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Directed Steiner Tree problem (DST)

A network design problem:
Input: @ G a directed graph, with costs
c: E(G) =N,
@ r a vertex of G (the root),
e aset T C V(G) of terminals,

Output: A subgraph G’ of G such that there is one path
fromstotin G' forallte T

Goal: min Y .cg(c) cle)

T McGill



Directed Rooted Connectivity problem

A network design problem:
Input: @ G a directed graph, with costs
c: E(G) =N,
@ r a vertex of G (the root),
e aset T C V(G) of terminals,
@ requirements k: T — N.
Output: A subgraph G’ of G such that there are k;
disjoint paths from sto tin G/, forall t € T

Goal: min Y .cg(e) cle)

T McGill



Outline

@ k-DRC with O(1) terminals.

@ Hardness of k-DRC (directed graph).

© Hardness of k-URC (undirected graphs).
Q Integrality gap of k-DRC.
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Directed Steiner Forest with O(1) terminals

Theorem (Feldman, Ruhl (2006))
The Directed Steiner Forest with O(1) terminals is
polynomial-time solvable.

Proof: Guess nodes of degree > 2 and how they are linked,
compute shortest paths.

Generalization to Directed Rooted Connectivity ?

T McGill



Bounded connectivity requirement

Proposition

If G is an acyclic digraph and >",c1 k. = O(1), then there is a
polynomial-time algorithm.

Proof: Pebbling game (Fortune, Hopcroft, Wyllie).
Open problem: (polynomial or NP-hard?)

>eT ke = O(1) but G is not acyclic.
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Non-integrality for requirement 3

Let a =28 >2, ky =1 and k;, = 2.
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Non-integrality for requirement 3

Let a =28 >2, ky =1 and k;, = 2.
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Non-integrality for requirement 3

Let a =28 >2, ky =1 and k;, = 2.
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Non-integrality for requirement 3

Let a =28 >2, ky =1 and k;, = 2.
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Let a =28 >2, ky =1 and k;, = 2.

1

«

1

@ Integral solution: 65 + 6

Integrality gap: &
e Fractional solution: 53 +7 gralty gap:

McGill

11



12

Toward an APX-hardness proof.

Theorem (Berman, Karpinski, Scott)

For every 0 < € < 1, it is NP-hard to approximate
MAX-3-SAT where each literal appears exactly twice, within

o . 1016—¢
an approximation ratio smaller than =J53==.

T McGill
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Reduction for two terminals
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Analysis (two terminals problem)

Using OPT, > %", we get:

13n+ (q— APP,)  OPT,— APP,
P = 1Bn+(q—OPT,)  ~  13n+q—OPT,
7 OPT, — APP, 7 )
>14 —1+ 2 (1-
=t 9 opT, +75(1-77)

and finally

7
p21+@—5, for any £ > 0.
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Analysis (two terminals problem)

Using OPT, > %", we get:

13n+ (q— APP,)  OPT,— APP,
P =13n+(q—OPT,) ' 13n+q— OPT,
7 OPT, — APP, 7 )
>14 — —1+—(1-
=t 9 opT, +75(1-77)

p 5 or an .

Easy k-approximation when only k terminals.

¥ McGill
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Outline

@ k-DRC with O(1) terminals.

@ Hardness of k-DRC (directed graph).

© Hardness of k-URC (undirected graphs).
Q Integrality gap of k-DRC.

T McGill



17

General directed rooted connectivity

Theorem

The directed and undirected rooted k-connectivity problem are

at least as hard to approximate as the label cover problem
(2Iog1*5 n).

Proof: Approximation-preserving reduction from Directed
Steiner Forest (Dodis, Khanna)
(pairs (s;, t;) to connect)

Undirected version by a reduction of Lando and Nutov.

T McGill
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red arcs cost = 0
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Stronger hardness result

Theorem

The directed rooted k-connectivity problem cannot be
approximated to within O(k®), for some constant € > 0,
assuming that NP is not contained in DTIME(nroies(n).

Proof: Reduction from a label cover instance obtained from
MAX-3-SAT(5) with / repetition (Chakraborty, Chuzhoy,
Khanna).

T McGill



Label Cover problem

e G = (U, W,E) bipartite graph,

o [ set of labels,

@ constraints [, C L x L for all e € E,

@ assign labels to every vertex to cover every edge

(Vuw € E, N, N(f(u) x f(w)) #0),
@ minimize the number of labels assigned > ,couw |f(v)].
Instances obtained from MAX-3-SAT(5) with / repetition:
U] = |W|=0(N°D),  |t]=10, d=15

T McGill
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Reduction from label cover

up W1
us Wo
us w3
Uy Wy
T McGill
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Reduction from label cover
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Reduction from label cover
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cost(—) = 1, cost(others) =0
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Reduction from label cover

cost(—) = 1, cost(others) =0

W .eta:
%‘4. t171 up W1

178
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[ J t1,3
%T. ta4 Uy Wy
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B McGill

A A A A

29



30

Reduction from label cover

cost(—) = 1, cost(others) =0
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Reduction from label cover

cost(—) = 1, cost(others) =0

u Wy
Uy Wy
us3 w3
Uy Wy
T McGill



Reduction from label cover

cost(—) = 1, cost(others) =0
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Reduction from label cover

cost(—) = 1, cost(others) =0
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Reduction from label cover

cost(—) = 1, cost(others) =0

u Wy
Uy Wy
us3 w3
Uy Wy
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Getting the hardness ratio

Theorem (Parallel repetition theorem, Raz)

There exists a constant v > 0 (independent of |) such that the
minimum total label cover problem obtained from instances of
MAX-3SAT(5) with | repetitions cannot be approximated
within a factor of 27/

In our reduction, k = d = 15, hence the k°-hardness!

T McGill
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Outline

@ k-DRC with O(1) terminals.

@ Hardness of k-DRC (directed graph).

© Hardness of k-URC (undirected graphs).
Q Integrality gap of k-DRC.
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Adapting the reduction to undirected graphs
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Adapting the reduction to undirected graphs

up W1
us Wo
us 1%}
Ug Wy
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Adapting the reduction to undirected graphs

up W1
us Wo
us 1%}
Ug Wy
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Forbidding illegal paths

o=
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Forbidding illegal paths
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Forbidding illegal paths
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Forbidding illegal paths
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@ There are illegal paths,

¥ McGill
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Very informal description

@ There are illegal paths,
@ add padding edges to remove illegal paths,
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Very informal description

@ There are illegal paths,
@ add padding edges to remove illegal paths,
@ this creates new illegal paths,
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Very informal description

@ There are illegal paths,

@ add padding edges to remove illegal paths,

@ this creates new illegal paths,

@ add more padding edges to remove the new illegal paths,

T McGill
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Very informal description

There are illegal paths,

add padding edges to remove illegal paths,

this creates new illegal paths,

add more padding edges to remove the new illegal paths,

the second padding set does not induce new illegal paths.

T McGill
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Very informal description

There are illegal paths,

add padding edges to remove illegal paths,

this creates new illegal paths,

add more padding edges to remove the new illegal paths,

the second padding set does not induce new illegal paths.

We are done!

T McGill
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Undirected hardness

Theorem

The undirected rooted k-connectivity problem cannot be
approximated to within O(k®), for some constant € > 0,
assuming that NP is not contained in D TIME(nPoiog(n)).

e Improved from Q(log®® n),

@ Best known approximation ratios are O(k).

T McGill
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Outline

@ k-DRC with O(1) terminals.

@ Hardness of k-DRC (directed graph).

© Hardness of k-URC (undirected graphs).
Q Integrality gap of k-DRC.
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Integrality gap

Theorem

The natural LP relaxation of the directed rooted

k-connectivity problem has an integrality ratio of Q (IO:; k).

min Z CeXe sS.t.
ecE

Z xe>k (YR,re R, TZR)
e€6+(R)
0<x<1

Proof: we follow a construction of Chakraborty, Chugaho .
‘r o » HEREPMCGill
54 anna for SNDP integrality gap.
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The construction

cost(—) =1
cost(others) = 0

k: connectivity req.
q=k
Ail = |B)| = k?
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The construction

cost(—) =1
cost(others) = 0

k: connectivity req.
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The construction

A B,

cost(—) =1
cost(others) = 0

& .tq72
k: connectivity req. <‘ to2
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The construction

cost(—) =1
cost(others) = 0

k: connectivity req.
q=k
Ail = |B)| = k?
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The construction

cost(—) =1
cost(others) = 0

k: connectivity req. r
q=k
|Ail = B = k2
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B McGill



The construction

cost(—) =1
cost(others) = 0
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The construction

cost(—) =1
cost(others) = 0

k: connectivity req.

g=k
|Ail = |Bj| = k?

B
B McGill



e Fractional solution:
o xe = > for each e € E with c(e) = 1.
o Total cost: 2q = 2k

B McGill
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Computing the gap

e Fractional solution:
o X. = 7 for each e € E with c(e) = 1.
e Total cost: 2q = 2k

@ Integral solution:

2
o Consider a subset S of arcs of cost < ik

lo

e prove ps = Pr[S is an integral solutionT is very very

small,
o deduce } s ps < 1.

vk?
lo

e There is an instance without solution of cost < fogk-

T McGill
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Computing the gap

e Fractional solution:
o X. = 7 for each e € E with c(e) = 1.
e Total cost: 2q = 2k

@ Integral solution:

2
o Consider a subset S of arcs of cost < ik

lo

e prove ps = Pr[S is an integral solutionT is very very

small,
o deduce } s ps < 1.

vk?
lo

e There is an instance without solution of cost < fogk-
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Computing the gap

e Fractional solution:
o X. = 7 for each e € E with c(e) = 1.
e Total cost: 2q = 2k
@ Integral solution:
e Consider a subset S of arcs of cost < ka,
e prove ps = Pr[S is an integral solutlonT is very very
small,
o deduce } s ps < 1.
2
e There is an instance without solution of cost < %.

o Integrality gap is 2 (|ogk)

T McGill
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Conclusion

@ Other result:
e Subset Connectivity problem.
@ Open questions:
e approximability when Y~ k; = O(1)?
e inapproximablity when k = O(1)? (No better result
known than DST)

T McGill
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