3 , 1,

4
3

)
. Then:

cN − yAN = (1, 0, 0, 0)−
(

7

3
,
2

3
, 1,

4

3

)
=

(
−4

3
,−2

3
,−1,−4

3

)
There is no candidate for entering the basis, hence the solution x3 is optimal.
In terms of the original problem the solution is

(
26
5 ,

36
5 ,

14
5 , 0

)
. The optimal

value is 24. The dual solution is given by y:
(
2
3 , 1,

4
3

)
.

3.2 Implementation details

3.2.1 Complexity

The complexity of the revised simplex method is dominated by the compu-
tation of the solution of yB = cB and Bd = a. As B is given in a factorized
form, and each factor is a matrix with only O(m) coefficients, plus the up-
per triangular matrix, with a good implementation of matrices we have a
complexity in O(m2 + km) where k is the number of factors.

The matrices used in practice are usually very sparse: they have only
a few non-zero coefficient in each column. In that case, we could obtain a
triangular matrix that is also very sparse, by carefully choosing the pivot
during the Gaussian elimination. Pivoting an arbitrary row could fill the
matrix into a dense system, for example, we do not want to pivot the first

76

line of the following matrix:

1 2 3 4 5 6 7
1 3
1 4
1 5
1 6
1 7
1 8

as we would then get:

1 2 3 4 5 6 7
1 −3 −4 −5 −6 −7
−2 1 −4 −5 −6 −7
−2 −3 1 −5 −6 −7
−2 −3 −4 1 −6 −7
−2 −3 −4 −5 1 −7
−2 −3 −4 −5 −6 1

If we want to create as few new non-zero coefficient as possible, we must
choose a pivoting line that has many zeros. One possible rule was given
by Markowitz. Choose a coefficient minimizing the product (p − 1)(q − 1),
where p is the number of non-zero coefficient in its row, and q the number of
non-zero coefficient in its column. With this rule, the matrices that we get
will tend to be sparse. Hence we will get a much more efficient factorization.
For example, the first step of the Gaussian elimination on the matrix above
would give:

1
3 0 3 4 5 6 7
1 3
1 4
1 5
1 6
1 7
1 8

Another way of improvement is the following. After many iterations, the

factorization of B can become very big, and the computation of all these
factors, as it is done at each iteration, begins to cost a lot. In that case, it is
useful to compute a fresh factorization of the basis B by performing a Gaus-
sian elimination on the original B. In practice, doing such a refactorization
every twenty operations leads to good results.

77

3.2.2 Accuracy

Efficient implementations of the simplex method uses floating point arith-
metic, instead of rational or real arithmetic. It means that the values en-
coded by the algorithm are rounded to the closest floating point, hence with
a very slight approximation. Unfortunately, when performing arithmetic op-
eration, the approximation can become bigger and bigger, to the point that
the value obtained are completely false after a few operations. To under-
stand how the floating point arithmetic can create wrong result because of
the approximation, we solve a linear system of equations with five significant
digits: (

10−6 2
2 1

)
x =

(
1
2

)
After applying Gauss elimination we get:(

10−6 2
0 −4 · 106

)
x =

(
1

−2 · 106

)
Hence the solution is x = (0, 0.5). But when we check this solution

with the original system of equations, we get that the second equation is
completely false. The exact solution rounded to five significant digits is
x = (0.75, 0.5), which is obviously far better when we compare to the original
problem.

So we do not even need to do many computations to get errors in the
approximation, and the previous example would have worked for larger pre-
cision by replacing the coefficient 10−5 by an even smaller value. The reason
of the failure of the Gaussian elimination with rounding is due to the fact
that by choosing a very small pivot, after rounding the second equation
what we get as nothing to do with the original second equation: the terms
of the original matrix are negligible compared to the inverse of the pivot. A
better way to perform the Gaussian elimination would then be to choose a
large pivot. Indeed, on our example, by chhosing the second coefficient of
the first column as a pivot, we would get:(

0 2
2 1

)
x =

(
1
2

)
and then x = (0.75, 0.5), which is correct.

The main reason for inaccuracy in the Gaussian elimination is the dif-
ference of scale between coefficients of the original matrix. One common

78

technic to counter this is to change the coefficients, by playing with two
possibilities:

• we can multiply one row of A and the corresponding row in b by a
non-zero scalar without modifying the solution of the system,

• we can change a variable xi by λ−1xi, which in practice means that
we multiply the ith column by λ 6= 0.

With these two tools, we can reduce the differences of magnitude between
the coefficient of the system. In our example, we would get:(

1 2000
2000 1

)
x =

(
1000

2

)
Then, when applying Gaussian elimination, we can choose the pivot to

maximize the absolute value among the candidates in the column. We can
also add column permutation in the Gaussian elimination, that would allow
us to take for pivot the biggest coefficient in the bottom-right submatrix.
The former strategy is called partial pivoting, the latter complete pivoting.

A common approach when analysing the error made by an algorithm
is not to see how much the original equations are violated (forward error
analysis), but to consider how much we need to change the coefficients of the
original problem to make the solution be correct (backward error analysis).
In our example, we only have to change the coefficient 10−6 to 0 to get that
(0.75, 0.5) is a solution. It appears that Gaussian elimination with partial
pivoting is very accurate for this measure.

One good reason for using backward error analysis is that anyway the
values of the original matrix are not accurate themselves, in real-life appli-
cations: they are found empirically or are estimations only, hence slightly
modifications of them have usually no significance. Therefore, a solution to
a slightly modified version of the problem is as good as an exact solution.

3.3 Boxed simplex

In this section, we extend the two-phase simplex method to linear programs
with explicit bound on variables. Let be a linear program with variables x
in the following form:

max cx subject to
Ax = b
l ≤ x ≤ u

(3.7)

79

where c, b, u and v are given vectors, A is a given matrix. The last line
gives for every variable xi a lower bound and an upper bound, li ≤ xi ≤ ui.
We allow some of the li and some of the ui to be undefined, that is xi may
be unbounded in one direction, but not both, that is xi is not free. If xi
has no lower bound, we will note −∞ ≤ xi, if xi has no upper bound we
note xi ≤ ∞. Note that a standard form program to which we add slack
variables can be written as a boxed simplex, by taking l = 0 and u =∞, so
boxed linear programs are not a restriction of general linear programs.

We postpone the treatment of phase one, i.e. how to find a basic feasible
solution. We assume that we have a feasible basic solution. What does it
look like? As usual, to be basic, it must happen that most of the inequalities
are tight. More exactly, if we have m constraints (without counting the
bounds) and n variables, then we have 2n+m constraints (with the bounds),
and n of them must be tight in a basic solution. As the inequalities for the
lower bound and for the upper bound of one variable cannot be checked at
once, it means that n − m variables have the value of either their upper
bounds or their lower bounds, and the m other variables have their values
determined by Ax = b. The former variables are called non-basic, and the
latter basic, as usual. But this time, the non-basic variables do not have
value zero, but they are equal to one of their bounds. Hence we distinguish
between the set U of non-basic variables being equal to their respective upper
bounds, and the set L of those being equal to their lower bounds. Hence
a basic solution is determined by three sets: the set B of basic variables,
and the sets L and U of variables reaching their lower and upper bounds
respectively.

Note that in the classical case, when l = 0 and u = ∞, U is always
empty (no variable can have value ∞), and the solution is thus determined
by L and B. So we are just extending the results that we already know.
Then, we would like to extend the simplex method as well: we can again
write dictionaries in the exact same way, but this time we must remember
that it is not the non-negativity that is implicit in the dictionary, but the
bound on the variables.

What does it change? First, when choosing the entering variable, there
are two cases: we can choose a variable in L that we could increase, we need
that its coefficient in the objective line is positive (to increase the objective
value). But we can also choose a variable in U , which means that we will
decrease its value, so its coefficient must be negative.

Second, when we choose the leaving variable, we do not want the basic
variable to stay non-negative, but to stay within their bounds. Hence, we
do not want them to increase beyond their upper bound, or the decrease

80

below their lower bound, so we must check both the positive coefficients of
the column of the entering variable, and the negative coefficients. Moreover,
we do not want either the entering variable to break its other bound: if we
increase it, we must be careful not to increase it above its upper bound.
This last remark also means that an entering variable may not enter: if we
increase it to its upper bound (or decrease it to its lower bound), it stays
non-basic, so the next basis would be the same, only U and L would change
by one element.

We write it in terms of the revised simplex method. Given L, U , the
submatrix B of A corresponding to the columns of the basis, and the corre-
sponding solution x0, we would have the following dictionary as usual (recall
that the bounds are implicit):

xB = B−1b − B−1ANxN
z = cBB

−1b − (cN − cBB−1AN)xN
(3.8)

Given the vector cN − cBB−1AN , we can choose as entering variable any
variable in L with a positive coefficient, or any variable in U with a negative
coefficient. If there is no possibility, the basic solution is optimal. Else, once
we have chosen an entering variable, we must choose the leaving variable xj .
For the variable xi, if the coefficient in the line defining xi of the entering
variable is di, then we look how the variable i will be affected by the change
of the entering variable: if di > 0 and j ∈ L, or if di < 0 and j ∈ U , the
variable decreases, and it can decrease by at most x0i − li, hence xj cannot

increase by more than
∣∣∣x0i−lidi

∣∣∣. Else, xi increases, limiting the change of xj

by
∣∣∣ui−x0idi

∣∣∣. Moreover, xj cannot change by most than uj − lj . If one of

the former constraints on xj is the more constraining, then xj becomes non-
basic, and one of the basic variables becomes non-basic, either in L or in
U . If xj becomes basic, the matrix B must be updated. As in the classical
method, degeneracy and cycling may happen, and may be avoided in the
same way.

Example:
We illustrate the boxed simplex by solving the following problem:

max 3x1 + 2x2 + x3 subject to
x1 − 2x2 + 2x3 ≤ 18

4x1 + x2 − x3 ≤ 23
x1 ∈ [2, 6]
x2 ∈ [3, 7]
x3 ∈ [4, 15]

81

We add non-negative slack variables x4 and x5, and start from the basic
solution (2, 3, 4, 14, 16). The basis is [4, 5], while L0 = {1, 2, 3} and U0 = ∅.
First iteration: As usual we solve yB0 = cB, B0 is the identity and cB is
the null vector, hence we get that cN − yAN = cN = (3, 2, 1). We choose x1
as entering variables.

Then, B0d = (1, 4)T leads to d = (1, 4)T . The ratio for x4 is 14, and for
x5 it is 4. Moreover, x1 can be increased by at most 4 until it reaches its
upper bound. So we can choose between keeping x1 out of the basis, and
making x1 basic with x5 leaving. We do the second possibility: x5 leaves.

We get that:

B1

(
1 1
0 4

)
x1 = (6, 3, 4, 10, 0)

We have L1 = {2, 3, 5}, U1 = ∅, and the basis is [4, 1].

Second iteration: we solve yB1 = (0, 3), it gives y =
(
0, 34
)
. Then:

cn − yAN = (2, 1, 0)− 3

4
(1,−1, 1) =

(
5

4
,
7

4
,
−3

4

)
x5 is at its upper bound, it cannot be decreased, but x2 and x3 are at their
respective lower bounds, so we can increase them: we choose to increase x2
that become our entering variable.

Then B1d = (−2, 1)T gives d =
(
−9

4 ,
1
4

)T
. There is no upper bound for

x4, and x1 can be decreased by at most 4, which gives a ratio of 16. x2 can
be increased by at most 4 because of its upper bound, this gives the most
constraining constraint: x2 does not enter the basis, but reach its upper
bound. Therefore, the basis is not changed, B2 = B1, and only the solution
is changed to

x2 = (5, 7, 4, 19, 0)

We also have L2 = {3, 5}, U2 = {2} and the basis is [4, 1].

Third iteration: We solve yB2 = (0, 3), it gives again y =
(
0, 34
)

and then
cN−yAN is also

(
5
4 ,

7
4 ,
−3
4

)
. This time x2 is at its upper bound, hence cannot

be increased, hence only x3 can enter the basis.

Then, B2d = (1, 2,−1)T leads to d =
(
9
4 ,−

1
4

)T
. x4 has value 19, it can

be decreased to 0, giving a ratio of 76
9 . x1 can be increased by 1, this gives

a ratio of 4, and x3 can be increased by 11, so x1 is the leaving variable.
The next solution is then:

B3 =

(
1 2
0 −1

)
82

x3 = (6, 7, 8, 10, 0)

and L3 = {5}, U3 = {1, 2}, the new basis is [4, 3].

Fourth iteration: yB3 = cB = (0, 1) gives y = (0,−1), and cN − yAN =
(3, 2, 0) + (4, 1, 1) = (7, 3, 1). x1 and x2 cannot increase more, but x5 can,
so x5 is the entering variable.

B3d = (0, 1)T gives d = (2,−1)T . We get a ratio of 5 for x4, and 7 for
x3, while x5 has no upper bound, so x4 leaves.

Hence we have:

B4 = B3

(
2 0
−1 1

)
x4 = (6, 7, 13, 0, 5)

and L4 = {4}, U4 = {1, 2}, the basis is [5, 3].

Fifth iteration: yB4 = (0, 1) gives y =
(
1
2 , 0
)
. We get cN − yAN =(

5
2 , 3,−

1
2

)
. But x1 and x2 cannot increase and x4 cannot decrease, so the

previous solution x4 is optimal. The solution to the original problem is
(6, 7, 8), the objective value is 40.

The dual of (3.7) is:

min by + ls + ut subject to
yA + s + t ≥ c

s ≤ 0
t ≥ 0

(3.9)

From the structure of this dual, because u > l, it is clear that an optimal
solution will have only one of si and ti different from 0 for each variable xi.
This is also a consequence of complementary slackness: a variable cannot
reach both its lower and upper bounds with the same value. If si is not
zero xi = li, while if ti 6= 0 then xi = ui. The dual solution of the previous
example would be y1 = 1

2 , t1 = 5
2 , t2 = 3, and the other dual variables

are zero. We get this solution by taking the value of cN − yAN in the last
iteration.

We conclude this section by explaining how we can find a basic feasible
solution. We use the same trick as for the classical simplex method: we
introduce artificial variables, and then try to cancel them. Given the linear
program (3.7), we want to start from a solution that gives to each variable
its lower bound or its upper bound. Such a solution could violate some of

83

the equalities, so we add one artificial variable for each violated equality,
and take this variable with a positive or a negative sign, depending on how
the equality is violated. Thus all the artificial variables are non-negative.
Then we first solve the problem consisting in minimizing the sum of the
artificial variable. The minimum is zero if and only if the initial program
is feasible, and if it is not feasible we will get a dual solution that gives
a certificate of infeasibility. Else, we find a feasible solution. We continue
with the same problem but back to the original objective, and we impose
the artificial variables to stay equal to 0 (just adding an upper bound of 0).
We can even completely remove the non-basic artificial variables, as we did
for the classical simplex method.

3.4 Dual simplex

Let’s go back to non-boxed linear programs:

max cx subject to
Ax ≤ b
x ≥ 0

The dual of this program is as we know:

max −yb subject to
−yA ≤ −c
y ≥ 0

This gives the dictionary for the dual problem:

s = −cT + AT yT

w = − bT yT

If we compare it to the dictionary for the primal program, we get a
surprise:

s = b − Ax

w = cx

One is obtained from the other by taking a mirror image and reversing
the signs. We could actually complete this mirroring effect: to any primal
dictionary we can associate a dual dictionary by taking the transpose image
and reversing the signs. This does not look significant by itself, but the main
consequence is that we can solve the dual by the simplex method without
writing the dual or any dual dictionary. Note that the dual dictionary

84

obtained by mirroring a primal feasible dictionary is not always feasible,
and conversely, but it is true for optimal dictionaries: indeed, an optimal
primal dictionary has non-positive coefficient in the objective lines, which
implies that the constant column of the dual dictionary is positive. This
inspire the following definition:

Definition 3.4.1. A dictionary is dual feasible if the coefficients of the
non-basic variables in the objective line are all non-positive.

Hence, a primal dictionary is dual-feasible if its mirror, a dual dictionary,
is (primal-) feasible. Remember that the simplex method is computing a se-
quence of primal-feasible dictionaries, that is dictionaries with non-negative
constants in each line. The dual simplex method must then compute a se-
quence of dual feasible dictionary: dictionaries with non-positive coefficients
in the objective line.

What was driving us in the simplex method, when trying to get a new
dictionary, is that we wanted to remove positive coefficients from the ob-
jective line. Similarly, in the dual simplex method, we want to remove the
negative coefficients in the constant column. We can summarize this idea
by this two enlightening ideas:

• In the primal method, we work with primal feasible dictionaries, to
get a primal and dual feasible dictionary.

• In the dual method, we work with dual feasible dictionaries, to get a
primal and dual feasible dictionary.

The reason why we are looking for a dictionary that is both primal and
dual feasible is that this dictionary immediately gives us an optimal primal
solution, and an optimal dual solution as we have seen. Note that by the
definition of dictionaries, primal and dual values of the dictionary satisfy
the complementary slackness condition, hence as soon as both of them are
feasible, they are optimal.

The details of how the dual simplex method is performed are just a
translation of the primal simplex method by the mirror operation. First, we
need to find a leaving variable. As we want to get rid of negative constant,
we choose any basic variable, with a negative constant in the line contain-
ing this variable. If there is no negative coefficient, the dictionary is primal
feasible and the method terminates. Else we have an leaving variable and a
pivoting line, we must find an entering variable. We will replace this enter-
ing variable in the objective line, by the substitution formula given by the
pivoting line. As we want to keep the dictionary dual-feasible, we must be

85

careful when choosing the entering variable. We need a variable with a pos-
itive coefficient in the pivoting line (because the leaving variable must have
a negative coefficient after the substitution), and we want to minimize the
ratio

cj
aij

over all the possibilities, so that other variables stay non-positive.

Then, we compute the substitution formula, and substitute any occurence
of the entering variable by this formula, and this ends one iteration of the
dual simplex method. Note that if we cannot find an entering variable, it
means that the original problem is infeasible (the dual is unbounded, hence
the primal is infeasible).

As for the primal simplex method, it is more interesting, for a complexity
point of view, to only compute the feasible solution encoded by the dictio-
nary. For this, we recall that a dictionary is still determined by the set of
basic variable, and can be written:

xB = B−1b − B−1ANxN
w = cBB

−1b + (cN − cBB−1AN)xN
(3.10)

We keep the primal solution xk (actually it is not a feasible solution, as
some variables may be non-positive) and the dual solution yk. B−1b is read-
ily available as it is xk. Hence we can choose immediately a leaving variable
xi. Then to find the entering variable, we must compute the coefficient of
the line containing xi. If u is the line of B−1 corresponding to variable xi,
then the line is given by:

xi = ub− uANxN

We only have to solve eiB
−1 = u, where ei is the row vector with coefficient

0 except the one corresponding to variable xi which is 1. We found u by
solving Bu = ei, and then v = uAN . Then we compute the ratios

vj
ykj

for

every negative coefficient of vj , and keep the non-basic variable minimizing
these ratios, this is the leaving variable.

Finally, we must compute the new dual feasible solution ykj . If t is the

value of the minimal ratio, we get yk+1 = yk + tu for the non-basic variable,
and yk+1

i = −t. We also need to update B, by replacing the leaving column
by the entering column, that is done in the same way as in the primal simplex
method, and upgrade xk to xk+1, by removing t times the entering column
(again as in the primal simplex method). For both we need to solve Bd = a
where a is the entering column.

Example:

86

We solve the following program with the dual revised simplex method,
max cx s.t.Ax = b, x ≥ 0 with:

A =

−8 −6 1 −5 1 0 0
−4 −4 −2 2 0 1 0
3 −2 −3 −2 0 0 1

 , b =

 25
−14
−18

and c = (−10,−30,−20,−40, 0, 0, 0). We take for initial solution y0 =
(−10,−30.− 20.− 40, 0, 0, 0) (dual feasible) and x0 = (0, 0, 0, 0, 25,−14,−18)T

(not primal feasible). The base is [5, 6, 7] and B0 is the identity matrix.
First iteration.

x6 and x7 are non-positive in x0, we can choose one of them as leaving
variable, say x6. Then we need the line corresponding to x6 in the dic-
tionary, this is given by the coefficients of the second line in B−10 AN , i.e.
(−4,−4,−2, 2). y0N is (−10,−30,−20,−40), it gives ratios of

(
5
2 ,

15
2 , 10,∞

)
,

hence x1 is the entering variable, and the minimal ratio is 5
2 . yN is then

modified by 5
2 (4, 4, 2,−2), this gives the new solution:

y1 =

(
0,−20,−15,−45, 0,−5

2
, 0

)
Then we must update the primal values and the basis, for this we com-

pute the column d corresponding to x1 in the dictionary: B0d = (−8,−4, 3)T =
d. This gives:

B1 = B0

1 −8 0
0 −4 0
0 3 1

We want to cancel the value of x6, so we need to substract 14

4 d to the values
of the basic variables in x0, this gives:

x1 =

(
7

2
, 0, 0, 0, 53, 0,−57

2

)T

Second iteration.
From x1, it is clear that x7 is the only possible leaving variable. We

compute its line in the dictionary by solving first vB1 = (0, 0, 1), this
gives v =

(
0, 34 , 1

)
. Then the line is given by vAN =

(
−5,−9

2 ,−
1
2 ,

3
4

)
.

yN =
(
−20,−15,−45,−5

2

)
, hence the ratios are

(
4, 103 , 90,∞

)
, x3 is the en-

tering variable with ratio 10
3 . The modification of the dual solution is then

87

10
3

(
5, 92 ,

1
2 ,

3
4

)
and this gives the solution:

y2 =

(
0,−10

3
, 0,−130

3
, 0,−5,−10

3

)
Then we update the primal values: we compute the column d correspond-

ing to the entering variable: B1d = (1,−2,−3)T . This gives d =
(
5, 12 ,−

9
2

)T
.

Then we want to use d to cancel the coefficient of x7, for that we need to
substract 19

3 times d to x1, it gives:

x2 =

(
1

3
, 0,

19

3
, 0,

64

3
, 0, 0

)T
All these coefficients are positive, these primal values define a primal feasible
solution, hence x2 is an optimal solution. The optimality comes immediately
from the complementary slackness.

3.5 Sensitivity Analysis

Sensitivity analysis is about how much the optimal solution changes when
the parameters in the linear programs are modified. As we said when we
studied accuracy, the datas used for writing the linear model are not, in
practice, always precise, and may even change. For instance, consider the
prices of raw materials, the conversion rates between differente moneys, etc.
Hence, a solution to a problem solved one month can be non-optimal the
next month, and we would have to recompute a new solution again. We can
also have new variables or new constraints appearing (when one develops a
new product. . .). But we can avoid this additional computation, or most
of it, taking into account that we already have a solution to a very similar
problem, and that could give us a starting point to find the new solution.

3.5.1 Changing the objective

First, suppose we have solved the linear program max cx s.t. Ax ≤ b, x ≥ 0,
and that we want to change the objective functions (for example, the prices
at which we sold our products have changed). Now we want to maximize
c′x under the same constraints, and we have a solution x∗ that maximizes
cx. If c and c′ are similar, we can hope that the face of optimal solutions
for c′ is close to the face of optimal solutions for c in the polyhedron of

88

feasible solutions. It could even happen that the optimal solution is the
same. Therefore, a good idea is to initialize a simplex starting from the
solution x∗, instead of starting from a completely new solution. x∗ is still
primal feasible, because the constraints are the same, and basic. With the
revised simplex method, is is quite easy to start the simplex method from
any basic solution, hence we are done.

3.5.2 Changing the right-hand side

Then, if we want to change the constraints from Ax ≤ b to Ax ≤ b′, for
instance because our supplying has changed. If we take the dual program, it
means that we have changed the objective in the dual. Hence, we can apply
the same tactic to the dual program. In practice, we would apply the dual
simplex method starting from the dual solution of the original problem.

3.5.3 Changing everything

More generally, we could also completely change the program to

max c′x s.t. A′x ≤ b′, x ≥ 0

Then:

• if the basis of x∗ is still feasible, we can use it to initialize a simplex.
This is the case when we add new variables (a new product) whose
values can be zero.

• if the dual basis of x∗ is still dual-feasible, we can use it to initialize
a dual simplex. This is the case when we add new constraints to the
linear program.

• otherwise, it is possible to use more complicated tricks to start from
the solution x∗ or its dual, for example we could add artificial variables
with a big penalty, to get the feasibility of x∗. We could also intro-
duce the changes in the parameters in two steps, the first step would
keep the solution dual feasible. We compute a new solution, and then
introduces more changes but keeping the new solution primal feasible,
and then we solve again to get the final solution.

Example:

89

Consider the following linear program:

max 12x1 + 15x2 + 9x3 + 8x4 subject to
6x1 + 4x2 + x3 + 6x4 ≤ 180
3x1 + 3x2 + 2x3 + 2x4 ≤ 100
8x1 + 13x2 + 6x3 ≤ 260

x1, x2, x3, x4 ≥ 0

(3.11)

The optimal solution is x∗ = 1
7 (0, 116, 52, 124), with an objective value

of z∗ = 3200
7 . The dual optimal solution is y∗ = 1

7 (1, 25, 2)T .
Suppose that we change the objective solution to c′ = (14, 14, 8, 9). Then

the solution x∗ is still basic as the constraints are not changed. The basis is
{x2, x3, x4}, hence we can start an iteration of the simplex method for the
modified linear program with x∗ and the corresponding submatrix, we want
to solve:

y

 4 1 6
3 2 2
13 6 0

 = (14, 8, 9)

We should compute a factorization for our basis matrix:1
1

6
5 1

1 −3
1

1

 4 1 6
3 2 2
13 6 0

 =

−5 −5 0
3 2 2
13 6

 =

We state this matricial equality by L2L1B = B′. Then we solve y′B′ =
(14, 8, 9) and y′L2L1 = y, to get y′ = 1

70 (14, 315, 15) and y = (32, 219, 15).
Then we compute cN − yAN = 1

70 (11,−32,−219,−15). x1 is a can-

didate for entering the basis. We solve Bd = (6, 3, 8)T , which gives d =
1
70 (44,−2, 41)T . After a few computations, we get the new feasible solution
1
11 (290, 0, 90, 25). Then, we compute the new dual y =

(
1
2 , 3,

1
4

)
, and the

objective line −
(
1
4 ,

1
2 , 3,

1
4

)
, the solution is optimal.

Let’s go back to the first linear program, and let’s change the right-
hand side to (160, 120, 240)T . x∗ is not feasible, but y∗ is still dual feasible.
We can start a dual simplex method with y∗ as an initial value. First, we
must compute the primal solution associated to this dual value in the new
program, given by: 4 1 6

3 2 2
13 6 0

x = (160, 120, 320)T

90

The solution is x = 1
7 (80, 200, 100)T , this is a primal feasible solution, hence

the solution to the new linear program is 1
7 (0, 80, 200, 100)T , with an ob-

jective value of 3800
7 . If one of the values of x was negative, we would have

proceeded to an iteration of the dual simplex method until we found a so-
lution.

3.5.4 Changing parameters without changing the solution

We can also determine how much we can change the values without effect on
the solution. For example, if xi is non-basic in the solution, we can decrease
its value ci in the objective: it would then be even less interesting to use it,
so this would not affect the solution. But if we increase its value, there is a
point beyond which it is interesting to choose xi to be basic. This point is
quite easy to determine: we can increase ci by the coefficient δi of xi in the
objective line (the marginal cost of the non-negativity of xi, that is what we
gain by keeping xi = 0), without changing the optimality of the solution. If
we increase it by exactly δi, then the solution becomes degenerate, and we
can choose xi to be basic. Increasing ci by more than δi will force xi to be
basic.

If xi is basic in the optimal solution, how much can we change ci without
modifying the basis? If we increase ci, it will likely increase xi as well while
possibly decreasing the other variables. While decreasing ci enough will
force us to make xi leave the basis. To be more precise, we have to compute
the effect of ci on the objective in terms of the non-basic variables. We know
that the objective is given by:

z = cBB
−1b+ (cN − cBB−1AN)xN

We want to compute the line of B−1 asociated with variable xi, say it is the
jth line, we want to solve d = ejB

−1, that is dB = ej . Then the effect of
changing ci by one unit on the objective will be db−dANxN . Then we have
to find the ratios that will give a non-negative value to at least one of the
non-basic variables. This will give bounds on the change of ci that does not
affect the basis.

By working on the dual problem, we can get similar results for modifi-
cation of the right-hand side of the constraints. But we can do it directly
as well. By modifying b, we only modify the constant column of the opti-
mal dictionary, that is given by B−1b. Hence, changing b to b′, we will get
B−1b′. We want to keep this vector non-negative, again this defines bounds

91

between which we may change an individual parameter in the right-hand
side, without changing the basis’ for constraints that are tight.

We can also modify non-tight constraints: if ax ≤ bi is non-tight, then
increasing bi will not change the solution at all (this constraint was not really
constraining us, and now it is even looser), and decreasing it by the value of
the slack variable will make it tight. Decreasing it further will then modify
the value of the optimal solution.

92

Chapter 4

Applications

4.1 Matrix games

Consider a game with two players, Alice and Bob, where Alice has m possible
actions, and Bob has n possible actions. Alice and Bob choose simultane-
ously their actions (hence they do not what their opponent choice), and de-
pending of their choices, Alice gives to or receives from Bob a given amount
of money. More precisely, if Alice chooses i ∈ [1,m], and Bob chooses
j ∈ [i, n], then Alice receives aij dollars and Bob receives −aij dollars (re-
ceiving a negative amount of money means paying this amount). Hence the
game is defined by some matrix A ∈ Rm×n.

Some popular games can be stated within this setting. One of the most
popular, rock-paper-scissors, is defined by the following matrix: 0 −1 1

1 0 −1
−1 1 0

where rock, paper and scissors are respectively actions 1, 2 and 3. These
games are called two-player zero-sum matrix games, as they are defined by
a matrix, and the sum of the gains of the players is zero.

Suppose that the matrix A in Alice and Bob’s game is defined by: 1 2 −2
3 −1 −1
−2 1 4

What is a good strategy for the two players? Consider the case of Alice.
If she plays 1, then she can hope to gain 2 if Bob plays 2, but Bob could

93

as well play 3, in which case she would lose 2. Playing 2 or 3 would also
lead to a bad response from Bob. It is not possible for her to be sure to
gain something. The situation is as bad for Bob, who has no trivial winning
choice.

A strategy is how a player chooses an action. For instance, one of Alice’s
strategy is to play 2. A pure strategy is a strategy where the player choose
an action determinisically. Hence, Alice has three possible pure strategies,
as well as Bob.

Bob, seeing no way to ensure a win wit ha pure strategy, decides to play
randomly. He chooses to play each possible action with the same proba-
blity. His strategy can be written as a (column) vector with non-negative
coefficients whose sum is 1, here it is (13 ,

1
3 ,

1
3)T (those vectors are called

stochastic). Each coefficient gives the probability that Bob plays that ac-
tion. Hence a pure strategy is a special case of a mixed strategy, where one
coefficient is 1 and the others are 0. Suppose that Bob tells Alice that this
game is boring and that he has decided to play the mixed strategy (13 ,

1
3 ,

1
3)T .

Then Alice can find a much better way to play by analysing her expectation.
If she plays 1, she expects to win

1

3
× 1 +

1

3
× 2 +

1

3
×−2 =

1

3

Similarly, by playing 2, she expects to win 1
3 , and 1 by playing 3, hence she

chooses to play 3.
More generally, if Alice knows Bob’s strategy x, she want to find a strat-

egy (pure or not), that maximizes her gain. She want to solve:

max yAx subject to∑m
i=1 yi = 1

y ≥ 0

Knowing x this is just a linear program, so she can use the simplex method to
determine what is her best response strategy to Bob’s strategy x. Moreover,
she will get a pure strategy, because the polyhedron defined by the con-
straints has pure strategies as vertices. This is an important remark: given
a strategy for one player, there is a best response form the other player that
is a pure strategy.

In our example, she solves the following linear program:

max 1
3y1 + 1

3y2 + y3 subject to
y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

94

This gives as expected the solution (0, 0, 1).
Then Alice and Bob start their game. After a few rounds, the results

are as follow:

• First round, Alice chooses 3, Bob chooses 2. Alice gives 1 from Bob.

• Second round, Alice chooses 3, Bob chooses 1, Alice gives 2 to Bob.

• Third round, Alice chooses 3, Bob chooses 1, Alice gives 2 to Bob.

• Fourth round, Alice chooses 3, Bob chooses 3, Alice takes 4 from Bob.

• Fifth round, Alice chooses 3, Bob chooses 1, Alice gives 2 to Bob.

At this point, Bob notes that Alice always choose 3, and that it would
be better for him to play only 1. But then, Alice would quickly notice that
he changed his strategy, and she would then find a new one. And again, Bob
would change his strategy in response. One possible question is then: are
there a strategy for Alice and one for Bob, such that none of them would
want to change their strategies? More exactly, Alice would have no reason
to change her strategy if Bob keeps the same, and conversely Bob would
have no interest to change if Alice does not.

Another question is: is there a strategy that ensures Alice some gain,
whatever is Bob’s strategy? In other word, Alice wants a strategy y∗ such
that for every possible strategy x for Bob, Alice would expect a gain of
at least some value c. This is definitely possible, if c = −2, Alice cannot
lose more than 2 per round. But Alice wants to find c as big as possible.
Actually, Alice wants to solve the following problem:

maxy minx yAx subject to∑n
j=1 xj = 1∑m
i=1 yi = 1

x, y ≥ 0

We rewrite it in the following form. Note that this is not a linear pro-
gram, as we have quadratic terms in the constraints.

max z subject to
z ≤ yAxj (∀j ∈ [1, n])∑n
j=1 xj = 1∑m
i=1 yi = 1
x, y ≥ 0

95

This says that Alice wants to maximize her gain, supposing that Bob
will play the worst strategy for her (that is his own best strategy), knowing
Alice’s strategy. As we have seen before, if Bob knows Alice strategy, he can
easily find a good strategy by evaluating each of its pure strategies, and then
keep the best one. It means that in (4.1), Alice only needs to consider Bob’s
pure strategies. We hence get the following simpler and linear program:

max z subject to
z ≤ yA j (∀j ∈ [1, n])∑m
i=1 yi = 1

y ≥ 0

In the case of Alice, it gives:

max z subject to
z − y1 − 3y2 + 2y3 ≤ 0
z − 2y1 + y2 − y3 ≤ 0
z + 2y1 + y2 − 4y3 ≤ 0

y1 + y2 + y3 = 1
y1, y2, y3 ≥ 0

(4.1)

and the solution is 1
39(12, 11, 16) with an optimal value of 29

39 . With this
strategy, Alice is sure to win 29

39 in average, whatever Bob chooses to do.
The dual program should give us a proof that she cannot ensure a better
gain. Let’s write the dual program in the general case:

min w subject to∑n
j=1 xj = 1

w −Ai x ≥ 0 (∀i ∈ [1,m])
x ≥ 0

(4.2)

This linear program is what we would have got by simplifying Bob’s
problem for finding a best strategy, supposing Alice plays her best response:

minx maxy yAx subject to∑n
j=1 xj = 1∑m
i=1 yi = 1

x, y ≥ 0

So we get that the dual program of (4.1) is finding a best strategy for
Bob. In our case, Bob should play the mixed strategy 1

39(17, 14, 8), and he
will lose in average only 29

39 . The value achieved by the linear program is

96

called the value of the game: this is the best value that the firt player can
expect to win.

There are some interesting points about those solutions:

• The min-max theorem for game theory is equivalent to the duality
theorem of linear programming. Actually, they were discovered inde-
pendantly by Von Neumann (for the game theory version), and Gale,
Kuhn and Tucker (for the linear programming version).

• If both Alice and Bob plays with these optimal strategies, neither of
them is interested in changing its strategy. If Alice want to change
and Bob keeps the same strategy, Alice will get a smaller gain, and
conversely for Bob. Such a pair of strategies is called a Nash equilib-
rium, the name reflecting the fact that no player is willing to change
the present state.

• The fact that a strategy is optimal here is not affected by the knowl-
edge of that strategy by the opponent. Alice can explicitely reveal her
mixed strategy to Bob, she will still gain in average the same value.

• The best strategy for Bob is always a linear combination of best pure
response to Alice strategy (this is the game-theory equivalent to com-
plementary slackness).

• Not all games have a Nash equilibrium, and some may have multiple
Nash equilibria with different values. We can define more complex
games, non-zero sum games, where the gains of the two players are
not related. We define two m × n matrices A and B. A gives the
payoffs for Alice, while B gives the payoffs for Bob. A common way to
represent these two payoff matrices is to give a single matrix, whose
coefficients are couple: the first term is the gain for Alice, the second
is the gain for Bob. For example, we could have this matrix:(

(3, 4) (−1,−2)
(−2,−1) (4, 3)

)
In that game, if Alice chooses 1 and Bob chooses 2, then Alice loses 1
and Bob 2. There are two pure Nash equilibria: Alice and Bob both
play 1, or they both play 2.

• Matrix games are just a very small part of game theory: it is useful
for two-player games with complete knowledge and finitely many pure
strategies.

97

A nice example of study of a two-player game is Kuhn’s poker. Kuhn’s
example shows that bluffing is a rational strategy in some games. The rules
are the following: Alice and Bob bet one unit, and receive one card each,
chosen uniformly among a deck of three cards numbered from one to three.
The third card is kept unseen They know what is their own cards but not
the opponent’s ones. Then Alice and Bob take turns, by either betting one
more unit or passing. The game ends as soon as the two players passes,
the two players bets, or one bets and then the other passes. Here are the
possibilities:

• Alice passes, Bob passes. The player with the highest card takes the
pot of 2,

• Alice passes, Bob bets, Alice passes. Bob takes the pot of 3.

• Alice passes, Bob bets, Alice bets. The player with the highest card
takes the pot of 4.

• Alice bets, Bob passes. Alice takes the pot of 3.

• Alice bets, Bob bets. The player with the highest card takes the pot
of 4.

For example, suppose that Alice gets a 2, and Bob a 3. Alice chooses to
pass, then Bob bets, then Alice passes againt. Alice loses 1 (her initial bet),
and Bob gains 1 (the pot is 3 and he bets 2).

The possible strategies for Alice, depending on her card, are:

• passing, then passing if Bob bets.

• passing, then betting if Bob bets.

• betting.

Hence one pure strategy could be: pass if she has a 1, bet if she has a 2,
pass then bet if she has a 3. This gives 27 pure strategies. For Bob, again
depending on the card:

• if Alice passes, bet, else pass.

• if Alice passes, pass, else bet.

• bet, whatever does Alice.

• pass, whatever does Alice.

Thus Bob has 64 pure strategies. We can reduce this number, as some
strategies are clearly stupid. Bob will never pass if he has a 3. Alice will
not bet on the third round if she has a 1. Then, if Alice has a 2, we have
the following payoff matrix:

98

Alice’s first move Bob has a 1 Bob has a 3

bets +1 −2
passes ≥ 1 ≥ −2

Her payoff is better when passing, hence she will never bet on first move
when she has a 2. The possible strategies for Alice are:

1. with a one: always pass, with a two: always pass, with a three: pass
then bet.

2. with a one: always pass, with a two: always pass, with a three: bet.

3. with a one: always pass, with a two: pass then bet, with a three: pass
then bet.

4. with a one: always pass, with a two: pass then bet, with a three: bet.

5. with a one: bet, with a two: always pass, with a three: pass then bet.

6. with a one: bet, with a two: always pass, with a three: bet.

7. with a one: bet, with a two: pass then bet, with a three: pass then
bet.

8. with a one: bet, with a two: pass then bet, with a three: bet.

Similarly, if Bob holds a 2 and Alice passes on her first move, then it
would be stupid for Bob to bet: it could only lead to a better gain for Alice.
Hence Bob has four different strategies. In each of them, always bet with a
3, pass with a two if Alice pass, pass with a one if Alice bets. The differences
are:

1. with a 1: bet if Alice passes, with a 2: bet if she bets.

2. with a 1: bet if Alice passes, with a 2: pass if she bets.

3. with a 1: pass if Alice passes, with a 2: bet is she bets.

4. with a 1: pass if Alice passes, with a 2: pass if she bets.

This gives the following payoff matrix, by considering each deal with equal
probability.

1

6

−1 −1 0 0
−1 −1 1 0
1 1 −1 −1
1 0 0 −1
−3 0 −2 1
−3 −1 −1 1
−1 2 −3 0
−1 1 −2 0

99

This gives the following linear program for Alice:

max g subject to
g+ 1

6x1 + 1
6x2−

1
6x3−

1
6x4 + 1

2x5 + 1
2x6 + 1

6x7 + 1
6x8 ≤ 0

g+ 1
6x1 + 1

6x2−
1
6x3 + 1

6x6−
1
3x7−

1
6x8 ≤ 0

g − 1
6x2 + 1

6x3 + 1
3x5 + 1

6x6 + 1
2x7 + 1

3x8 ≤ 0
g + 1

6x3 + 1
6x4−

1
6x5−

1
6x6 ≤ 0

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1
x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0

One possible couple of solutions (among many) is
(
1
3 , 0, 0,

1
2 ,

1
6 , 0, 0, 0

)
and

(
1
3 , 0, 0,

2
3

)T
, and the value of the game is − 1

18 . With this strategy,
Alice bluffs with a one with probability 1

6 , and with a 3 with probability 1
2 .

And Bob bluffs with a 1 with probability 1
3 .

4.2 Column generation

The cutting-stock problem consists in finding how to cut rolls (called raws
by that industry) of raw material (metal sheet, textile, paper) from one
(large) width, to several smaller widths (called finals). The rolls are cut
orthogonally to their axis. Suppose for example that we dispose of raws of
width 120cm. We are asked to deliver 65 finals of width 45cm, 56 finals of
width 37cm, and 78 finals of width 22cm. We want to cut a minimal number
of rolls to satisfy this demand, and all the parts not used in a cut roll are
considered to be lost.

To modelize this problem, we first need to give decision variables. To
each decision variable, we will associate a way to cut a roll, then that variable
gives the number of raws cut in this way. One way of cutting a raw would
be to cut it into two finals of 45cm plus one of 22cm, and 8cm are lost. We
want to enumerate all the possible ways of cutting a raw of width 120cm into
finals of size 45cm, 37cm and 22cm. Actually, we do not need to compute
them all, but only does that are maximal, that is we cannot add them one
more final (then, we will try to find more finals that we really want, and the
potential extras will be considered as lost). This is given by Figure 4.1.

With that, it is quite easy to write a linear program solving (a fractional
version of) our problem. We must express the demand for each kind of final,

100

Variable name 45cm 37cm 22cm lost

x1 2 0 1 8cm
x2 1 2 0 1cm
x3 1 1 1 16cm
x4 1 0 3 9cm
x5 0 3 0 9cm
x6 0 2 2 2cm
x7 0 1 3 17cm
x8 0 0 5 10cm

Figure 4.1: Decision variable for our cutting-stock problem.

this gives:

2x1 + x2 +x3 + x4 ≥ 65
2x2 +x3 + 3x5 + 2x6 + x7 ≥ 56

x1 +x3 + 3x4 + 2x6 + 3x7 + 5x8 ≥ 78
x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0

(4.3)

Then the objective is minimizing the total number of raws used, that is:

minx1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 subject to (4.3)

An optimal solution is 1
5 (152, 21, 0, 0, 0, 119, 0, 0) with objective value

58 + 2
5 . This is not really satisfactory because we want an integer solu-

tion, but a good solution can be find by rounding these values down to
(30, 4, 0, 0, 0, 23, 0, 0). With that partial solution, we still need 1, 2 and 2
finals of size 45cm, 37cm and 22cm, which can be done with only two more
raws (x2 +x6 for example), for a total of 59 raws. As the fractional optimal
is strictly more than 58, this is an optimal integral solution, but we would
have been satisfied even with 60 raws, as long as we do not use to many
additional raws in the rounding operation.

This method looks fine, but there is actually one problem: when the
number of finals with different width increases, the number of decision vari-
able increases exponentially. For example, if we still have raws of size 120cm,
but finals of size 12cm, 17cm, 22cm, 25cm, 29cm, 33cm, 35cm, 42cm and
53cm, the number of way to cut a raws into finals is. . . quite big. And this
is still as small example. Moreover, there can be different sizes of raws, and
possibly additional constraints that make things even uglier. Anyway, we
can not compute every possible way of cutting a raw, as there are far too
many.

101

Fortunately, in the revised simplex method, we do not need to know each
variable individually. All we need is to know which are the basic variables,
and find a potential entering variable. We start from any basic solution. It
is better to use a simple heuristic to find a solution which is already close
to the optimal. For example, we can use a greedy algorithm, consisting in
packing the finals in lexicographic order: first the largest one, until there is
not enough space left, then the second largest, etc. For example, consider
the following finals, with raws of width 120cm:

width 47cm 43cm 36cm 32cm 21cm

demand 50 44 48 28 43

Then, with the greedy algorithm, we consider to cut a raw into two finals
of size 47cm (three would be too much), it leaves 26cm, in which we add a
final of width 21cm. Hence our first variable x1 corresponds to (2, 0, 0, 0, 1),
and in the first solution we can take x1 = 25. We still have a demand of
(0, 44, 50, 29, 18), we introduce x2 corresponding to (0, 2, 0, 1, 0), as we can
place at most to finals of size 43cm, leaving the place for one final of size
32cm. We choose x2 = 22 to satisfy the demand for 43cm finals. Note
that with this procedure, we may find a non-integral solution (otherwise,
the solution may not be basic). At the end, we will get this initial solution:

variable 47cm 43cm 36cm 32cm 21cm initial value

x1 2 1 25
x2 2 1 22
x3 3 16
x4 3 1 2
x5 4 4

total 50 44 48 28 43 69

We now want to find if there is a way to cut the raws that would give a
better solution. The simplex method asks us to find a negative coefficient
in cN −yAN with yB = cB. As we do not want to consider all the non-basic
variables (there are too many), we only want to decide if there is one, xj ,
with cj − ejyAN negative. First we must compute y.

y

2

2
3

1 3
1 1 4

 = (1, 1, 1, 1, 1)

102

This gives y =
(
3
8 ,

3
8 ,

1
3 ,

1
4 ,

1
4

)
. This dual values corresponds to some propor-

tion of a raw, representing the value that we associate to a final, so they
should approximate the widths of the finals, which is roughly correct here.

The coefficients of cN are all 1’s, therefore we want to find a way to cut a
raw, with y-value strictly more than 1. We want to find an integer solution
to the following problem

47k1 + 43k2 + 36k3 + 32k4 + 21k5 ≤ 120
3
8k1 + 3

8k2 + 1
3k3 + 1

4k4 + 1
4k5 > 1

(4.4)

Here a possible solution is given by x6 = (0, 0, 2, 0, 2), with total width 114
and dual value 7

6 . We will not show how to find a solution to a problem
like (4.4) (what is difficult here is to find an integral solution, for a non-
integral solution we could write it as a linear program), solving this kind
of problems is the subject of the following course, Discrete Optimization 2.
Our entering variable is x6, we must find the leaving variable, as always by
computing the column corresponding to the entering variable. We solve:

d =

2

2
3

1 3
1 1 4

 (0, 0, 2, 0, 2)T

giving d =
(
0, 0, 23 , 0,

1
2

)T
, it gives a ratio of 8 with leaving variable x5. the

new solution is then (25, 22, 163 , 2, 8) with basis given by:

B =

2

2
3 2

1 3
1 1 2

We start a new iteration, by computing the dual values corresponding

to each final width. yB = (1, 1, 1, 1, 1) gives y =
(

5
12 ,

13
36 ,

1
3 ,

5
18 ,

1
6

)
(this again

is a good approximation of the widths, this is a good indication that we are
right). Then x7 = (0, 1, 2, 0, 0) is a candidate for entering the basis, because
the total width for this cut is 115cm, and the dual value is 37

36 . We find the

103

corresponding column:
2

2
3 2

1 3
1 1 2

 d = (0, 1, 2, 0, 0)T

We find d =
(
0, 12 ,

11
18 ,−

1
6 ,

1
12

)T
. Then x3 is leaving, the ratio is 288

33 ≈ 8.7,
the new solution is

(
25, 14611 ,

192
11 ,

54
11 ,

72
11

)
with matrix:

B =

2

2 1
2 2

1 3
1 1 2

It is time for the next iteration, but we stop here. After a few more

iterations we would have reached the solution with basis:
2 1

2 1
2 1

1 3
1 1 4

and the basic solution is 1

17 (() 249, 374, 352, 34, 112) and has an objective
value of 1121

17 ≈ 65.95. Rounded down, this gives (14, 22, 20, 2, 6), and we
have still to find (2, 0, 2, 0, 3) finals, this can easily be done with two addi-
tional rows, giving a solution with only 66 rows. This solution is necessarily
optimal as the optimal fractional solution is strictly larger that 65.

What we learn from this problem is that thanks to the revised simplex
method, we do not even have to manipulate all the variables. We only need
to keep the value of the basic variables, and to be able to find an entering
variable or prove that none exists. In particular, when we face a problem
where the set of possibilities is very huge, we can only work with a subset
of these possibilities, and add those that are interesting when we need them
to improve the solution.

Finally, let us say a word about the problem of finding an entering vari-
able for the cutting-stock problem. This is a special case of the knapsack
problem: given a set of objects, each defined by a weight and a utility, we

104

want to maximise the sum of the utilities of the object that we put in our
bag, without exceding the weight that we can carry. Finding an integral
optimal solution is theoretically difficult, but some algorithms perform very
well. The most popular is a branch-and-bound technic: we explore the set
of all possibilities. This set can be represented as a tree, where a solution
A is an ancestor of a solution B, if B is a subset of A. Instead of exploring
all the tree, we try to cut branches that are not promising: if we are able to
find an upper bound of the utility of the best solution in a branch, and this
upper bound is less than a solution that we already have computed, we do
not explore the branch. All the efficiency of this technic lies in our capacity
to find good upper bounds for branches, and also a good initial solution.
These upper bounds are usually provided by duality, and this is a reason
why duality (or more generally, finding upper bounds) is very important in
practice.

105

Chapter 5

The network simplex

The network simplex is a specialization of the revised simplex method to
transportation problems in networks. Networks are modelized as graphs
with capacities. We will see that again we only need to consider basic
solutions, which in this case can be determined by a very special structure
in the graph representing the network. First, we will give basics in graph
theory, before introducing the problem that we want to solve. Then we will
see how the simplex method can be simplified to solve this problem. Finally
we will give a list of different problems that can be solved by the simplex
method, and deduce nice combinatorial results only from the theory of linear
programming.

5.1 Introduction to graph theory

A (simple, loop-free) directed graph is a couple G = (V,E), where V is a
finite set and E ⊆ V 2 \ {(v, v) | v ∈ V }. In our application, V can be
understand as a set of locations (for example cities), and E describes the
transportation possibilities between cities: an element of E could represent
a one-way highway or railway for example. Having only one-way highway
is no loss of generality, as a two-ways highway can be represented as two
one-way highways. The set of vertices of G will be denoted by V (G), its
edges by E(G). We denote n = |V (G)| and m = |E(G)|.

An element of V is called a vertex, and an element of E is called an
arc. The name vertex comes from the fact that vertices and edges of a 3-
dimensional polytope P define a graph, where V is the set of the vertices
of P , and if there is an edge between the vertices u and v in P , then one
of (u, v), (v, u) is in E. Note that in that case, we do not want to make a

106

Figure 5.1: An example of graph, and a directed path in red.

distinction between (u, v) and (v, u), graphs for which this is true are called
undirected graphs, and there arcs are called edges. We will use the term
edge when the orientation does not matter. Any directed graph induces an
undirected graph, simply by neglecting the orientation. But we will only
work with directed graphs.

Small graphs are usually represented in figures in the following way.
To each vertex is associated a distinct point in the plane. Then, for each
arc (u, v), we draw an arrow from the point representing u, to the point
representing v. Figure 5.1 illustrates a graph with 10 vertices and 15 arcs.

We will note uv for the arc (u, v). u is the source or origin of tail of uv.
v is the sink or destination or head of uv. A directed path is a sequence of
distinct arcs u1v1, . . . , ukvk, with vi = ui+1 for all i ∈ J1, k − 1K. If u1 = vk,
this is called a directed cycle. For a path P , we will refer to the set of its
edges as E(P), and its vertices (that is the vertices of its edges) as V (P).
u1 is the source or origin of the path, vk is the sink or destination of the
path. u1 and vk are its extremities.

For a vertex v, we denote by δ+(v) the set of arcs having tail v, this is the
set of leaving arcs of v. Similarly, δ−(v) is the set of entering arcs of v, the
arcs having v for head. The set of incident arcs of v is δ(v) = δ+(v)∪ δ−(v).
The degree of a vertex is the number of its incident arcs, it is denoted d(v).
Similarly, d+(v) := |δ+(v)| and d−(v) := |δ−(v)| are the out-degree and
in-degree of v.

Undirected paths and undirected cycles are similar, except that we neglect
the orientation (equivalently, we can use arcs in the wrong direction): an
undirected path is a sequence u1u2, . . . , uk−1uk, where uiui+1 or ui+1ui is
an arc of G for all i ∈ J1, k − 1K. Moreover, all the arcs must be distinct.
ui+1ui ∈ E(P) is then called a backward arc, while uiui+1 ∈ E(P) is a

107

forward arc. In this way, forward arcs are the arcs taken in the “good”
direction, while backward arcs are the arcs taken in the “wrong” direction.
Directed paths are special cases of undirected paths, that have only forward
arcs. A graph is acyclic if it has no cycle.

A graph is connected if for every pair (u, v) of vertices, there is an undi-
rected path having u and v as extremities. The relation “there is an undi-
rected path between u and v” is an equivalence relation, we only need to
show the transitivity (that s also true for directed paths, but the directed
paths relation is not symmetric):

Proposition 5.1.1. If there is a (directed) path from u to v and a (directed)
path from v to w, then there is one from u to w.

Proof. Let u1u2, . . . , uk−1uk be a path with u1 = u and uk = v. Let
v1v2, . . . , vl−1vl be a path with v1 = v and vl = w. We would like to say that
u1u2, ldots, uk−1uk, v1v2, . . . , vl−1vl is a path, using uk = v1, but this is not
true as an arc can appear twice in this sequence. Let i be the minimal index
such that ui is some vj . Then u1u2, . . . , ui−1ui, vjvj+1 . . . , vl−1vl is a path
between u and w. Indeed, all the arcs are distinct by the choice of i.

The equivalence classes are called the connected components of the graph.
A connected graph is then a graph with only one connected component. A
connected component is a maximal subset of vertices such that for any two of
them there is a path between them. Two vertices are in different connected
components iff there is no undirected path between them. (We could define
strongly connected components by replacing undirected paths by directed
paths in this characterization, but we will not use them). We will only
consider connected graphs in the following (non-connected graphs are not
interesting, in the sense that solving a problem on a non-connected graph is
usually the same as solving it in all its connected components).

A very useful result gives a necessary and sufficient condition for having
a directed path between two vertices, or even two sets of vertices. We state
and prove it:

Lemma 5.1.2. Let G = (V,E) be a directed graph, and X,Y ⊂ V two
disjoint subsets of vertices. There is a directed path with origin in X and
destination in Y iff there is no set C with X ⊆ C ⊆ V \ Y , such that there
is no arc with tail in C and head in V \ C.

Proof. Let C be a set with X ⊆ C ⊆ V \ Y , and P : u1u2, u2u3, . . . , uk−1uk
a directed path, with u1 ∈ X and uk ∈ Y . Let i be the minimal index such

108

that ui /∈ C. i > 1 as u1 ∈ X, and i < k as uk ∈ Y . Then the arc uiui+1

has its tail in C and its head in V \ C. This proves the necessity.
We prove the sufficiency. Let R be the set of vertices r for which there

is a path with origin in X and destination r. If R∩ Y = ∅, then R ⊆ V \ Y ,
and obviously X ⊆ R. We only have to prove that there is no arc with
tail in R and head outside R. Let e = uv be an arc with u ∈ R, then by
Proposition 5.1.1, y ∈ R.

Remark. The proof leads to the following algorithm to find a directed path
form u to v. Suppose that we found a set R of vertices reachable by a
directed path from u, and that for each vertex r in R, we have a directed
(u, r)-path. Then, consider the arcs with tail in R and head outside R. If
there is none, we are done, we get a (u, v)-path if v ∈ R, otherwise there is
no directed (u, v)-path. Else, there is an arc rs with r ∈ R, s /∈ R. Then
we get a new set of reachable vertices R ∪ {s}, and we build a (u, s)- path
by adding rs to the (u, s)-path already found. We can then iterate this
procedure until termination.

The efficiency of this algorithm depends on the data structure used to
find arcs leaving R. Usually, we keep a set of arcs to consider. When we
found a new reachable vertex s, we add to this set all the arc leaving s. To
find an arc leaving arc, we consider the arcs in our set and remove them,
until we get one leaving R, or there is no more arc. In this way, every arc
will be considered twice: when it is added to the set of arcs, and whenit is
removed from that set. This gives an algorithm with a complexity depending
on the number of edges in the graph.

The same algorithm applies to find paths in undirected graphs.

A subgraph of G = (V,E) is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆
E ∩ V ′2. A subgraph (V ′, E′) is spanning if V ′ = V and every vertex is
contained in at least on arc of E′. We will identify a subset E′ of arcs with
its induced subgraph (V ′, E′), where V ′ is the set of vertices contained in at
least one arc of E′. Our main tool for the network simplex will be maximal
acyclic subgraphs. This leads to the definition of a spanning tree, which is
a maximal acyclic subgraph of G. A tree is just an acyclic connected graph
(the name is quite obvious, as can be seen in Figure 5.2).

Theorem 5.1.3. T ⊂ E(G) is a spanning tree (maximal acyclic subgraph)
of G iff T is a minimal spanning connected subgraph of G.

Proof. Suppose that T is a spanning tree. We must prove that T is con-
nected, and removing any edge from T would disconnect it. Suppose it is
not connected, then there is u and v in V (G) such that there is no path

109

Figure 5.2: Examples of three different trees. The tree in the middle is a di-
rected tree: every arc is directed toward a unique node. The right-
most one is degenerate, it is only a path (but still a tree).

in T between u and v. But G is connected, hence there is a path P in G
with extremities u, v. Starting from u, consider the first edge e = st in P
such that there is a path in T between u and s but not between u and t.
We claim that T ∪ st has no cycle, which contradicts the maximality of T .
Indeed, if there is a cycle in T ∪ st, this cycle must contain st because T is
acyclic. Removing st from that cycle gives a path with extremities s and
t, then there is also a path between u and t, contradiction. Then, for any
edge uv in T , there is no path between u and v in T \ {uv}, otherwise such
a path plus uv would be a cycle in T , but T is acyclic, contradiction.

Suppose now that T is a connected subgraph of G. If T has a cycle C,
then we can remove any edge of the cycle without violating the connectiv-
ity: indeed if we remove uv, the other edges of a cycle define a path with
extremities u and v. Take any pair of vertices s and t, and choose a path in
T between them. If this path does not use uv we are done, else it gives two
paths, one between s and u, and the other between v and t (without loss of
generality). Then s, u, v and t are in the same component in T \ {uv}, so
there is a path between s and t. Hence, a minimal spanning connected sub-
graph is acyclic. Moreover, adding any edge would create a cycle, by adding
the path connecting the two extremities of the added edge. Therefore, T is
maximally acyclic, proving the theorem.

Remark. It is not hard to build a spanning tree of a connected graph. Use
the algorithm that find paths from u to any vertex. Then, the set of edges
used by the algorithm to increase the set of reachable vertices R is a spanning
tree: it is clear that it is connected, as it connects every vertex to u. And

110

it is acyclic, as during the algorithm, we only add edges between on vertex
already reached, and one vertex not reached, so we do not create cycle.

Actually, we can even find minimum spanning tree: if we give a cost to
each edge, we can find a spanning tree minimizing the sum of the cost of its
edges.

We will use the following fact.

Proposition 5.1.4. Every acyclic subgraph (in particular a tree) has at least
two vertices with degree 1.

Proof. Take a maximal path (as an edge set) of G. This exists, because G
has no cycle. Then the extremities of this path have degree 1.

Remark. If G has n vertices, a spanning tree of G has n − 1 edges. This
can be seen by induction: take a tree T , then there is a vertex v in the tree
with degree one, let e be the edge of T incident to v. Let G′ = G − v and
T ′ = T − e, T ′ is connected, acyclic and spanning, hence it is a spanning
tree og G′. By induction hypothesis, we are done. We will see an algebraic
proof of this fact latter.

5.2 Network flows: basis

5.2.1 What do we want to solve?

As we said in the introduction of this chapter, we want to solve transporta-
tion problems, and we modelize the infrastructure on which we transport by
a graph. Vertices represent locations and facilities, arcs represent the fact
that we can transport material between two given locations corresponding
to the two extremities of an arc. For example, vertices could be cities and
arcs highways.

Usually, we need more information to describe one arc. We need to
know its capacity, that is how much could we transport on that arc. We will
denote the capacities by a function u : E(G)→ R+, that maps each arc to a
non-negative real number. u stands for upper bounds. and we will also allow
ourselves to have lower bounds l : E(G) → R+, with l(e) ≤ u(e) for each
arc. We also need to give a cost for each arc, corresponding to how much
its cost us to transport one unit along that arc. We will assume that these
costs are linear: transporting two units costs twice the price of transporting
one unit. Then costs are defined by a function c : E(G)→ R+. This should
be enough to describe a transportation network in an abstract way.

111

Then we have to specify what we want to transport. We will only trans-
port one kind of good (or commodity). These goods are available in limited
quantity in some parts of the network, and must be transported to some
other parts of the network. We are not concerned by the destination of each
one, in the sense that we make no distinction between one unit coming from
one place and one unit coming from another place. Thus we only specify
where are the goods at the beginning, and where they must be at the end.
We give a function d : V (G) → R. For a vertex v, if d(v) is negative, it
means that d(v) units are available in v at the beginning (v is a source),
while if d(v) is positive, d(v) units must be transported to the vertex v (v
is a sink). d is refered as the demand function. Obviously, if d(v) = 0, it
means that there is no supply here, and we do not want to deliver anything
at that location. But this vertex can still be useful to route the demand.

Hence, a network flow problem is defined by a graph G = (V,E), two
capacity functions on the edges l : E → R+ and u : E → R+, a cost function
c : E → R+, and a demand function d : V → R. We will also assume
that the sum of the demands is zero:

∑
v∈V d(v) = 0. That is, every unit

available in a source must be routed to a sink.
A solution is to match units of supply and units of demand, and for each

pair, give a path in the graph between the source of the supply and the sink
of the demand. These paths must satisfy the capacity constraints: for each
edge e, e is used by between l(e) and u(e) paths.

The number of paths could be very large, so it is not efficient to take
decision variables corresponding to paths. What we do is that we only give
for each arc, how many units must be transported along that arc. For each
arc e ∈ E, we have a variable xe with the following constraint:

l(e) ≤ xe ≤ u(e) (5.1)

In order to do this, we must make sure that there is enough unit at the
tail of an arc, to be transported to its head. For that, we count the units
entering any vertex minus the unit leaving any vertex. This amount must
be equal to the demand for that vertex: for a vertex v, if i units enter and
j leaves, it will remain j − i units at the end less that at the beginning, so
we want i − j = d(v), In particular, if d(v) is equal to zero, all that enters
must leave. This is known as the conservation law, or Kirchhoff’s law :∑

e∈δ−(v)

xe −
∑
e∈δ+v

xe = d(v) (5.2)

With this strategy, for a given unit of demand, starting from a given
point, we do not know in advance where it will end, but we do not mind as

112

we supposed that the units are not distinguishable. We need the following
theorem:

Theorem 5.2.1 (Fulkerson). Let x be a vector on edges satisfying con-
straints (5.1) and (5.2), then there is a set P of directed paths and a function
λ : P → R+, such that

∑
P∈P,P3e λP = xe for all arc e.

This theorem just says that for a vector x satisfying bounds and con-
servation lows, we can find a trajectory (a directed path) for each unit of
demand from a supply vertex (d(v) < 0) to a demand vertex (d(v) > 0), re-
specting all the capacity constraints. The converse of the theorem is trivial.

Proof. (sketch) There is a directed path form a source to a sink that uses
only arcs with xe > 0. Indeed, take the subgraph Gx corresponding to arcs
with xe > 0. Let C be a subset of vertices containing all the sources but
no sink. Then, we add the conservation law constraints corresponding to all
the vertices in C. As every arc with both end in C appears once positively,
once negatively, it only remains the arcs with tail in C and head outside
C in the left-hand side, and the right-hand side is negative, so there must
be one arc leaving C with positive value. By Lemma 5.1.2, this proves the
existence of our directed path v1v2, . . . , vk−1vk.

We may assume that d(vi) = 0 for all i ∈ J2, k − 1K, d(v1) < 0 and
d(vk) > 0 (by removing vertices at the extremities of the path, until we get
this property). Let m = max{d(vk),−d(v1),maxe∈P xe}, take P in P with
λ(P) = m. Then decrease xe by m for each edge of P , increase d(v1) by m,
decrease d(vk) by m. The new vectors x′ and d′ satisfy the conservation law,
hence we can iterate this procedure until the demand vector is null. This
procedure terminates, because at each step, we either have one more arc e
with xe = 0, or one more vertex with d(v) = 0. It is easy to check that λ
satisfy the condition.

This proof is constructive and directly gives an algorithm. Therefore, we
only want to solve the following problem:

min cx subject to∑
e∈δ−(v) xe −

∑
e∈δ+(v) = d(v) (for all v ∈ V)

l ≤ x ≤ u
(5.3)

This is a linear program, we know how to solve it. But we will see that
we can say a lot more actually, in solve them more efficiently than by the
simplex method.

113

Remark. The vector b can be chosen to be null. We rewrite this program
into an equivalent program in which d = 0. As we do not distinguish the
supply, we may as well add a new vertex s, with an arc to each source v
with capacities l(sv) = u(sv) = −d(v). We then reduce the supply on v to
zero, and add this quantity to s: d(s) =

∑
source v d(v). It means that we

consider that all the supply come form only one vertex, and are distributed
to the original sources. We can do the same with the sinks: add a vertex t
with an arc from each original sink v, with capacities l(vt) = u(vt) = d(v).
Then define d(t) =

∑
sink v d(v), and now d(v) = 0 for every original vertex.

Every unit must now move from s to t. We can then completely cancel b
by adding an arc ts with capacities l(ts) = u(ts) = d(t) = −d(s). The new
linear program can be simply written:

min cx subject to∑
e∈δ−(v) xe −

∑
e∈δ+(v) = 0 (for all v ∈ V)

l ≤ x ≤ u
(5.4)

Now, we have a system in which supplies are being moved, and there is
no accumulation at any vertex. A feasible solution to this system is called
a (constrained) circulation.

5.2.2 The basis

The linear program (5.3) contains two kind of constraints: bounds, that will
be taken care of as in the boxed simplex method, and conservation laws.
Let’s study in detail the conservation law constraints. We can rewrite them
using the following matrix. The incidence matrix of a directed graph G is
a matrix with |V (G)| rows and |E(G)| columns, indexed respectively by ver-
tices and columns, with coefficients {0, 1,−1}. That isM ∈ {0, 1,−1}V (G)×E(G).
It is defined by:

mv,e =

1 if v is the head of e,
−1 if v is the tail of e,
0 otherwise.

(See Figure 5.3). Then the conservation laws may be rewritten as Mx = b.
Each column of M contains exactly one 1 and one −1. So the sum of

the rows of M is zero. As M has only n = |V (G)| rows, M has rank at
most n − 1. Choose a subset M ′ of columns of M , this corresponds to a
subset E′ of edges of G. If E′ contains a cycle, this subset of columns is
obviously not linearly independant. Conversely, consider a minimal subset

114

f

cd

e

b

g

a

−1 1 −1
1 −1 1

1 1 −1 1
−1 −1 −1

−1 −1 1
1 1 −1 1
−1 1 −1 1

Figure 5.3: A directed graph and its incidence matrix.

115

of linearly dependant columns E′. Then there is a function w : E′ → R∗,
such that for every vertex v ∈ V (G),

∑
E′∩δ+(v)w(e) =

∑
E′∩δ−(v)w(e). If

E′ is acyclic, there is a vertex v with degree one in E′, say uv ∈ E′. Then
the previous equality for v reads for v: we = 0, contradicting the minimality
of E′. Hence, E′ is not acyclic, it must be a cycle.

Therefore, independant sets of columns are in one-to-one correspondance
with acyclic subgraphs of G. Moreover the rank of M is n − 1: we have
already seen that is it at most n− 1. Now, if we take a linear combination
y ∈ RV of its lines, with yv = 0 for some vertex v, and yM = 0, then every
vertex u adjacent to a vertex u′ with yu′ = 0 satisfies yu = 0 (by checking
the column of uu′). By connectivity, y = 0. Hence, maximal independant
sets of column, which corresponds to spanning trees, have cardinality n− 1.

Lemma 5.2.2. Every spanning tree of a graph G = (V,E) contains exactly
|V | − 1 edges.

If we go back to the simplex method, it means that basis for the sim-
plex method correspond to spanning trees of the graph. Recall our linear
program 5.3:

min cx subject to∑
e∈δ−(v) xe −

∑
e∈δ+(v) = d(v) (for all v ∈ V)

l ≤ x ≤ u

Let T be a basis, that is a spanning tree of G. It should define a unique basic
solution, when the non-basic variables have a fixed value. We check it. Let
E′ := E(G)−E(T) be the indices of the non-basic variable, and x : E′ → R
a function, in practice xe is in {le, ue} but the argument works for any value
for non-basic variables. We want to show that there is a unique solution x∗

extending x to the conservation laws. We prove by induction on |T | that if
T is an acyclic subgraph of G, and x is defined outside T , then there is a
unique extension of x to E(G) checking the conservation laws. If T is not
empty, T has a vertex v of degree one by Proposition 5.1.4, and let e ∈ E(T)
be incident to v. Then, by applying the conservation law at vertex v, we
have that:

x∗e = ε(d(v) +
∑

f∈δ+(v)\T

xf −
∑

f∈δ−(v)\T

xf)

where ε = 1 if e enters v, and ε = −1 if e leaves v. Hence x∗e is uniquely
determined. Then, by induction on T − e, we are done. Moreover, this
proof is algorithmic. We can prove slightly more (though the corresponding
algorithm is less efficient, this proof will turn out to be useful latter). For

116

an arc e in T , T − e consists in two connected component T1 and T2 that
are both acyclic. We may assume that e leaves T1 and enters T2. Then by
summing the conservation laws on T1 (or equivalently on T2), we get:

x∗e =
∑

e′∈δ−(T1)

xe′ −
∑

e′∈δ+(T1)−e

xe′ −
∑

v∈V (T1)

d(v) (5.5)

Hence, x∗ is uniquely determined.
It is also interesting to describe the dual values associated to a given

spanning tree T . Dual values are associated with vertices (because there
is one ceonservation law per vertex), and can be interpreted as the cost of
delivering one unit of flow to this vertex. We denote pv the dual variable
for vertex v. As M as rank n − 1, we can determine the dual values up to
a constant: adding the same constant to all the dual variable will change
neither the feasibility nor the objective value of a dual solution. Hence,
we choose an arbitrary vertex r, and fix pr = 0. More precisely, the dual
program of (5.3) is given by:

max
∑

v∈V pvdv +
∑

e∈E uez
+
e + lez

−
e subject to

pv − pu + z+e + z−e = ce (for all e = uv ∈ E)
z− ≥ 0
z+ ≤ 0

(5.6)

Once the values of the pv’s are fixed, the values for z+ and z− are determined.
Indeed, if z+uv + z−uv = ce− pv + pu is positive, we maximize the objective by
taking z+uv = 0, and if it is negative, we maximize the objective by taking
z−uv = 0.

Here is how to interprete these values: z+ and z− are additional penalties
or bonus (respectively) added to arcs, in such a way that then the price to
pay to transport one unit from any vertex u to any vertex v is pv − pu,
whatever directed path we choose. Hence, the minimal cost (and actually
the cost of any feasible solution) with the additional penalties is

∑
v∈V pvdv.

To get an upper bound on the minimum cost flow, we just consider a flow
that get as much penalty, and as few bonus as possible: any flow would
be better. This is given by taking the upper capacity for positive penalty,
and lower capacity for negative penalty, and it gives immediately the dual
objective. Hence a primal solution must use an arc at its upper bound if
pv − pu > cuv, and at its lower bound if pv − pu < cuv.

The complementary slackness also implies that for an arc uv in the basic
tree T , the dual constraint associated to uv is tight, which means that
pv − pu = cuv, and this is true for dual values during the simplex method.

117

Thus, we can easily compute the dual values associated to a basic tree at
any moment, by summing the cost of the arcs in a path between r and any
vertex (taking the inverse of the cost for backward arcs).

5.3 Description of the network simplex

5.3.1 Iteration

We start from a basic feasible solution, and want to decide if either it is
optimal, or there is a better basic feasible solution. Assume that our base is
described by the tree T , the non-basic variables are partitioned into L]U =
E(G) − E(T). We are looking for a non-basic variable e ∈ E(G) − E(T)
that can improve the solution. What is the effect of increasing the value of
e on the solution?

As T is a maximal acyclic subgraph, T ∪{e} has a cycle C containing e as
a forward arc. Each edge e′ of T −C has still its value uniquely determined
by the values of non-basic variables minus e: indeed, T + e− e′ has still two
components, one of them containing C, the other one determining the value
of x∗e′ by Equation (5.5). Consequently, only the values of the arcs in C are
changed by changing the value of e.

Therefore we want to change the values along C without breaking the
conservation laws. Let α : C → R be the change made on the cycle: we are
going from solution x∗ to solution x∗ + α (αe = 0 if e /∈ C). Then, for a
vertex v in the cycle C, we must have that:∑

e′∈δ+(v)∩C

αe′ =
∑

e′∈δ−(v)∩C

αe′

Every vertex of C has degree 2 in C. It follows that there is a constant ε
such that

αe′ =

{
ε if e′ is forward in C,
−ε if e′ is backward in C.

The sign of ε depends on if e is at its upper bound (negative) or at its lower
bound (positive). We want to choose |ε| as large as possible while respecting
all the bounds: this gives one bound on |ε| for each arc in the cycle C. By
choosing the minimal bound, it will give a leaving variable f (possibly many
edges can be chosen, and we can even have f = e in some cases). The value
of x∗ is changed on C by ±ε (depending on the direction of the arc, forward
or backward). The spanning tree (the basis) goes from T to (T \ {e})∪{f}.

118

Let F be the forward arcs of C, and B the backward arcs. Changing the
value on the cycle by ε would lead to the following change in the objective:

ε(
∑
f∈F

cf −
∑
b∈B

cb)

This implies that we want to choose an entering arc e if and only if:

• either xe = le and ce <
∑

f∈F−e cf −
∑

b∈B cb,

• or xe = ue and ce >
∑

f∈F−e cf −
∑

b∈B cb.

We hence know how to find an entering variable and how to change a basic
solution to a new non-basic solution. As a consequence of the general sim-
plex method, if there is no candidate arc for entering the basis, the current
solution is optimal.

There is however a simpler way to find an entering arc. We know how to
determine the value of the dual variables for any basic tree, by summing the
cost of the arcs between r and any other vertex in a path in T . Moreover,
pv represents the cost of delivering one unit of flow to vertex v. If we have
an arc st, with xst < ust, it means that if we deliver a unit to s (at a cost
of pu) and then move that unit to t through st, it will cost us ps + cst, and
this value must be more than pt or pt is over-evaluated (it means that the
dual solution is not feasible, and st is a potential entering arc). Similarly,
if xst > lst, ps + cst should be less that pt, otherwise we get an entering
arc. Thus we only have to find the dual values, and check whether there is
an arc outside T violating these rules. If not, the complementary slackness
conditions are satisfied and the solution is optimal.

Example: Consider the example of Figure 5.4.
The first problem is to find a basic feasible solution. We will see how

to find one latter, here we start from the solution of Figure 5.5. The basic
spanning tree is any spanning tree containing all the arcs that are not at one
of their bounds (if these arcs induce a cycle, the solution is not basic). Once
we found a basic tree we compute the associated potential: we choose one
vertex r and define its potential to be zero. Then the potential of any other
vertex v is the sum of the cost of the arcs of the unique path between r and
v, where backward arcs are counted negatively, forward arcs positively. For
instance, the potential of 6 here is 8− 5 + 4 = 7, corresponding to the path
14,24,26.

The complementary slackness conditions say that if for each arc at its
lower bound, the cost of it is greater than the difference of potential, and

119

4
0

78

6
4

2
−5

1−5

3−4
5

2

1/3,$2

1/4,$8

1/3,$5

1/4,$4

1/5,$5

0/3,$2

1/3,$4

0/2,$3

0/5,$6

2/4,$3

1/4,$4

1/3,$5

Figure 5.4: An instance of network flow. Each arc has three values: the lower
and upper capacities and the cost of transporting one unit along
that arc. The value outside each vertex is its demand (the value
inside is just an identifier).

120

4 7

62

1

3 5

1,$2

2,$8

2,$5

3,$4

3,$5

3,$2

3,$4

2,$3

4,$6

2,$3

1,$4

3,$5

$14

$7$3

$0

$5 $9

$8

Figure 5.5: A basic solution, the red tree is the basic spanning tree. Blue arcs
are at their lower bound, black arcs at their upper bound. The value
of each node (the potential) corresponds to a dual value, obtained
by fixing one node to be $0, and obtaining the other values thanks
to the basic spanning tree. To improve the solution, we need either
a black arc with cost greater than the difference of potential, or a
blue edge with difference of potential smaller than the difference
of potential. Here, the arc 12 has cost $2 but the difference of
potential is $3: we should use more of its capacity.

121

4 7

62

1

3 5

2,$2

1,$8

2,$5

3,$4

4,$5

3,$2

3,$4

2,$3

4,$6

2,$3

1,$4

3,$5

$13

$6$2

$0

$5 $8

$7

Figure 5.6: An improved solution, after increasing the cycle 12,24,14. We must
compute again the potentials. This is done by considering the arcs
of the tree.

for each arc at its upper bound, the cost of it is smaller than the difference
of potential, then the solution is optimal. Hence, it gives an entering arc.
In Figure 5.5 the possible entering arcs are 12, 46, and 67.

Consider the arc 12. It is more avantageous to increase the flow on 12,24,
and decrease it on 14. Indeed, the former solution costs $7, the latter $8.
This is exactly what says the condition for being an entering arc: given a
spanning tree and an arc, they induces exactly one cycle (here,12,24,14).
If we increase the flow on every forward arc of this cycle, and decrease it
on every backward arc by the same value, we can easily check that the
conservation laws are still satisfied. Hence, depending on the difference of
the cost, we want to change the flow in one direction. In our example, we
want to increase the flow by 1 in the forward direction (12,24), and decrease
it by 1 in the backward direction (14). We cannot do more, because we are
limited by the lower bound on the arc 14; 14 is the leaving arc. We thus
obtain a new solution, and a new basic tree by removing 14 and adding 12,
as depicted in Figure 5.6.

122

4 7

62

1

3 5

2,$2

1,$8

2,$5

4,$4

3,$5

3,$2

3,$4

1,$3

4,$6

2,$3

1,$4

3,$5

$13

$10$2

$0

$5 $5

$7

Figure 5.7: An improved solution, after increasing the cycle 26,46,24.

Possible entering arcs are 46, 67 and 35. Consider arc 46. This arc is at
its upper bound: we are transporting as much as possible. However, the cost
is greater than the difference of potential: we are paying more than what
the tree would give us. Consider the cycle on the tree plus 46: 24,46,26.
The cost of backward arcs is $4, the cost of forward arc is $8, hence we want
to decrease as much as possible the forward arcs, and increase the flow on
the backward arcs. The arc 26 can only accpet one more unit of flow, hence
this is the leaving arc, we change the flow by one unit along this cycle. We
get the solution of Figure 5.7, after finding the new potential values.

From the potentials, we get that there is only one candidate for entering
the basis, the arc 35. The induced cycle is 35,57,74,24,12,13 and we want to
decrease the flow on backward arc. We are limited by arcs 13, 12 and 47, we
can choose any of them as leaving arc. We choose 13, it gives the solution
of Figure 5.7.

123

4 7

62

1

3 5

3,$2

1,$8−$1

1,$5−$4

4,$4+$4

4,$5

3,$2+$4

2,$4

1,$3

5,$6

2,$3−$5

1,$4−$1

2,$5

$13

$10$2

$0

$1 $5

$7

Figure 5.8: An optimal solution. To see the optimality, consider adding the
green values as penalties on the arcs. With these penalties, the
cost of transporting one unit from u to v, for any directed path, is
exactly pv−pu, hence any possible flow has value

∑
v pvdv = $140.

But our solution maximizes the penalties paid, because each arc
with positive value is at its upper bound, and each arc with negative
value is taken at its lower bound. As we maximize the penalty, our
solution minimizes the cost over the problem without penalty, it is
a minimum cost flow.

124

5.3.2 Initialization

We still have to settle the question of the initialization of the network simplex
method. A first attempt would be to adapt the phase I of the simplex
method: we would have to add an artificial variable for every vertex, to
measure the excess of flow in each vertex. Then we would have to minimize
the sum of those values to get a feasible solution (or prove that none exists).
Unfortunately, the problem that we would got would not be a network flow
problem, hence we would have to use the revised simplex method to solve
it. Then, using the network simplex method would have no interest.

To get a better solution, we must transform this idea into a network flow
problem. We want to start from a solution that is easy to find, for instance
x = l. The conservation laws are usually violated by doing so. Let excx(v)
be the excess at vertex v in this solution, defined by:

excx(v) =
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe − d(v)

This is the amount of flow entering the vertex minus the flow leaving the
vertex. We have:∑

v∈V
excx(v) =

∑
v∈V

(
∑
uv∈E

xuv −
∑
vu∈E

xvu)−
∑
v∈V

d(v)

=
∑
uv∈E

(xuv − xuv)−
∑
v∈V

d(v)

= 0

We add a new vertex, call it s. For each vertex v with positive excess we add
an arc vs with l(sv) = 0, u(vs) = excx(v). For each vertex v with negative
excess we add an arc sv with l(vs) = 0, u(sv) = − excx(v). Then x extends
obviously to the new graph and checks the conservation laws.

We then have two possibilities. Solve the new problem with a cost 1 one
the arc incident to s and 0 elsewhere. Then a flow of value 0 is a feasible
flow for the original problem. We can then use the algorithm below to find
the minimum cost flow. This is an analog of the two-phase method.

Another way is to solve everything in only one call to the network sim-
plex. For this, we add a prohibitive cost on the new arcs. Such a cost could
be the sum of the cost of the original graph: it is easy to see (by using flow
decomposition) that a solution that does not use the new arcs is strictly
better than one using even only one unit of capacity in the new arcs (to see
this, we need to remark that we the capacities are integral, there is always an

125

integral optimum solution, we will come back to this latter). This method
is similar to the big-M method for regular linear program.

In either way, what happens if we do not find a feasible solution that
uses only the original arcs? Then, for an optimal solution x to the auxiliary
problem, there are basic arcs in both δ+(s) and δ−(s). Consider the com-
ponent C ′ of T − δ+(s)containing s, and let C = C ′ − s. We can define a
dual potential y with ys = 0, then yv = −1 if v ∈ C, and yv = 1 otherwise.
Because the solution is optimal, there can be no arc e in G from C to V −C
with xe 6= ue, or from V − C to C with xe 6= le. Hence we have:∑

v∈U
d(v) +

∑
e∈δ+(U)

ue −
∑

e∈δ−(U)

le = xus > 0

It is clear that the subset U is an obstacle to the feasibility of the network
flow problem: there is not enough capacity to route outside all the flow
entering U . We have just proved the following theorem:

Theorem 5.3.1. (Hoffman’s condition)
(G, l, u, c) has a solution if and only if there is no set U ⊂ V with:∑

v∈U
d(v) +

∑
e∈δ+(U)

ue −
∑

e∈δ−(U)

le > 0

5.3.3 Cycling and termination

As in the simplex method, the network simplex method may cycle. Also
as in the simplex method, there are rules to avoid cycling, for example
Cunningham’s rule. However, those rules usually slow down the execution
of the network simplex, hence they are not used in practice.

A difference with the simplex method is that we know pivoting rules
for the simplex method that leads to polynomial algorithm (even strongly
polynomial algorithm: it means that the complexity depends only on the
size of the graph, and not on the numerical values like the capacities and
the costs). But again, these rules are only interesting theoretically, as more
simple rules does better in practice.

5.3.4 Implementation of the network simplex method

The practical complexity of the network simplex relies on the three following
points:

• Finding the entering arc.

126

• Finding the leaving arc.

• Updating the basic tree and the potential.

The two last points are usually solved by adopting a good data structure
for the basic tree. The best known structure is the dynamic trees (Sleator,
Tarjan), that allows to perform them in O(log n) elementary operation in
the worst-case. One of the trick here is to remark that the potentials need
not to be completely recomputed. It is quite easy to see that less than half
of the potentials are changed during an iteration, as we need to change only
one of the two parts created when removing the leaving edge from the basic
tree. However, this is not enough to get a logarithmic complexity. To this
end, one need more involved ideas, relying on computation of the nearest
common ancestor of the vertices in the basic tree, to find the difference of
potential (what we really need). With these remarks, every iteration can be
performed really fast.

The first point, finding the entering arc, is the most important to get a
efficient algorithm. We do not want to try every possible arc, as the number
of arcs can be quite large (O(n2) in the worst case). We need to apply partial
pricing technics, that is an evaluation of only a small part of the non-basic
variables to find the entering variable (even in the more general context of
the simplex method). This is by opposition to total pricing where every non-
basic variable is considered when choosing the entering variable. Obviously,
we still need to check every variable during the last iteration to check that
our solution is optimal, but once we found an entering variable, we can
just improve our basic solution immediately. We would gain a lot on the
computation of entering variable in this way. However, the quality of the
entering variable would be very low (increasing the number of iteration).
Hence in partial pricing, we want to find several candidates, but without
considering every non-basic variable, and choose among these candidates the
most promising. This is a compromise between the time spent on looking for
entering variables, and the quality of the entering variable. A good network
simplex algorithm is one that solve this compromise in the best way.

5.4 Applications and consequences

One very important important consequence of our work on the network
simplex is this theorem:

Theorem 5.4.1 (Integrality of the flow polyhedron). For a graph G with
capacities l, u and demands d integral, and for any cost function c (not

127

necessarily integral), if there is a minimum cost flow, there is an integral
minimum cost flow.

Proof. We can prove it by analyzing an iteration of the network method
and see that basic solutions stay integral. We can also prove it directly: any
basic solution is integral. Indeed, a basic solution is described by a partition
(T, L, U) of its arc, where T is a spanning tree, L, U are the arcs at their
lower and upper bounds respectively. The flow on the arcs of L and U is
clearly integral. But as we have already seen, the flow on an arc e of T is
given by (5.5), a sum of integral values, and hence is also integral.

Remark. The name of the theorem can be justified in the following way.
The theorem says that any extreme point of the polyhedron {x | Mx =
d, l ≤ x ≤ u} is integral. This is an extremely strong property, as it means
that finding integral optimum solutions is computationaly just the same
as finding fractional solutions. However, this is false in many problems,
as finding integral solutions to a linear program is usually a very difficult
problem.

Network simplex has many applications. The most natural ones are
obviously transportation problem. First, we give some famous special cases
of the minimum cost flow problem.

5.4.1 Maximum flow

Suppose that we have a graph G, with a (upper) capacity function u, and
we are given two vertices s and t. We want to transport as many units as
possible from s to t. This defines the maximum flow problem, which can be
written as a linear program, using the incidence matrix M of G:

max d(t) subject to
Mx = d
0 ≤ x ≤ u
d(v) = 0 (for all v ∈ V − {s, t})

(5.7)

There is a simple way to reduce this problem to a minimum cost flow
problem. Add an additional arc ts with cost −1, l(ts) = 0 and u(ts) = +∞.
Then impose d(v) = 0 on every vertex, and c(e) = 0 for every arc except
ts. Then it is quite easy to see that a solution x to the minimum cost
flow problem defined by these values implies a maximum flow in the original
graph with the same value. Indeed, remove the arc ts, and you get a feasible
solution to the maximum flow problem with value x(ts). Conversely, a

128

solution to the maximum flow problem implies a solution to the minimum
cost flow problem, thus the two problems are equivalent.

Then by applying Hoffman’s condition, we get the Max Flow – Min Cut
theorem (MFMC):

Theorem 5.4.2 (Ford, Fulkerson 1956). The maximum flow between s and
t is equal to the minimum capacity of a cut between s and t.

Here, a cut between s and t is a set of vertices S containing s but not t.
The capacity of the cut S is

∑
e∈δ+(S) u(e). It is obvious, by summing the

conservation law on S, that the capacity of a cut is an upper bound on the
value of the flow. Moreover, this is a generalization of the Lemma 5.1.2 on
the existence of a directed path, as a directed path can be seen as a flow
between two vertices (with value the minimum upper capacity of the arcs in
the path). It also implies that finding a minimum cut between two vertices
can be solved by the network simplex.

There are many algorithms to solve the maximum flow problem, but all
can be explained in terms of linear programming. The main idea is that at
the end we want:

(i) a primal feasible solution x,

(ii) a dual feasible solution y,

(iii) complementary slackness for x and y.

It is quite easy to get two of these conditions simultaneously. Any algo-
rithm for solving the maximum flow problem (and actually many different
combinatorial problems) start with two conditions satisfied, and modify the
values of x and y while keeping these two conditions, until the third one is
also satisfied. The simplex method for instance keeps condition (i) and (iii)
satisfied, while the dual simplex method keeps condition (ii) and (iii). It
is also possible to design an algorithm keeping (i) and (ii), this would be
called a primal-dual algorithm.

5.4.2 The assignment problem

An artist has 5 paintings to sell. It happens that there are 5 potential
costumers, each of them wanting to buy exactly one painting. But two
different costumers does not give the same value to the same painting. More
precisely, what they offer to pay is given by the following matrix, each row

129

is a painting, each column is a costumer:
1200 800 1000 0 0
1100 900 1200 1400 0
1000 0 1100 1300 900

0 800 0 1200 700
0 700 0 0 500

How should the artist sell his paintings? This is an instance of the assign-
ment problem. More generally, we are given a matrix, and we want to pick
some coefficients of the matrix, but exactly one per row and one per column.
The goal is to maximize the sum of the chosen coefficients.

This is not a linear problem, as we only want an integral solution (by no
way we could cut a painting in pieces whose values sum to the original value
of the painting). Anyway, we first look for a fractional solution (because we
are in the network simplex chapter, we can hope that this is just a special
case of the minimum cost flow, and hence there would be an integral optimal
solution). We say that the following problem is a fractional relaxation of
the assignment problem. Each coefficient of the matrix has a non-negative
variable. The idea is that we choose that coefficient if the corresponding
variable has value 1, and we do not choose it if it has value 0.

max
∑

i,jmi,jxi,j subject to∑
j xi,j ≤ 1 (for all row i)∑
i xi,j ≤ 1 (for all column j)

x ≥ 0

(5.8)

Note that the constraints imply that every variable has value at most
one, and if the coefficient of the matrix are non-negative, an integral solu-
tion induces a solution to the assignment problem. The dual of this linear
program is:

min
∑

i yi +
∑

j zj subject to

yi + zj ≥ mi,j (for all i, j)
y, z ≥ 0

(5.9)

This can be seen has placing a value on each painting and each costumer,
such that the price associated by a costumer to a painting is less than the
sum of the value placed on this costumer and this painting. From this, it
is clear that a solution to the dual problem gives an upper bound for the
assignment problem: an assignment will never give us more than the value
placed on paintings and costumers.

130

The assignment problem actually turns out to be a special case of the
minimum cost flow problem. To see this, we build a graph whose vertices
are the costumers and the paintings. Add an arc e from a painting i to a
costumer j, c(e) = −mi,j (do not add an arc of mi,j = 0). Moreover, add
two additional vertices s and t. There is an arc with cost 0 from s to every
painting, and from every costumer to t. All the arcs have capacities l = 0,
u = 1. Finally, we have −d(s) = d(t) = k where k is the number of rows (or
columns). See Figure 5.9.

0

0

0

0

00

0

0

0

0

5

7
7

12

8

9

13

11

10

14

12
9

11

10

8

12

ts

Figure 5.9: Reduction of the assignment problem to a minimum cost flow prob-
lem.

If we want to satify the demand, we must take every arc incident to s
and t at their upper capacities. Thus, an integral extreme point would gives
us exactly one arc leaving each painting, and one arc entering each painting.
The are not incident to s and t gives us an assignment.

The assignment problem can be solved more directly by using a dual
algorithm (we keep condition (ii) and (iii)), the so-called Hungarian method.
We need a feasible dual solution, for a start we can assign a value of 0
to each costumer, and the maximal value of its row to each painting. In
our example, this gives y = (12, 14, 13, 12, 7), z = (0, 0, 0, 0, 0). We also

131

want a vector x, possibly violating the primal constraint, but validation the
slackness condition. Here, the slackness condition says that

• if some value xi,j is not zero, then yi + zj = mi,j ,

• if yi 6= 0, then
∑

j xi,j = 1,

• if zj 6= 0, then
∑

i xi,j = 1.

As an initial condition, we can choose one maximal element in each row and
set its x-value to 1, all other primal variable having value zero. Hence, the
complementary slackness is satisfied. We will even keep

∑
j xi,j = 1, hence

the only violated constraints are
∑

i xi,j = 1 for some columns j.
The computation goes as follow. If x is primal-feasible, then x and y are

optimal by complementary slackness. Else, as each row has an x-value of 1,
some column j has an x-value strictly greater than 1. The idea is then to
increase zj , and decrease all the yi such that xi,j = 1 by the same amount
(thus keeping complementary slackness). We must be careful, as we want
ot keep dual feasibility and complementary slackness. More exactly, we will
have two kinds of improvement:

• improvement of the primal values, without changing the dual values.
For some row i, we change the costumer to which is assigned the paint-
ing i. Actually, we may have to change simultaneously the assignment
for several paintings. But every costumer who had at least one paint-
ing must still have one painting, and if a painting i is assigned to a
costumer j, we must have yi = zj = mi,j .

• improvement of the dual values, we decrease the values on a subset
of k paintings, and increase them on a subset of k′ costumers, with
k′ < k. In that case, we must enforce these rules:

(a) If we decrease yi and there is j with mi,j = yi + zj , we must
increase zj by the same quantity to keep the dual feasibility.

(b) If xi,j = 1 and we increase zj , we must decrease yi by the same
quantity to keep the complementary slackness.

The rules on the improvement of the dual values suggest the following algo-
rithm. Starting with a column j with

∑
i xi,j > 1, we compute a smallest

possible subset of rows and columns checking those rules (a) and (b). We
start with column j only, and as long as one of the rules is violated, we add
the violating row or column. At the end, we reach a subset I of rows, and
a subset J of column. We then distinguish between two cases:

132

• there is a column j′ ∈ J with
∑

i xi,j = 0. In that case we can improve
the primal vector x, by removing one painting from j and adding one
to j′. To find the new primal vector, we use the following procedure.
Because j′ is in J , there must be a i with mi,j′ = yi + zj′ , but still the
painting i is not allocated to j′, but some other costumer j′′, xi,j′′ = 1.
We define x′i,j′ = 1 and x′i,j′′ = 0. Now, if j = j′′ (or if

∑
i xi,j′′ > 1)

we are done. Otherwise the fact that j′′ is in J implies that there is
some painting i′ ∈ I. Then we iterate this procedure from i′, j′′. At
the end, we get a new primal vector x′.

• every column of J is attributed one painting at least. then |J | < |I|
(because j has at least two paintings), we decrease yj , j ∈ J , and
xi, i ∈ I, as long as we do not violate the dual feasibility on some
coefficient of the matrix. In that case, the value of the dual solution
is improved.

Example: We apply the Hungarian method to our problem. Recall the
matrix (dividing every value by 100 for the convenience):

M =

12 8 10 0 0
11 9 12 14 0
10 0 11 13 9
0 8 0 12 7
0 7 0 0 5

We start with the dual values y = (12, 14, 13, 12, 7) (the maximum of each
line), and z = (0, 0, 0, 0, 0). For each line we must choose one coefficient
mi,j = yi + zj . We mark those coefficients with mi,j = xi + yj by a circle,
and a grey circle if xi,j = 1. Hence the first solution may be written as:

0 0 0 0 0

12 12 8 10 0 0

14 11 9 12 14 0

13 10 0 11 13 9

12 0 8 0 12 7

7 0 7 0 0 5

Column 4 has too many rows assigned to it. Hence we want to increase
the dual value on that column, and decrease it on rows 2, 3 and 4. We

133

can change these values by at most two units, at which point some other
coefficient will become tight (mi,j = yi + zj).

0 0 0 2 0

12 12 8 10 0 0

12 11 9 12 14 0

11 10 0 11 13 9

10 0 8 0 12 7

7 0 7 0 0 5

We did not change the primal vector, hence column 4 has still too many
rows assigned to it. But this time, if we want to increase z4 by α, we must
decrease y2, y3, y4 by α, and hence increase z3 by α. But column 3 has no
painting assigned to it, this means we can move some painting, for example
painting 3, to get a new primal vector:

0 0 0 2 0

12 12 8 10 0 0

12 11 9 12 14 0

11 10 0 11 13 9

10 0 8 0 12 7

7 0 7 0 0 5

Then, if we want to decrease the dual value of column 4, we must increase
the dual values rows 2 and 4. Then, because m2,3 is tight we need to increase
column 3 also. But then, to keep complementary slackness on x3,3, we must
decrease y3. We get I = {2, 3, 4} and J = {3, 4}, and hence, and we can

134

move the dual values by one unit, this gives:

0 0 1 3 0

12 12 8 10 0 0

11 11 9 12 14 0

10 10 0 11 13 9

9 0 8 0 12 7

7 0 7 0 0 5

We still have too much on column 4, we want to increase it again. By
a similar reasoning, we get that we must increase on J = {1, 3, 4}, and
decrease on {1, 2, 3, 4}. We are limited by m4,2 and m3,5, so we get:

1 0 2 4 0

11 12 8 10 0 0

10 11 9 12 14 0

9 10 0 11 13 9

8 0 8 0 12 7

7 0 7 0 0 5

Then, increasing z4 would force us to decrease y2 (and y4), which in turns
force us to increase z3 (and z1 and z2 as well), which force us to decrease
y3, which force us to increase z5. But column 5 has no assignment yet,
this means we can improve the primal solution, by moving the assignment
following our reasoning. Painting 3 goes from 3 to 5, painting 2 goes from
4 to 3, and we are done. The primal vector is now feasible, our solution is
optimal:

1 0 2 4 0

11 12 8 10 0 0

10 11 9 12 14 0

9 10 0 11 13 9

8 0 8 0 12 7

7 0 7 0 0 5

135

It is quite easy top prove with the dual values that this solution is indeed
optimal. The value of any coefficient is at most the same of the correspond-
ing dual values. As we must pick exactly one coefficient in each row, and
one in each column, we cannot gain more than the sum of the dual values.
But this is exactly what we get with this solution.

This example illustrates how linear programming can be used to solve
integral problems efficiently in some cases. Even if linear programming deals
with fractional solutions, some problems like network flows have a special
structure that makes easy to find integral solution. Moreover, the methods
of linear programming can be applied to some problems outside the initial
scope of linear programming.

We conclude this chapter by stating an immediate consequence of the
Hungarian method. A bipartite graph is a graph whose vertices can be
partitioned in two parts, such that every edge has one extremity in each
part. A matching in a graph is a set of edges such that no two of them
have a common extremity (equivalently, each vertex is incident to at most
one edge of the matching). Finding an assignment of the paintings to the
costumers is just the same as finding a matching in the graph whose vertices
are the costumers (A) and the paintings (B), and there is an edge between
a painting and a costumer if this costumer wants to buy this painting.

Theorem 5.4.3 (Kőnig, Egerváry 1931). Let G be a bipartite graph and
w : E(G) → R+. The maximum weight

∑
e∈M w(e) of a matching M in

G is equal to the minimum cover y ∈ RV+ of G, that is the minimum of∑
v∈V (G) yv subject to yu + yv ≥ w(uv) for all edge uv ∈ E(G). Moreover,

if w is integral, y can be chosen integral.

Note that this is false for non-bipartite graph, for example take the
triangle with weight 1 on every edge, the maximum matching has value 1,
but a minimum cover has value 3

2 .

136

