
Mmodules and Robinson dissimilarities

Mikhael Carmona, Victor Chepoi, Guyslain Naves, Pascal Préa

Aix-Marseille University and École Centrale Marseille

June 21, 2023, UBC, Vancouver

1

Dissimilarity

Definition
(X , d) dissimilarity space:

▶ for all x ∈ X , d(x , x) = 0,

▶ for all x , y ∈ X distinct, d(x , y) = d(y , x) > 0.

d(x , y): the dissimilarity or distance between x and y ; how
much x and y are dissimilar.

No triangular inequality (d(x , y) + d(y , z) ≥ d(x , z)).

Equivalent to nonnegative symmetric square matrices (rows
and columns indexed by X) with zeros exactly on the diagonal.

2

Robinson matrix

Definition
M Robinson matrix: M is nonnegative symmetric square with
zeros exactly on the diagonal, and each row (or column) is
bitonic:

mi ,1 ≥ mi ,2 ≥ . . . ≥ mi ,i = 0

0 = mi ,i ≤ mi ,i+1 ≤ . . . ≤ mi ,n


0 1 4 5 5 6
1 0 2 4 5 5
4 2 0 3 3 4
5 4 3 0 1 2
5 5 3 1 0 1
6 5 4 2 1 0


3

Robinson space

A dissimilarity space (X , d) is Robinson if there is a
permutation on X such that the associated matrix, with rows
and columns ordered along that permutation, is Robinson.

a b c d e f
a 0 5 1 4 2 5
b 5 0 6 2 4 1
c 1 6 0 5 4 5
d 4 2 5 0 3 1
e 2 4 4 3 0 3
f 5 1 5 1 3 0

c a e d f b
c 0 1 4 5 5 6
a 1 0 2 4 5 5
e 4 2 0 3 3 4
d 5 4 3 0 1 2
f 5 5 3 1 0 1
b 6 5 4 2 1 0

4

Decision problem

Question
Given a dissimilarity space (X , d) with X finite, decide
whether (X , d) is Robinson.

Definition
Compatible order: order for the rows and columns which
makes the matrix Robinson.

Question
Given a Robinson space, find a (all) compatible order(s).

5

Example: line distances

Line distances: take X ⊂ R, and d(x , y) = |x − y |. The
(restriction of the) usual order < on R is a compatible order.

a b c d e

a b c d e
a 0 1 3 6 7
b 1 0 2 5 6
c 3 2 0 3 4
d 6 5 3 0 1
e 7 6 4 1 0

6

Example: ultrametrics

Ultrametrics: take X the leaves of a tree, where all leaves
are at the same depth. Let d(x , y) be the height of the least
common ancestor of x and y . A left-to-right ordering of the
leaves is a compatible order.

a b c d e f

1
2

4

7 a b c d e f
a 0 1 1 4 7 7
b 1 0 1 4 7 7
c 1 1 0 4 7 7
d 4 4 4 0 7 7
e 7 7 7 7 0 2
f 7 7 7 7 2 0

7

Compatible orders in ultrametrics

▶ Any reordering of the children of each node of the tree
gives a different compatible order.

▶ Actually, any compatible order is obtainable like this.

▶ Thus the tree encodes the set of compatible orders.

a bcd e f

1
2

4

7 d c a b e f
d 0 4 4 4 7 7
c 4 0 1 1 7 7
b 4 1 0 1 7 7
a 4 1 1 0 7 7
e 7 7 7 7 0 2
f 7 7 7 7 2 0

8

PQ-trees

Definition
PQ-tree on X : tree with leaves X , and each internal node is
either a P-node (Permutation-node, circle), or a Q-node
(rectangle).

a b c d e f g

9

Represented orders

Equivalence on PQ-trees. PQ-trees are equivalent:

▶ by reordering arbitrarily the order of children of P-nodes
(any permutation),

P(α1, . . . , αk)↔ P(ασ(1), . . . , ασ(k))

▶ by reversing the order of children of Q-nodes.

Q(α1, α2, . . . , αk)↔ Q(αk , . . . , α2, α1)

Definition
An order on X is represented by a PQ-tree T if it is the
left-to-right order of leaves of a PQ-tree equivalent to T .

10

Represented orders (example)

a b c d e f g

24 represented orders:

▶ abcdefg,

▶ dcbaefg,

▶ efgdcba,

▶ gabcdfe,

▶ fedcbag,

▶ abcdgfe,. . .

11

Compatible orders of an ultrametric

For an ultrametric, making each node a P-node gives a
representation of the set of compatible orders.

a b c d e f

1
2

4

7

a b c d e f

12

Compatible order of a line distance

For a line distance, having a single Q-node, with children in
the same order as on the line gives a representation of the set
of compatible orders.

a b c d e

a b c d e

13

The consecutive-ones property

Let M be a {0, 1}-matrix.

Question
Can we permute the columns of M , such that in each row, the
1s are consecutive?

0 1 1 1 0 0
1 1 1 0 0 0
0 0 1 1 1 1
1 1 0 0 0 0
0 0 0 1 1 1



14

The consecutive-ones property

Theorem (Booth and Lueker)

The set of permutations for which the 1s are consecutive is
either empty, or representable by a PQ-tree.

Algorithm:

1. start with T := P(1, . . . , n),

2. for each row, add to T the constraint that the 1s of that
row must be consecutive (or fail).

15

Applying Booth and Lueker to Robinson

Definition
The ball with center x ∈ X and radius r ∈ N is

B(x , r) := {y ∈ X : d(x , y) ≤ r}.

a b c d e f
a 0 1 3 4 6 8
b 1 0 1 4 4 7
c 3 1 0 1 2 6
d 4 4 2 0 1 4
e 6 4 2 1 0 2
f 8 7 6 4 2 0

a b c d e f
0 0 1 0 0 0
0 1 1 1 0 0
0 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 1

Balls with center c

16

Applying Booth and Lueker to Robinson

Theorem (Mirkin and Rodin)

A dissimilarity space is Robinson if and only if the incidence
matrix of balls has the consecutive-ones property.

Furthermore, compatible orders are exactly those orders where
the 1s are consecutives.

Theorem
The set of compatible orders of a Robinson space is
representable by a PQ-tree.

Also, gives a polynomial-time algorithm.

17

Deciding whether a dissimilarity is Robinson.

Let n = |X |.
▶ Mirkin and Rodin, 1984: O(n4),

▶ Chepoi and Fichet, 1997, divide-and-conquer: O(n3),

▶ Atkins, Boman, Hendrickson, 1998, spectral method:
O(nT (n) + n2 log n),

▶ Seston, 2008, threshold graphs: O(n2 log n),

▶ Fortin and Préa, 2014, PQ-trees: O(n2),

▶ Laurent and Seminaroti, 2017, LexBFS: O(n2 + nm log n).

O(n2) is optimal (size of the input).

18

Goals

▶ To find a simpler O(n2) algorithm, efficient in practice,
that do not use Booth and Lueker algorithm,

▶ To study the correspondance between PQ-trees and
mmodule trees (and ultrametrics).

This talk:

1. Introduction to Robinson spaces and PQ-trees (done),

2. Mmodules and their relations to PQ-trees,

3. Flat Robinson spaces.

19

Mmodules

Definition
Mmodule M ⊆ X : for each x , y ∈ M and each z /∈ M ,
d(x , z) = d(y , z).

An mmodule is a set of elements indistinguishable from
elements outside the set. Example: {d , e}.

a b c d e
a 0 1 3 4 4
b 0 2 4 4
c 0 2 2
d 0 1
e 0

20

Mmodules

▶ X is an mmodule, so is any one-element set and ∅ (trivial
mmodules).

▶ Reminiscent of modules in graph theory. Mmodule =
metric-module or matrix-module.

▶ Maximal modules in graphs can be computed with a
partition refinement technique.

▶ Known as clans in symmetric 2-structure (Erhenfeucht
and Rozenberg).

21

Some properties of mmodules

Lemma
Let M1,M2 be mmodules, then

(i) M1 ∩M2 is an mmodule,

(ii) if M1 ∩M2 ̸= ∅, then M1 ∪M2 is an mmodule,

(iii) if M1 ∩M2 = ∅, then d(x , y) is constant for x ∈ M1,
y ∈ M2.

Lemma
Let M1,M2 be distinct maximal mmodules (maximal by
inclusion distinct from X), then

(i) if M1 ∩M2 ̸= ∅, M1 ∪M2 = X,

(ii) if M is an mmodule contained in M1 ∪M2, then M ⊆ M1

or M ⊆ M2.

22

Partitions and copartition

Lemma
The maximal mmodulesMmax are either a partition of X , or
their complements are a partition of X (that is, they are a
copartition of X).

a b c d e f
a 0 1 2 2 4 4
b 0 2 2 4 4
c 0 1 3 3
d 0 3 3
e 0 2
f 0

Mmax: ab, cd, ef

a b c d e f
a 0 2 4 4 4 4
b 0 4 4 4 4
c 0 2 4 4
d 0 4 4
e 0 3
f 0

Mmax: abcd, cdef, abef

23

The mmodule tree

Lemma
There is a unique tree, the mmodule tree, with leaves X , and
inner nodes labelled ∪ and ∩, such that

(i) if a node α is a ∪-node, its arity is at least 3, and for any
child β of α, X (β) is an mmodule (partition case);

(ii) if a node α is a ∩-node, its arity is at least 2, and for any
children β1, . . . , βk of α, X (β1), . . . ,X (βk) is an
mmodule (copartition case);

(iii) any proper mmodule appears exactly once as in (i) or (ii).

X (β): set of leaves with ancestor β.
This holds for any dissimililarity space (not just Robinson).
The order of childrens does not matter.

24

Example of mmodule tree

∪

∩ ∪

a b c d e f g

 0 3 5
0 4

0


 0 1 3

0 2
0

(2)

a b c d e f g

a b c d e f g
a 0 2 2 3 5 5 5
b 0 2 3 5 5 5
c 0 3 5 5 5
d 0 4 4 4
e 0 1 3
f 0 2
g 0

25

Mmodule tree and PQ-tree

Erhenfeucht, Gabow, MacConnell, Sullivan 1994:
O(|X |2)-time algorithm to build the mmodule tree.

Question
For Robinson spaces, are the mmodule tree and PQ-tree
identical? Or at least can we build the PQ-tree from the
mmodule tree?

At least, the order of children of Q-nodes matters, while the
order of children of ∩-nodes does not.

Question
When restricted to a Robinson dissimilarity whose PQ-tree is a
single Q-node, can we find the compatible order efficiently?

26

An alternative definition for Robinson

Lemma
(X , d) is a Robinson space if and only if there is an order <
such that for any x < y < z,

max{d(x , y), d(y , z)} ≤ d(x , z).

x

x

y

y

z

z




27

An alternative definition for Robinson

Lemma
(X , d) is a Robinson space if and only if there is an order <
such that for any x < y < z,

max{d(x , y), d(y , z)} ≤ d(x , z).

x y z

28

Block

Definition
Block of a set of permutations/orders on X : subset B ⊆ X
such that the elements of B are consecutive (an interval) in
any of these permutations.

Lemma
Given a PQ-tree on X with block B,

(i) either there is a node α with B = X (α),

(ii) or there is a Q-node α = Q(β1, . . . , βk) such that
B = X (βi) ∪ X (βi+1) ∪ . . . ∪ X (βj).

29

PQ-nodes are mmodules

Lemma
Let α be a node of the PQ-tree for (X , d), then X (α) is an
mmodule.

Proof. Let x , y ∈ X (α), z /∈ X (α), and < compatible order
with x < y < z . Then d(y , z) ≤ d(x , z).

Reversing the order of X (α) in < gives a compatible order <′

with y <′ x <′ z . Then d(x , z) ≤ d(y , z).

Thus d(x , z) = d(y , z).

30

Characterization of PQ-nodes

Theorem
M ⊆ X is a block and an mmodule iff there is a node α in the
PQ-tree such that M = X (α).

Proof: show that for Q(β1, . . . , βk), for i < j with
(i , j) ̸= (1, k), X (βi) ∪ . . . ∪ X (βj) is not an mmodule.

31

Flat Robinson spaces

Definition
Flat Robinson space: a Robinson space having only two
compatible orders (reverse from each other).

Example: line distances are flat.

Flat Robinson space have PQ-tree reduced to a single internal
node of type Q.

Corollary

If all the mmodules are trivial (X and one-element sets), then
(X , d) is flat and its PQ-tree has a single node of type Q.

32

Flat Robinson spaces have single node?

Is the converse true? Are the mmodules of flat Robinson
spaces always trivial? No!

D a b c
a 0 1 2
b 0 1
c 0

a b c

∩

∩
a c

b

Consequence
PQ-tree and mmodule tree are not similar!

33

Conical node

Definition
conical node: a Q-node Q(β1, . . . , βk) with a (unique) child βi

and δ such that d(βi , βj) = δ for each j ̸= i .
apex child: the child βi in that case.
split child: βi when it is a P-node with associated value δ.

a b
c d e

f


0 1 2 4

0 2 3
0 2

0


(2)

a b c d e f
a 0 1 2 2 2 4
b 0 2 2 2 3
c 0 2 2 2
d 0 2 2
e 0 2
f 0

34

Conical nodes and flat Robinson spaces

Lemma
If (X , d) is flat Robinson space,

(i) either all its mmodule are trivial,

(ii) or there is p ∈ X and δ with d(p, x) = δ for all
x ∈ X \ {p}. X \ {p} is the only non-trivial mmodule.
Also p is not in a diametral pair.

In case (ii), the Q-root is conical, with leaf p apex.

a b d e
c

∪

∩
0 1 3 3

0 2 3
0 2

0



(2)
a b c d e

a 0 1 2 3 3
b 0 2 2 3
c 0 2 2
d 0 2
e 0

35

Special ∩-node and large child

Definition
Special ∩-node: a ∩-node whose associated value is less than
the diameter of one of its child.
Large child: the child (unique for Robinson space) of a ∩-node
whose diameter is more than the ∩-node associated value

Conical Q-node and special ∩-node are the only bad cases, for
which the correspondance

∩-node↔ P-node

∪-node↔ Q-node

does not work.

36

From mmodule trees to PQ-trees and back

Easy cases (no special node, no conical node):

Leaf x
(a)

Leaf x

β1 βk. . .

∪
(b)

ϕ(βσ(1)) ϕ(βσ(k)). . .

β1 βk
. . .

∩
(c)

ϕ(β1) ϕ(βk). . .

In case (b), it requires σ.

37

From mmodule trees to PQ-trees and back

Bad case: special ∩-node to conical Q-node.

∩ δ-special

β1 βk−1 βk

large

. . .
and ϕ(βk) =

γ1 γl. . .

translates into

δ-conical

γ1 . . . γj γj+1 . . . γlapex

ϕ(β1) . . . ϕ(βk−1)

38

From mmodule trees to PQ-trees and back

Bad case: conical Q-node to special ∩-node.
δ-conical

ϕ(γ1) ϕ(γl)apex

j

ϕ(β1) . . . ϕ(βk)

translates into

∩ δ-special

γj ∪ large

γ1 γl. . .

γj is standard

or

∩ δ-special

β1 βk
. . . ∪ large

γ1 γl. . .

γj is split

39

Translation

This gives:

Theorem
Given a Robinson space, one can build the mmodule tree from
the PQ-tree, and the PQ-tree from the module tree in time
O(|X |) (without counting the time spent to order children of
Q-nodes).

40

Solving the flat Robinson case

It remains to show how to order the children of Q-node. More
generally: find the compatible order (up to reversal) for a flat
Robinson space.

1. choose arbitrarily a pivot p,

2. sort vertices by their proximity to p,

3. choose for each vertex its side, left or right of p.

Step 2 is based on the partition refinement algorithm (used to
build the mmodule tree).

41

The partition refinement algorithm

(used by Erhenfeucht at al. to build the mmodule tree)

Input: a partition P of X

Output: a partition P ′, refining P (for all S ′ ∈ P ′, there is
S ∈ P with S ′ ⊆ S), where each S ′ ∈ P ′ is an mmodule.

Idea: Keep for each part S a set of candidate distinguishers
ZS .

Invariant: For any x , y ∈ S , if there is z ∈ X \ S with
d(x , z) ̸= d(y , z), then z ∈ ZS .

Procedure: Iteratively pick z in some ZS , and refine S
depending on the distances from z .

42

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(S ,ZS) : S ∈ P} = {(abc , defg), (defg , abc)}

{(abc , defg), (defg , abc)}

43

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(abc , defg), (defg , abc)}

−→ {(ab, cefg), (c , abefg)(defg , abc)}

44

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(ab, cef g), (c , abefg)(defg , abc)}

−→ {(ab, ∅), (c , abefg), (defg , abc)}

45

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(ab, ∅), (c , ∅)(defg , abc)}

−→ {(ab, ∅), (c , ∅), (def , gbc), (g , def bc)}

46

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(ab, ∅), (c , ∅), (def , gbc), (g , defbc)}

−→ {(ab, ∅), (c , ∅), (def , c), (g , defbc)}

47

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(ab, ∅), (c , ∅), (def , c), (g , defbc)}

−→ {(ab, ∅), (c , ∅), (de, f), (f , de)(g , defbc)}

48

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



{(ab, ∅), (c , ∅), (de, f), (f , de)(g , defbc)}

{(ab, ∅), (c , ∅), (de, ∅), (f , ∅)(g , ∅)}

49

The partition refinement algorithm



a b c d e f g
a 0 2 2 4 4 4 5
b 0 2 4 4 4 5
c 0 3 3 4 4
d 0 1 2 2
e 0 2 2
f 0 2
g 0



P ′ = {ab, c , de, f , g}

{(abc , defg), (defg , abc)}

50

p-proximity order

Definition
p-proximity order for a compatible order <: a total order ≺ for
some p ∈ X , such that:

1. p is the minimum,

2. for all q ∈ X , {q} ∪ {x ∈ X : x ≺ q} is an interval of <.

a b c p e f g

▶ p ≺ c ≺ b ≺ e ≺ a ≺ f ≺ g ,

▶ p ≺ e ≺ c ≺ f ≺ b ≺ a ≺ g ,

▶ p ≺ e ≺ f ≺ g ≺ c ≺ b ≺ a,

▶ p ≺ c ≺ e ≺ b ≺ f ≺ g ≺ a, . . .
51

p-proximity order

p ≺ x ≺ y is equivalent to saying that y is not between p and
x in <.

Lemma
Let x , y ∈ X \ {p}, y is not between p and x if

(i) either d(p, x) < d(p, y);

(ii) or d(p, x) = d(p, y) and there is q ∈ X with q ≺ x,
q ≺ y and d(q, x) < d(q, y);

(iii) or d(p, x) = d(p, y) and there is q ∈ X with x ≺ q,
y ≺ q and d(y , q) < d(x , q).

Case (ii): q is an in-pivot, case (iii): q is an out-pivot.

52

Proof

Case (ii). Let x , y ∈ X \ {p} with d(p, x) = d(p, y). Let
q ∈ X with q ≺ x , q ≺ y and d(q, x) < d(q, y). Assume
q < p.
Possible cases:

q p

q p

q p

q px

x

x

x

y

y

y

y

In any case, y is not between p and x .

53

Computing a p-proximity order

Modify the partition refinement algorithm:

(S ,Z) =⇒ (S , InS ,OutS) with InS ≺ S ≺ OutS

When refining S with in-pivot q ∈ InS : partition S into

S1 ∪ S2 ∪ . . . ∪ Sk with d(q, S1) < d(q, S2) < . . . < d(q, Sk)

Set S1 ≺ S2 ≺ . . . ≺ Sk .
Set InSi = S1 ∪ . . . ∪ Si−1 ∪ InS \ {q}.
Set OutSi = Si+1 ∪ . . . ∪ Sk ∪OutS .

Slightly more complicated rules when q ∈ OutS .

54

Computing a p-proximity order



a b c p e f
a 0 2 4 5 6 6
b 0 2 3 4 6
c 0 3 4 6
p 0 3 5
e 0 1
f 0



(p, ∅, ∅) ≺ (abcef , p, ∅)

(p, ∅, ∅) ≺ (bce, ∅, af) ≺ (af , bce, ∅)

55

Computing a p-proximity order



a b c p e f
a 0 2 4 5 6 6
b 0 2 3 4 6
c 0 3 4 6
p 0 3 5
e 0 1
f 0



(p, ∅, ∅) ≺ (bce, ∅, af) ≺ (af , bce, ∅)

(p, ∅, ∅) ≺ (c , ∅, bef) ≺ (b, c , ef) ≺ (e, cb, f) ≺ (af , bce, ∅)

56

Computing a p-proximity order



a b c p e f
a 0 2 4 5 6 6
b 0 2 3 4 6
c 0 3 4 6
p 0 3 5
e 0 1
f 0



(p, ∅, ∅) ≺ (c , ∅, ∅) ≺ (b, ∅, ∅) ≺ (e, ∅, ∅) ≺ (af , bce, ∅)

(p, ∅, ∅) ≺ (c , ∅, ∅) ≺ (b, ∅, ∅) ≺ (e, ∅, ∅) ≺ (a, ce, f) ≺ (f , ace, ∅)

57

Computing a p-proximity order



a b c p e f
a 0 2 4 5 6 6
b 0 2 3 4 6
c 0 3 4 6
p 0 3 5
e 0 1
f 0



(p, ∅, ∅) ≺ (c , ∅, ∅) ≺ (b, ∅, ∅) ≺ (e, ∅, ∅) ≺ (a, ∅, ∅) ≺ (f , ∅, ∅)

p ≺ c ≺ b ≺ e ≺ a ≺ f

58

How to use the p-proximity order

▶ Choose p that is not apex.

▶ Refine {{p},X \ {p}}. Because no module (except
possibly X \ {apex}), the partition contains one-element
sets only.

▶ Obtain a p-proximity order ≺.

p ≺ e1 ≺ e2 ≺ . . . ≺ ek

Next goal

Partition X \ {p} into two sides L ∪ R : elements at the left
(resp. right) of p in <.

≺ + L ∪ R =⇒ <

59

Choosing side

Lemma
Let ≺ be a p-proximity order, and u ≺ v .

(i) d(u, v) < d(p, v) implies side(u) = side(v),

(ii) d(u, v) > d(p, v) implies side(u) ̸= side(v).

Proof.

p v p ≺ u ≺ vd(u, v) < d(p, v)
u

(i)

p v

p ≺ u ≺ vd(u, v) > d(p, v)
u

(ii)

60

The constraint graph G

Define the constraint graph G = (V ,E):

V = X \ {p}
E = {(u, v) : u ≺ v ∧ d(u, v) ̸= d(p, v)}

If G has a single connected component: pick a side for an
arbitrary x ∈ X \ {p}, propagate to deduce L and R .

61

The component graph H

Definition
Tangled components C ,C ′: C and C ′ are not comparable
under ≺.
Define the component graph H = (K ,F):

K = {C : C connected component of G}
F = {(C ,C ′) : C ,C ′ are tangled}

62

Analysis of tangled components

Suppose C ,C ′ are tangled. We may assume x , z ∈ C , y ∈ C ′

with xz ∈ E and x ≺ y ≺ z .

▶ d(p, y) = d(x , y) (as xy /∈ E),

▶ d(p, z) = d(y , z) (as yz /∈ E).

Lemma
(i) if d(x , z) < d(p, z), then side(x) = side(z) ̸= side(y),

(ii) if d(x , z) > d(p, z), then side(x) ̸= side(z) = side(y)

Thus if H has a single connected component: pick a side for
an arbitrary x ∈ X \ {p}, propagate to deduce L and R .

63

Tangled lemma proof

We have d(x , y) = d(p, y) and d(y , z) = d(p, z) and
x ≺ y ≺ z .

(i) If d(x , z) < d(p, z), then side(x) = side(z), and
d(x , z) < d(p, z) = d(y , z).

p x zx ≺ y y ≺ zd(x , y) > d(x , z)

y

(ii) If d(x , z) > d(p, z), then side(x) ̸= side(z), and
d(y , z) = d(p, z) < d(x , z).

px z y ≺ zx ≺ yd(y , z) < d(x , z)

y

64

Last missing piece

Now we just need:

Lemma
H is connected.

Proof. Let m be the maximum of ≺ and M be p plus the
vertices not determined by side(m).

Let x , y ∈ M , z ∈ X \M .
x ≺ z and y ≺ z (as no entanglement here).
Then xz , yz /∈ E thus d(x , z) = d(p, z) = d(y , z).

M is an mmodule.
As (X , d) is flat (and m is not apex), M = {p}.

65

Algorithmically

1: let m ∈ X , maximum for ≺
2: let L = [], R = [m], Undecided = reverse(X \ {p,m})
3: for q ∈ X \ {p} in decreasing order for ≺ do
4: let Skipped = []
5: for x ∈ Undecided from first to last do
6: if d(x , q) = d(p, q) then
7: Skipped ← x · Skipped
8: else
9: if d(x , q) < d(p, q)⇔ q ∈ L then
10: L← x · L, R ← Skipped ++ R
11: else
12: R ← x · R, L← Skipped ++ L
13: Skipped ← []
14: Undecided ← reverse(Skipped)
15: return reverse(L) ++ [p] ++ R

66

proximity order + side bipartition

Flexible framework:

▶ build mmodule tree, translate to PQ-tree using flat
Robinson ordering,

▶ build ordering of p-copoints (maximal mmodules not
containing p), recurse on copoints and build PQ-tree,

▶ contract p-copoints to get a flat Robinson quotient space,
merge compatible orders of copoints with order of
quotient space.

Available implementation for the last method.

67

Open problems

▶ o(n2) with additional information (promise to be
Robinson, minimum spanning tree for d , . . .),

▶ extension to circular Robinson,

▶ extension to other topologies than the line,

▶ 3D-matrices.

68

	Robinson dissimilarities
	PQ-trees
	Toward a new divide-and-conquer algorithm
	The case of flat Robinson spaces
	Conclusion

