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Dissimilarity

Definition
(X, d) dissimilarity space:
> for all x € X, d(x,x) =0,
» for all x,y € X distinct, d(x,y) = d(y,x) > 0.

d(x, y): the dissimilarity or distance between x and y; how
much x and y are dissimilar.

No triangular inequality (d(x, y) + d(y, z) > d(x, z)).

Equivalent to nonnegative symmetric square matrices (rows
and columns indexed by X) with zeros exactly on the diagonal.
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Robinson matrix

Definition

M Robinson matrix: M is nonnegative symmetric square with
zeros exactly on the diagonal, and each row (or column) is
bitonic:

01 4556
102455
4 2 0 3 3 4
543012
553101
654210
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Robinson space

A dissimilarity space (X, d) is Robinson if there is a
permutation on X such that the associated matrix, with rows
and columns ordered along that permutation, is Robinson.

a b cdef c aed f b
al0 51 4 25 c|l01 4 5 5 6
b|5 06 2 41 all 02 4 5 5
c|ll 6 05 45 el4 2 0 3 3 4
d{4 25 0 31 d/5 4 3 01 2
e|l2 4 43 0 3 f{55 3101
f{5 15130 b|6 54 2 10
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Decision problem

Question

Given a dissimilarity space (X, d) with X finite, decide
whether (X, d) is Robinson.

Definition
Compatible order: order for the rows and columns which
makes the matrix Robinson.

Question
Given a Robinson space, find a (all) compatible order(s).

L5



Example: line distances

Line distances: take X C R, and d(x,y) = |x — y|. The

(restriction of the) usual order < on R is a compatible order.

a b c d e
a b c d e
al0 1 3 67
b1 0 2 5 6
c|3 20 3 4
d/6 53 01
e|l7 6 410

L|’5



Example: ultrametrics

Ultrametrics: take X the leaves of a tree, where all leaves
are at the same depth. Let d(x, y) be the height of the least
common ancestor of x and y. A left-to-right ordering of the
leaves is a compatible order.
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Compatible orders in ultrametrics

» Any reordering of the children of each node of the tree
gives a different compatible order.

» Actually, any compatible order is obtainable like this.
» Thus the tree encodes the set of compatible orders.
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PQ-trees

Definition

PQ-tree on X: tree with leaves X, and each internal node is
either a P-node (Permutation-node, circle), or a Q-node
(rectangle).

abcd e f g

L|’5
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Represented orders

Equivalence on PQ-trees. PQ-trees are equivalent:

» by reordering arbitrarily the order of children of P-nodes
(any permutation),

P(a17 s 7ak) Ae P(aa(l)a SR aa(k))
» by reversing the order of children of Q-nodes.
Q(ah o, . .. ,Oék) — Q(Oék7 Lo, Qo Oél)
Definition

An order on X is represented by a PQ-tree 7T if it is the
left-to-right order of leaves of a PQ-tree equivalent to 7.
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Represented orders (example)

abcd e f g

24 represented orders:

» abcdefg, » gabcdfe,
» dcbaefg, » fedcbag,
» efgdcba, » abcdgfe,. ..

Lia
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Compatible orders of an ultrametric

For an ultrametric, making each node a P-node gives a
representation of the set of compatible orders.

7 |

L |“5



13

Compatible order of a line distance

For a line distance, having a single Q-node, with children in
the same order as on the line gives a representation of the set
of compatible orders.

a b c d e

abcde

L |“5
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The consecutive-ones property

Let M be a {0, 1}-matrix.

Question

Can we permute the columns of M, such that in each row, the
1s are consecutive?

011100
111000
001111
110000
000111

L |"5
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The consecutive-ones property

Theorem (Booth and Lueker)

The set of permutations for which the 1s are consecutive is
either empty, or representable by a PQ-tree.
Algorithm:

1. start with 7 := P(1,...,n),

2. for each row, add to 7 the constraint that the 1s of that
row must be consecutive (or fail).

L |"5



Applying Booth and Lueker to Robinson

Definition
The ball with center x € X and radius r € N is

B(x,r) :={y e X :d(x,y) <r}.

a2 bcdef a b cd e f
2al0 1 3 4 6 8 001000
b|1 01 4 4 7 011100
cl3 10126 011110
dl4 4 201 4 111110
el6 4 2 10 2 111111
fl8 76 420

Balls with center ¢ LiG
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Applying Booth and Lueker to Robinson

Theorem (Mirkin and Rodin)

A dissimilarity space is Robinson if and only if the incidence
matrix of balls has the consecutive-ones property.

Furthermore, compatible orders are exactly those orders where
the 1s are consecutives.

Theorem

The set of compatible orders of a Robinson space is
representable by a PQ-tree.

Also, gives a polynomial-time algorithm.

L|’5



Deciding whether a dissimilarity is Robinson.

18

Let n = |X|.
» Mirkin and Rodin, 1984: O(n*),
» Chepoi and Fichet, 1997, divide-and-conquer: O(n?),
» Atkins, Boman, Hendrickson, 1998, spectral method:
O(nT(n) + n?log n),
Seston, 2008, threshold graphs: O(n?log n),
Fortin and Préa, 2014, PQ-trees: O(n?),

vVyy

O(n?) is optimal (size of the input).

Laurent and Seminaroti, 2017, LexBFS: O(n* + nmlog n).

L|’5
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Goals

» To find a simpler O(n?) algorithm, efficient in practice,
that do not use Booth and Lueker algorithm,

» To study the correspondance between PQ-trees and
mmodule trees (and ultrametrics).

This talk:
1. Introduction to Robinson spaces and PQ-trees (done),

2. Mmodules and their relations to PQ-trees,

3. Flat Robinson spaces.

L1

N |
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Mmodules

Definition
Mmodule M C X: for each x,y € M and each z ¢ M,
d(x,z) = d(y, ).

An mmodule is a set of elements indistinguishable from
elements outside the set. Example: {d, e}.

a b c d e
al0 1 3 4 4
b 0 2 4 4
c 0 2 2
d 01
e 0

L|’5
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>

>

>

Mmodules

X is an mmodule, so is any one-element set and () (trivial
mmodules).

Reminiscent of modules in graph theory. Mmodule =
metric-module or matrix-module.

Maximal modules in graphs can be computed with a
partition refinement technique.

Known as clans in symmetric 2-structure (Erhenfeucht
and Rozenberg).

L1
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Some properties of mmodules

Lemma
Let My, M, be mmodules, then

(i) My N M, is an mmodule,
(it) if My N My # 0, then My U M, is an mmodule,

(iii) if My N My =, then d(x,y) is constant for x € My,
y € MQ.

Lemma
Let My, M, be distinct maximal mmodules (maximal by
inclusion distinct from X ), then
(i) ifMyN My 40, MiUM, =X,
(ii) if M is an mmodule contained in My U M,, then M C M,
or M C M,.

15



Partitions and copartition

Lemma

The maximal mmodules M., are either a partition of X, or
their complements are a partition of X (that is, they are a
copartition of X).

a blc dle f a blc dje f
al0 1|2 2|4 4 al0 2|4 4|4 4
b 0|12 2|4 4 b 0|4 4|4 4
c 0 1(3 3 c 0 24 4
d 013 3 d 014 4
e 0 2 e 0 3
f 0 f 0

My ab, cd, ef Max: abed, cdef, abef Lid

23
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The mmodule tree

Lemma
There is a unique tree, the mmodule tree, with leaves X, and
inner nodes labelled U and N, such that
(i) if a node «v is a U-node, its arity is at least 3, and for any
child 5 of «, X(B) is an mmodule (partition case);

(ii) if a node « is a N-node, its arity is at least 2, and for any
children (31, ..., Bk of a, X(B1), ..., X(Bx) is an
mmodule (copartition case);

(iii) any proper mmodule appears exactly once as in (i) or (ii).
X(B): set of leaves with ancestor 3.

This holds for any dissimililarity space (not just Robinson).
The order of childrens does not matter. Li5
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Mmodule tree and PQ-tree

Erhenfeucht, Gabow, MacConnell, Sullivan 1994:
O(|X|?)-time algorithm to build the mmodule tree.

Question

For Robinson spaces, are the mmodule tree and PQ-tree
identical? Or at least can we build the PQ-tree from the
mmodule tree?

At least, the order of children of Q-nodes matters, while the
order of children of N-nodes does not.

Question

When restricted to a Robinson dissimilarity whose PQ-tree is a

single Q-node, can we find the compatible order efficiently?
Li5



27

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order <
such that for any x < y < z,

max{d(x,y),d(y,z)} < d(x, z).

X y V4

X O—E
y C

L |"5



28

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order <
such that for any x < y < z,

max{d(x,y),d(y,z)} < d(x, z).

L |“5
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Block

Definition
Block of a set of permutations/orders on X: subset B C X

such that the elements of B are consecutive (an interval) in
any of these permutations.

Lemma
Given a PQ-tree on X with block B,
(i) either there is a node o with B = X(«),

(ii) or there is a Q-node o = Q(f1, - . ., Px) such that
B = X(B8:)UX(Bix1) U...UX(5;).

Li5
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PQ-nodes are mmodules

Lemma

Let o be a node of the PQ-tree for (X, d), then X(«) is an
mmodule.

Proof. Let x,y € X(a), z ¢ X(«), and < compatible order
with x <y < z. Then d(y,z) < d(x, z).

Reversing the order of X(«) in < gives a compatible order <’
with y <’ x <" z. Then d(x, z) < d(y, z).

Thus d(x, z) = d(y, z).

L5
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Characterization of PQ-nodes

Theorem

M C X is a block and an mmodule iff there is a node « in the
PQ-tree such that M = X(«).

Proof: show that for Q(/1, ..., fx), for i < j with
(i,J) # (1, k), X(B;)U...UX(5;) is not an mmodule.

L |"5
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Flat Robinson spaces

Definition
Flat Robinson space: a Robinson space having only two
compatible orders (reverse from each other).

Example: line distances are flat.

Flat Robinson space have PQ-tree reduced to a single internal
node of type Q.

Corollary

If all the mmodules are trivial (X and one-element sets), then
(X, d) is flat and its PQ-tree has a single node of type Q.

L5
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Flat Robinson spaces have single node?

Is the converse true? Are the mmodules of flat Robinson
spaces always trivial? No!

D a b c

R S m—

b 0 1 a b ¢ b

C 0 a c
Consequence

PQ-tree and mmodule tree are not similar!

L |“5
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Conical node

Definition

conical node: a Q-node Q(f4, ..., k) with a (unique) child 5;
and § such that d(p;, 5;) = d for each j # .

apex child: the child §; in that case.

split child: 5; when it is a P-node with associated value 4.

alblc d elf
012 al0/1/2 2 24
“‘ (2)“( og) b| (02 2 2|3
abﬁ{f c 0 2 2|2
L d 0 22
e 0|2

f 0 Li5
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Conical nodes and flat Robinson spaces

Lemma
If (X, d) is flat Robinson space,
(i) either all its mmodule are trivial,

(ii) or there is p € X and 0 with d(p,x) = ¢ for all
x € X\ {p}. X\ {p} is the only non-trivial mmodule.
Also p is not in a diametral pair.

In case (ii), the Q-root is conical, with leaf p apex.

o a blc|d e
alo 1]2]3 3
(‘)éi’i) b| 0|22 3
°e ¢ c 012 2
abde d 0 2 Li5
e 0 3
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Special N-node and large child

Definition

Special N-node: a N-node whose associated value is less than
the diameter of one of its child.

Large child: the child (unique for Robinson space) of a N-node
whose diameter is more than the N-node associated value

Conical Q-node and special N-node are the only bad cases, for

which the correspondance

N-node < P-node
U-node < Q-node

does not work.

L5



From mmodule trees to PQ-trees and back

Easy cases (no special node,

Leaf x &
//CK (b)
pr ... Bk
SR e

B1 Bx

In case (b), it requires o.

37

no conical node):

Leaf x
| |
T
?(Br(1)) oo ?(Bo(ky)
o(B1) - H(Bx)

L |4‘5



From mmodule trees to PQ-trees and back

Bad case: special N-node to conical Q-node.

d-special ’ ‘
and $(Bk) =TT T T 7T

Bi - Brk—1 Bk " Vi
large

translates into

’ d-conical ‘

T T T T ]
Mo 7j+1--- 0

o(B1) - H(Br-1)

38
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From mmodule trees to PQ-trees and back

Bad case: conical Q-node to special N-node.

’ d-conical ‘

T T 1 7T T T
é(y) - o)

#(B1) - (Bk)

translates into

d-special d-special
Vi large 51 Bk large
or
Y1 VI Yoo Y
7y;j is standard 7y;j is split L |4‘5
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Translation

This gives:

Theorem

Given a Robinson space, one can build the mmodule tree from
the PQ-tree, and the PQ-tree from the module tree in time

O(|X|) (without counting the time spent to order children of
Q-nodes).

L5
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Solving the flat Robinson case

It remains to show how to order the children of Q-node. More
generally: find the compatible order (up to reversal) for a flat
Robinson space.

1. choose arbitrarily a pivot p,
2. sort vertices by their proximity to p,

3. choose for each vertex its side, left or right of p.

Step 2 is based on the partition refinement algorithm (used to
build the mmodule tree).

L5
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The partition refinement algorithm

(used by Erhenfeucht at al. to build the mmodule tree)

Input: a partition P of X

Output: a partition P, refining P (for all S’ € P’, there is
S € P with S C S), where each S’ € P’ is an mmodule.
Idea: Keep for each part S a set of candidate distinguishers
Zs.

Invariant: For any x,y € S, if there is z € X \ S with
d(x,z) # d(y, z), then z € Zs.

Procedure: lteratively pick z in some Zs, and refine S
depending on the distances from z.

L5
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The partition refinement algorithm

[@n] )
O N T
O N NO

olw b

o Rlwhs o
OoON N B~ D+
oON N NS oG

0y oo Qo T

{(5,Zs) : S € P} = {(abc, defg), (defg, abc)}

L |“5



The partition refinement algorithm

[@n] )
O N T
O N NO

olw > A
orlwd o

O NS D D
o N NS GOy

0y oo Qo T

{(abc, defg), (defg, abc)}

— {(ab7 cefg),(c,abefg)(defg, abc)} Li5G
1 d

a4



The partition refinement algorithm

ol v
O N T

Ol NN

Ol W P~ Q.
O R W+H B~

ON N BN
O NN NSO 010y

0 "o Q0o v

{(ab, cefg), (c, abefg)(defg, abc)}
— {(ab, D), (c, abefg), (defg, abc)}

45



The partition refinement algorithm

ol L
O N T

oI N0

olwls »la
orRlw s~ o

o NN AS BN
o NN N B oliy

0 "o Q0o v

{(ab, D), (c,D)(defg, abc)}
— {(ab, D), (c,0), (def, gbc), (g, def bc)}

46
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The partition refinement algorithm

ol
O N T

OIN N O

Ol W P~ Q.
O R WH PO

oONNAE N
ol N N |G G0y

Q|+~ Q0|0 L

{(ab,0),(c,0), (def, ghbc), (g, defbc)}
— {(ab, D), (c, D), (def, c), (g, defbc)}

LI“
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The partition refinement algorithm

ol
O N T

OIN N O

Ol Wl s~ Q.
O R WH PO

ONDNPBPA~ P
ol N NG G0y

Q|+~ Q0|0 L

{(ab, D), (c,0), (def, c), (g, defbc)}
— {(ab, D), (c,0), (de, f), (f, de)(g, defbc)}
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The partition refinement algorithm

ol v
O N T

Ol N O

Ol W P~ Q.
O, WaHs PO

ol NS B
olN N N Ao G|y

Q| o Q0| v

{(ab,0), (c, D), (de, f), (f, de)(g, defbc)}
{(ab,0), (c,0), (de,0), (f,0)(g,0)}

LI“
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The partition refinement algorithm

ol v
O N T

Ol N O

Ol W P~ Q.
O, WaHs PO

ol N B B
olN N N Ao G|y

Q| o Q0| v

P’ ={ab,c,de,f, g}

L |“5
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p-proximity order

Definition
p-proximity order for a compatible order <: a total order < for
some p € X, such that:

1. pis the minimum,

2. forall g e X, {qg}U{x € X : x < q}isan interval of <.

l l

BN
abcpefyg

> p<c<b<e<a<f<g,
> p<e<c<f<b=<a<g,
> p<e<f<g=<c<b<a

L:G
> p<c<e<b<f<g=<a ...
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p-proximity order

p < x < y is equivalent to saying that y is not between p and
xin <.

Lemma
Let x,y € X \ {p}, y is not between p and x if
(i) either d(p,x) < d(p,y);
(i) or d(p,x) = d(p, y) and there is g € X with q < x,
q <y andd(q,x) < d(q,y);
(iii) or d(p,x) = d(p,y) and there is g € X with x < g,
y <qandd(y,q) < d(x,q).
Case (ii): g is an in-pivot, case (iii): q is an out-pivot.
L5
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Proof

Case (ii). Let x,y € X \ {p} with d(p,x) = d(p, y). Let
g € X with g < x, g <y and d(g,x) < d(q,y). Assume
q < p.

Possible cases:

y x q p
y qgp x
X qp y
q p Xy

In any case, y is not between p and x.

Li5
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Computing a p-proximity order

Modify the partition refinement algorithm:

(5,Z) = (S,Ins,Outs) with Ing < S < Outs
When refining S with in-pivot g € Ins: partition S into
SUSU...US, with d(qg,51) < d(q,S:) <...<d(q,Sk)

Set 51 < 5 < ... < Sk
Set Insi = 51 U...uU 5,'_1 U In5 \ {q}
Set Outsi = 5i+1 U...US,UOuts.

Slightly more complicated rules when g € Outs.
Li5
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Computing a p-proximity order

abcpef
al0 2 456 6
b 0 23 406
c 0 3 46
p 0 35
e 01
f 0

(p,0,0) < (abcef, p, D)

(p,0,0) < (bce, 0, af) < (af, bee, ()

L |“5
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Computing a p-proximity order

abcpef
al0 2 45 6 6
b 0 2 3 406
c 0 3 46
p 0 35
e 01
f 0

(p,0,0) < (bce, 0, af) < (af, bece, D)

(p,0,0) < (c,0, bef) < (b, c,ef) < (e, ch, f) < (af, bece, D)

L |“5
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Computing a p-proximity order

abcpef
al0 2 456 6
b 0 23 46
c 0 3 46
p 0 35
e 01
f 0

(p.0,0) < (c,0,0) < (b,0,0) < (e,0,0) < (af, bee, )
(P, 0,0) < (c,0,0) < (b,0,0) < (e,0,0) < (a, ce, f) < (f, ace, 0)

L |“5
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Computing a p-proximity order

Ol

o NT

OoON B0

O W waoT

O W Hh OO
O~ 01 O O O H

N 0O T O T W

(p,0,0) < (c,0,0) < (b,0,0) < (e,0,0) < (a,0,0) < (f,0,0)

p<c<b<e<a<f
Li5
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How to use the p-proximity order

» Choose p that is not apex.

» Refine {{p}, X \ {p}}. Because no module (except
possibly X \ {apex}), the partition contains one-element

sets only.
» Obtain a p-proximity order <.

p<eé€ <6eé&<...<6

Next goal
Partition X \ {p} into two sides L U R: elements at the left
(resp. right) of p in <.

< 4+ LUR — <

L|’5
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Choosing side

Lemma
Let < be a p-proximity order, and u < v.

(i) d(u,v) < d(p,v) implies side(u) = side(v),
(ii) d(u,v) > d(p,v) implies side(u) # side(v).

Proof.

u
(0) d(u,v) < d(p,v) p L v p<u=<v
(il .o 4

L |“5
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The constraint graph G

Define the constraint graph G = (V, E):

V =X\ {p}
E={(u,v) : u<vAd(uv)#dp,v)}

If G has a single connected component: pick a side for an
arbitrary x € X \ {p}, propagate to deduce L and R.

L|’5
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The component graph H

Definition
Tangled components C, C": C and C’ are not comparable
under <.

Define the component graph H = (K, F):

K = {C : C connected component of G}
F={(C,C") : C,C are tangled}

L |“5



63

Analysis of tangled components

Suppose C, C' are tangled. We may assume x,z€ C, y € C’
with xz € E and x < y < z.

> d(p,y) = d(x,y) (as xy ¢ E),

> d(p,z) = d(y,2) (as yz ¢ E).
Lemma

(i) if d(x,z) < d(p, z), then side(x) = side(z) # side(y),
(i) ifd(x, z) > d(p, z), then side(x) # side(z) = side(y)

Thus if H has a single connected component: pick a side for
an arbitrary x € X \ {p}, propagate to deduce L and R.

L5
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Tangled lemma proof

We have d(x,y) = d(p,y) and d(y,z) = d(p, z) and
X<y=<z

(i) If d(x,z) < d(p, z), then side(x) = side(z), and
d(X7 Z) < d(p’ Z) — d(y,z)

y

l p X=Y x dxy)>d(xz) , y=2z

(ii) If d(x,-z) > d(p, z), then side(x) # side(z), and
d(y,z) =d(p,z) < d(x,z).
y

d(y,z) < d(x, z) p l 2

X<y y<z

® X

L |“5
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Last missing piece

Now we just need:

Lemma
H is connected.

Proof. Let m be the maximum of < and M be p plus the
vertices not determined by side(m).

Let x,y e M, z € X \ M.
x < z and y < z (as no entanglement here).
Then xz,yz ¢ E thus d(x,z) = d(p,z) = d(y, z).

M is an mmodule.

As (X, d) is flat (and m is not apex), M = {p}.
L5
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Algorithmically

1: let m € X, maximum for <

14:

15:

: let L=1], R = [m], Undecided = reverse(X \ {p, m})
: for g € X\ {p} in decreasing order for < do
let Skipped =]
for x € Undecided from first to last do
if d(x,q) = d(p, q) then
 Skipped « x - Skipped
else
if d(x,q) <d(p,q) < g€ L then
L+« x-L, R+« Skipped + R
else
. R< x-R, L< Skipped + L
B Skipped <+ ]
Undecided < reverse(Skipped)
return reverse(L) + [p] + R

L1
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proximity order + side bipartition

Flexible framework:

» build mmodule tree, translate to PQ-tree using flat
Robinson ordering,

» build ordering of p-copoints (maximal mmodules not
containing p), recurse on copoints and build PQ-tree,

» contract p-copoints to get a flat Robinson quotient space,
merge compatible orders of copoints with order of
quotient space.

Available implementation for the last method.
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Open problems

» o(n?) with additional information (promise to be
Robinson, minimum spanning tree for d, ...),

P> extension to circular Robinson,
» extension to other topologies than the line,
» 3D-matrices.

L1
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