Mmodules and Robinson Dissimilarities

Mikhael Carmona, Victor Chepoi, Guyslain Naves, Pascal Préa

Aix-Marseille University and École Centrale Marseille

June 21, 2023, UBC, Vancouver

Li

Dissimilarity

Definition

(X, d) dissimilarity space:

- for all $x \in X, d(x, x)=0$,
- for all $x, y \in X$ distinct, $d(x, y)=d(y, x)>0$.
$d(x, y)$: the dissimilarity or distance between x and y; how much x and y are dissimilar.
No triangular inequality $(d(x, y)+d(y, z) \geq d(x, z))$.
Equivalent to nonnegative symmetric square matrices (rows and columns indexed by X) with zeros exactly on the diagonal.

Robinson matrix

Definition

M Robinson matrix: M is nonnegative symmetric square with zeros exactly on the diagonal, and each row (or column) is bitonic:

$$
\begin{gathered}
m_{i, 1} \geq m_{i, 2} \geq \ldots \geq m_{i, i}=0 \\
0=m_{i, i} \leq m_{i, i+1} \leq \ldots \leq m_{i, n}
\end{gathered}
$$

$$
\left(\begin{array}{llllll}
0 & 1 & 4 & 5 & 5 & 6 \\
1 & 0 & 2 & 4 & 5 & 5 \\
4 & 2 & 0 & 3 & 3 & 4 \\
5 & 4 & 3 & 0 & 1 & 2 \\
5 & 5 & 3 & 1 & 0 & 1 \\
6 & 5 & 4 & 2 & 1 & 0
\end{array}\right)
$$

Lis

Robinson space

A dissimilarity space (X, d) is Robinson if there is a permutation on X such that the associated matrix, with rows and columns ordered along that permutation, is Robinson.

	a	b	c	d	e	f
a	0	5	1	4	2	5
b	5	0	6	2	4	1
c	1	6	0	5	4	5
d	4	2	5	0	3	1
e	2	4	4	3	0	3
f	5	1	5	1	3	0

	c	a	e	d	f	b
c	0	1	4	5	5	6
a	1	0	2	4	5	5
e	4	2	0	3	3	4
d	5	4	3	0	1	2
f	5	5	3	1	0	1
b	6	5	4	2	1	0

Li

Decision problem

Question

Given a dissimilarity space (X, d) with X finite, decide whether (X, d) is Robinson.

Definition

Compatible order: order for the rows and columns which makes the matrix Robinson.

Question

Given a Robinson space, find a (all) compatible order(s).

Example: line distances

Line distances: take $X \subset \mathbb{R}$, and $d(x, y)=|x-y|$. The (restriction of the) usual order $<$ on \mathbb{R} is a compatible order.

	a	b	c	d	e
a	0	1	3	6	7
b	1	0	2	5	6
c	3	2	0	3	4
d	6	5	3	0	1
e	7	6	4	1	0

Li」

Example: ultrametrics

Ultrametrics: take X the leaves of a tree, where all leaves are at the same depth. Let $d(x, y)$ be the height of the least common ancestor of x and y. A left-to-right ordering of the leaves is a compatible order.

	a	b	c	d	e	f
a	0	1	1	4	7	7
b	1	0	1	4	7	7
c	1	1	0	4	7	7
d	4	4	4	0	7	7
e	7	7	7	7	0	2
f	7	7	7	7	2	0

Compatible orders in ultrametrics

- Any reordering of the children of each node of the tree gives a different compatible order.
- Actually, any compatible order is obtainable like this.
- Thus the tree encodes the set of compatible orders.

	d	c	a	b	e	f
d	0	4	4	4	7	7
c	4	0	1	1	7	7
b	4	1	0	1	7	7
a	4	1	1	0	7	7
e	7	7	7	7	0	2
f	7	7	7	7	2	0

PQ-trees

Definition

PQ -tree on X : tree with leaves X, and each internal node is either a P-node (Permutation-node, circle), or a Q-node (rectangle).

Li」

Represented orders

Equivalence on PQ-trees. PQ-trees are equivalent:

- by reordering arbitrarily the order of children of P -nodes (any permutation),

$$
P\left(\alpha_{1}, \ldots, \alpha_{k}\right) \leftrightarrow P\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(k)}\right)
$$

- by reversing the order of children of Q-nodes.

$$
Q\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \leftrightarrow Q\left(\alpha_{k}, \ldots, \alpha_{2}, \alpha_{1}\right)
$$

Definition

An order on X is represented by a PQ-tree \mathcal{T} if it is the left-to-right order of leaves of a PQ-tree equivalent to \mathcal{T}.

Represented orders (example)

24 represented orders:

- abcdefg,
- dcbaefg,
- efgdcba,
- gabcdfe,
- fedcbag,
- abcdgfe,...

Li

Compatible orders of an ultrametric

For an ultrametric, making each node a P -node gives a representation of the set of compatible orders.

Li」

Compatible order of a line distance

For a line distance, having a single Q-node, with children in the same order as on the line gives a representation of the set of compatible orders.

Lis

The consecutive-ones property

Let M be a $\{0,1\}$-matrix.

Question

Can we permute the columns of M, such that in each row, the 1s are consecutive?

$$
\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Li」

The consecutive-ones property

Theorem (Booth and Lueker)

The set of permutations for which the 1 s are consecutive is either empty, or representable by a $P Q$-tree.

Algorithm:

1. start with $\mathcal{T}:=P(1, \ldots, n)$,
2. for each row, add to \mathcal{T} the constraint that the 1 s of that row must be consecutive (or fail).

Applying Booth and Lueker to Robinson

Definition

The ball with center $x \in X$ and radius $r \in \mathbb{N}$ is

$$
B(x, r):=\{y \in X: d(x, y) \leq r\} .
$$

	a	b	c	d	e	f
a	0	1	3	4	6	8
b	1	0	1	4	4	7
c	3	1	0	1	2	6
d	4	4	2	0	1	4
e	6	4	2	1	0	2
f	8	7	6	4	2	0

a	b	c	d	e	f
0	0	1	0	0	0
0	1	1	1	0	0
0	1	1	1	1	0
1	1	1	1	1	0
1	1	1	1	1	1

Balls with center c

Applying Booth and Lueker to Robinson

Theorem (Mirkin and Rodin)

A dissimilarity space is Robinson if and only if the incidence matrix of balls has the consecutive-ones property.

Furthermore, compatible orders are exactly those orders where the 1 s are consecutives.

Theorem
The set of compatible orders of a Robinson space is representable by a $P Q$-tree.

Also, gives a polynomial-time algorithm.

Deciding whether a dissimilarity is Robinson.

Let $n=|X|$.

- Mirkin and Rodin, 1984: $O\left(n^{4}\right)$,
- Chepoi and Fichet, 1997, divide-and-conquer: $O\left(n^{3}\right)$,
- Atkins, Boman, Hendrickson, 1998, spectral method: $O\left(n T(n)+n^{2} \log n\right)$,
- Seston, 2008, threshold graphs: $O\left(n^{2} \log n\right)$,
- Fortin and Préa, 2014, PQ-trees: $O\left(n^{2}\right)$,
- Laurent and Seminaroti, 2017, LexBFS: $O\left(n^{2}+n m \log n\right)$.
$O\left(n^{2}\right)$ is optimal (size of the input).

Goals

- To find a simpler $O\left(n^{2}\right)$ algorithm, efficient in practice, that do not use Booth and Lueker algorithm,
- To study the correspondance between PQ-trees and mmodule trees (and ultrametrics).

This talk:

1. Introduction to Robinson spaces and PQ -trees (done),
2. Mmodules and their relations to $P Q$-trees,
3. Flat Robinson spaces.

Mmodules

Definition

Mmodule $M \subseteq X$: for each $x, y \in M$ and each $z \notin M$, $d(x, z)=d(y, z)$.

An mmodule is a set of elements indistinguishable from elements outside the set. Example: $\{d, e\}$.

	a	b	c	d	e
a	0	1	3	4	4
b		0	2	4	4
c			0	2	2
d				0	1
e					0

Li

Mmodules

- X is an mmodule, so is any one-element set and \emptyset (trivial mmodules).
- Reminiscent of modules in graph theory. Mmodule $=$ metric-module or matrix-module.
- Maximal modules in graphs can be computed with a partition refinement technique.
- Known as clans in symmetric 2-structure (Erhenfeucht and Rozenberg).

Li」

Some properties of mmodules

Lemma

Let M_{1}, M_{2} be mmodules, then
(i) $M_{1} \cap M_{2}$ is an mmodule,
(ii) if $M_{1} \cap M_{2} \neq \emptyset$, then $M_{1} \cup M_{2}$ is an mmodule,
(iii) if $M_{1} \cap M_{2}=\emptyset$, then $d(x, y)$ is constant for $x \in M_{1}$, $y \in M_{2}$.

Lemma

Let M_{1}, M_{2} be distinct maximal mmodules (maximal by inclusion distinct from X), then
(i) if $M_{1} \cap M_{2} \neq \emptyset, M_{1} \cup M_{2}=X$,
(ii) if M is an mmodule contained in $M_{1} \cup M_{2}$, then $M \subseteq M_{1}$ or $M \subseteq M_{2}$.

Partitions and copartition

Lemma

The maximal mmodules $\mathcal{M}_{\text {max }}$ are either a partition of X, or their complements are a partition of X (that is, they are a copartition of X).

	a	b	c	d	e	f
a	0	1	2	2	4	4
b		0	2	2	4	4
c			0	1	3	3
d				0	3	3
e				0	2	
f					0	

	a	b	c	d	e	f
a	0	2	4	4	4	4
b		0	4	4	4	4
c			0	2	4	4
d				0	4	4
e				0	3	
f					0	

$\mathcal{M}_{\text {max }}: a b, c d$, ef
$\mathcal{M}_{\text {max }}$: abcd, cdef, abef

The mmodule tree

Lemma

There is a unique tree, the mmodule tree, with leaves X, and inner nodes labelled \cup and \cap, such that
(i) if a node α is a \cup-node, its arity is at least 3, and for any child β of $\alpha, X(\beta)$ is an mmodule (partition case);
(ii) if a node α is a \cap-node, its arity is at least 2, and for any children $\beta_{1}, \ldots, \beta_{k}$ of $\alpha, X\left(\beta_{1}\right), \ldots, X\left(\beta_{k}\right)$ is an mmodule (copartition case);
(iii) any proper mmodule appears exactly once as in (i) or (ii).
$X(\beta)$: set of leaves with ancestor β.
This holds for any dissimililarity space (not just Robinson).
The order of childrens does not matter.

Example of mmodule tree

	a	b	c	d	e	f	g
a	0	2	2	3	5	5	5
b		0	2	3	5	5	5
c			0	3	5	5	5
d				0	4	4	4
e					0	1	3
f						0	2
g							0

Li

Mmodule tree and PQ-tree

Erhenfeucht, Gabow, MacConnell, Sullivan 1994: $O\left(|X|^{2}\right)$-time algorithm to build the mmodule tree.

Question

For Robinson spaces, are the mmodule tree and PQ-tree identical? Or at least can we build the PQ-tree from the mmodule tree?

At least, the order of children of Q-nodes matters, while the order of children of \cap-nodes does not.

Question

When restricted to a Robinson dissimilarity whose PQ-tree is a single Q-node, can we find the compatible order efficiently?

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order $<$ such that for any $x<y<z$,

$$
\max \{d(x, y), d(y, z)\} \leq d(x, z) .
$$

Li」

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order $<$ such that for any $x<y<z$,

$$
\max \{d(x, y), d(y, z)\} \leq d(x, z) .
$$

Li」

Block

Definition

Block of a set of permutations/orders on X : subset $B \subseteq X$ such that the elements of B are consecutive (an interval) in any of these permutations.

Lemma

Given a $P Q$-tree on X with block B,
(i) either there is a node α with $B=X(\alpha)$,
(ii) or there is a Q-node $\alpha=Q\left(\beta_{1}, \ldots, \beta_{k}\right)$ such that $B=X\left(\beta_{i}\right) \cup X\left(\beta_{i+1}\right) \cup \ldots \cup X\left(\beta_{j}\right)$.

PQ-nodes are mmodules

Lemma

Let α be a node of the $P Q$-tree for (X, d), then $X(\alpha)$ is an mmodule.

Proof. Let $x, y \in X(\alpha), z \notin X(\alpha)$, and $<$ compatible order with $x<y<z$. Then $d(y, z) \leq d(x, z)$.

Reversing the order of $X(\alpha)$ in $<$ gives a compatible order $<^{\prime}$ with $y<^{\prime} x<^{\prime} z$. Then $d(x, z) \leq d(y, z)$.
Thus $d(x, z)=d(y, z)$.

Characterization of PQ-nodes

Theorem

$M \subseteq X$ is a block and an mmodule iff there is a node α in the $P Q$-tree such that $M=X(\alpha)$.

Proof: show that for $Q\left(\beta_{1}, \ldots, \beta_{k}\right)$, for $i<j$ with $(i, j) \neq(1, k), X\left(\beta_{i}\right) \cup \ldots \cup X\left(\beta_{j}\right)$ is not an mmodule.

Flat Robinson spaces

Definition

Flat Robinson space: a Robinson space having only two compatible orders (reverse from each other).

Example: line distances are flat.
Flat Robinson space have PQ-tree reduced to a single internal node of type Q .

Corollary

If all the mmodules are trivial (X and one-element sets), then (X, d) is flat and its $P Q$-tree has a single node of type Q.

Flat Robinson spaces have single node?

Is the converse true? Are the mmodules of flat Robinson spaces always trivial? No!

D	a	b	c
a	0	1	2
b		0	1
c			0

Consequence

PQ-tree and mmodule tree are not similar!
Li

Conical node

Definition

conical node: a Q-node $Q\left(\beta_{1}, \ldots, \beta_{k}\right)$ with a (unique) child β_{i} and δ such that $d\left(\beta_{i}, \beta_{j}\right)=\delta$ for each $j \neq i$. apex child: the child β_{i} in that case. split child: β_{i} when it is a P -node with associated value δ.

	a	b	c	d	e	f
a	0	1	2	2	2	4
b		0	2	2	2	3
c			0	2	2	2
d				0	2	2
e					0	2
f						0

LiJ

Conical nodes and flat Robinson spaces

Lemma

If (X, d) is flat Robinson space,
(i) either all its mmodule are trivial,
(ii) or there is $p \in X$ and δ with $d(p, x)=\delta$ for all $x \in X \backslash\{p\} . X \backslash\{p\}$ is the only non-trivial mmodule. Also p is not in a diametral pair.

In case (ii), the Q-root is conical, with leaf p apex.

	a	b	c	d	e
a	0	1	2	3	3
b		0	2	2	3
c			0	2	2
d			0	2	
e					0

Li

Special \cap-node and large child

Definition

Special \cap-node: a \cap-node whose associated value is less than the diameter of one of its child.
Large child: the child (unique for Robinson space) of a \cap-node whose diameter is more than the \cap-node associated value

Conical Q-node and special \cap-node are the only bad cases, for which the correspondance

$$
\begin{aligned}
& \text { П-node } \leftrightarrow \text { P-node } \\
& \text { U-node } \leftrightarrow \text { Q-node }
\end{aligned}
$$

does not work.

From mmodule trees to PQ-trees and back

Easy cases (no special node, no conical node):
$\xrightarrow{(a)}$ Leaf x

(b)

(c)

In case (b), it requires σ.

From mmodule trees to PQ-trees and back

Bad case: special \cap-node to conical Q-node.

Li

From mmodule trees to PQ-trees and back

Bad case: conical Q-node to special \cap-node.

translates into

Lis

Translation

This gives:

Theorem

Given a Robinson space, one can build the mmodule tree from the $P Q$-tree, and the $P Q$-tree from the module tree in time $O(|X|)$ (without counting the time spent to order children of Q-nodes).

Li」

Solving the flat Robinson case

It remains to show how to order the children of Q-node. More generally: find the compatible order (up to reversal) for a flat Robinson space.

1. choose arbitrarily a pivot p,
2. sort vertices by their proximity to p,
3. choose for each vertex its side, left or right of p.

Step 2 is based on the partition refinement algorithm (used to build the mmodule tree).

The partition refinement algorithm

(used by Erhenfeucht at al. to build the mmodule tree)
Input: a partition \mathcal{P} of X
Output: a partition \mathcal{P}^{\prime}, refining \mathcal{P} (for all $S^{\prime} \in \mathcal{P}^{\prime}$, there is $S \in \mathcal{P}$ with $S^{\prime} \subseteq S$), where each $S^{\prime} \in \mathcal{P}^{\prime}$ is an mmodule.

Idea: Keep for each part S a set of candidate distinguishers Z_{s}.

Invariant: For any $x, y \in S$, if there is $z \in X \backslash S$ with $d(x, z) \neq d(y, z)$, then $z \in Z_{s}$.
Procedure: Iteratively pick z in some Z_{S}, and refine S depending on the distances from z.

The partition refinement algorithm

$\left(\begin{array}{l|lll|llll} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ g & & & & & & & 0\end{array}\right)$
$\left\{\left(S, Z_{S}\right): S \in \mathcal{P}\right\}=\{(a b c$, defg $),($ defg,$a b c)\}$
Lis

The partition refinement algorithm

$\left(\begin{array}{l|lll|llll} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ g & & & & & & & 0\end{array}\right)$

$\{(a b c$, defg $),($ defg,$a b c)\}$
$\longrightarrow\{(a b$, cefg $),(c, a b e f g)($ defg,$a b c)\}$

The partition refinement algorithm

$\left(\begin{array}{l|ll|l|llll} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ g & & & & & & & 0\end{array}\right)$

$$
\begin{aligned}
& \{(a b, \text { cefg }),(c, \text { abefg })(\text { defg }, a b c)\} \\
& \longrightarrow\{(a b, \emptyset),(c, \text { abefg }),(\text { defg }, a b c)\}
\end{aligned}
$$

The partition refinement algorithm

$\left(\begin{array}{l|ll|l|llll} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ g & & & & & & & 0\end{array}\right)$

$$
\begin{gathered}
\{(a b, \emptyset),(c, \emptyset)(\text { defg }, a b c)\} \\
\longrightarrow
\end{gathered}\{(a b, \emptyset),(c, \emptyset),(\text { def }, g b c),(g, \text { def } b c)\} \text {. }
$$

The partition refinement algorithm

$\left(\begin{array}{c|cc|c|ccc|c} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ \hline g & & & & & & 0\end{array}\right)$

$$
\begin{gathered}
\{(a b, \emptyset),(c, \emptyset),(\text { def }, g b c),(g, \text { defbc })\} \\
\longrightarrow\{(a b, \emptyset),(c, \emptyset),(\text { def }, c),(g, \operatorname{defb} c)\}
\end{gathered}
$$

The partition refinement algorithm

$\left(\begin{array}{c|cc|c|ccc|c} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ f & & & & & & 0 & 2 \\ \hline g & & & & & & 0\end{array}\right)$

$$
\begin{aligned}
& \{(a b, \emptyset),(c, \emptyset),(\text { def }, c),(g, \text { defbc })\} \\
\longrightarrow & \{(a b, \emptyset),(c, \emptyset),(d e, f),(f, \text { de })(g, \text { defbc })\}
\end{aligned}
$$

The partition refinement algorithm

$\left(\begin{array}{l|ll|l|ll|l|l} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & 0 & 2 & 2 \\ \hline f & & & & & 0 & 2 \\ \hline g & & & & & & 0\end{array}\right)$

$$
\begin{gathered}
\{(a b, \emptyset),(c, \emptyset),(d e, f),(f, d e)(g, d e f b c)\} \\
\{(a b, \emptyset),(c, \emptyset),(d e, \emptyset),(f, \emptyset)(g, \emptyset)\}
\end{gathered}
$$

The partition refinement algorithm

$\left(\begin{array}{c|cc|c|cc|c|c} & a & b & c & d & e & f & g \\ \hline a & 0 & 2 & 2 & 4 & 4 & 4 & 5 \\ b & & 0 & 2 & 4 & 4 & 4 & 5 \\ \hline c & & & 0 & 3 & 3 & 4 & 4 \\ \hline d & & & 0 & 1 & 2 & 2 \\ e & & & & & 0 & 2 & 2 \\ \hline f & & & & & 0 & 2 \\ \hline g & & & & & & 0\end{array}\right)$

$$
\mathcal{P}^{\prime}=\{a b, c, d e, f, g\}
$$

Li

p-proximity order

Definition

p-proximity order for a compatible order $<$: a total order \prec for some $p \in X$, such that:

1. p is the minimum,
2. for all $q \in X,\{q\} \cup\{x \in X: x \prec q\}$ is an interval of $<$.

- $p \prec c \prec b \prec e \prec a \prec f \prec g$,
- $p \prec e \prec c \prec f \prec b \prec a \prec g$,
- $p \prec e \prec f \prec g \prec c \prec b \prec a$,
- $p \prec c \prec e \prec b \prec f \prec g \prec a, \ldots$

p-proximity order

$p \prec x \prec y$ is equivalent to saying that y is not between p and x in $<$.

Lemma

Let $x, y \in X \backslash\{p\}, y$ is not between p and x if
(i) either $d(p, x)<d(p, y)$;
(ii) or $d(p, x)=d(p, y)$ and there is $q \in X$ with $q \prec x$, $q \prec y$ and $d(q, x)<d(q, y)$;
(iii) or $d(p, x)=d(p, y)$ and there is $q \in X$ with $x \prec q$, $y \prec q$ and $d(y, q)<d(x, q)$.

Case (ii): q is an in-pivot, case (iii): q is an out-pivot.

Proof

Case (ii). Let $x, y \in X \backslash\{p\}$ with $d(p, x)=d(p, y)$. Let $q \in X$ with $q \prec x, q \prec y$ and $d(q, x)<d(q, y)$. Assume $q<p$.
Possible cases:

In any case, y is not between p and x.

Computing a p-proximity order

Modify the partition refinement algorithm:

$$
(S, Z) \quad \Longrightarrow \quad\left(S, \operatorname{In}_{s}, \text { Outs }_{S}\right) \text { with } \operatorname{In}_{S} \prec S \prec \text { Outs }_{s}
$$

When refining S with in-pivot $q \in \ln S$: partition S into
$S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ with $d\left(q, S_{1}\right)<d\left(q, S_{2}\right)<\ldots<d\left(q, S_{k}\right)$
Set $S_{1} \prec S_{2} \prec \ldots \prec S_{k}$.
Set $\operatorname{In}_{S_{i}}=S_{1} \cup \ldots \cup S_{i-1} \cup \operatorname{In}_{S} \backslash\{q\}$.
Set Out $s_{i}=S_{i+1} \cup \ldots \cup S_{k} \cup$ Outs $_{\text {. }}$.
Slightly more complicated rules when $q \in$ Outs.

Computing a p-proximity order

$$
\left(\begin{array}{c|cccccc}
& a & b & c & p & e & f \\
\hline a & 0 & 2 & 4 & 5 & 6 & 6 \\
b & & 0 & 2 & 3 & 4 & 6 \\
c & & & 0 & 3 & 4 & 6 \\
p & & & & 0 & 3 & 5 \\
e & & & & & 0 & 1 \\
f & & & & & & 0
\end{array}\right)
$$

$$
(p, \emptyset, \emptyset) \prec(a b c e f, p, \emptyset)
$$

$(p, \emptyset, \emptyset) \prec(b c e, \emptyset, a f) \prec(a f, b c e, \emptyset)$
Li」

Computing a p-proximity order

$$
\left(\begin{array}{c|cccccc}
& a & b & c & p & e & f \\
\hline a & 0 & 2 & 4 & 5 & 6 & 6 \\
b & & 0 & 2 & 3 & 4 & 6 \\
c & & & 0 & 3 & 4 & 6 \\
p & & & & 0 & 3 & 5 \\
e & & & & & 0 & 1 \\
f & & & & & & 0
\end{array}\right)
$$

$$
\begin{aligned}
&(p, \emptyset, \emptyset) \prec(b c e, \emptyset, a f) \\
& \prec(a f, b c e, \emptyset) \\
&(p, \emptyset, \emptyset) \prec(c, \emptyset, b e f) \prec(b, c, \text { ef }) \\
& \prec(e, c b, f) \prec(a f, b c e, \emptyset)
\end{aligned}
$$

Computing a p-proximity order

$$
\left(\begin{array}{c|cccccc}
& a & b & c & p & e & f \\
\hline a & 0 & 2 & 4 & 5 & 6 & 6 \\
b & & 0 & 2 & 3 & 4 & 6 \\
c & & & 0 & 3 & 4 & 6 \\
p & & & & 0 & 3 & 5 \\
e & & & & & 0 & 1 \\
f & & & & & & 0
\end{array}\right)
$$

$$
(p, \emptyset, \emptyset) \prec(c, \emptyset, \emptyset) \prec(b, \emptyset, \emptyset) \prec(e, \emptyset, \emptyset) \prec(a f, b c e, \emptyset)
$$

$$
\begin{array}{r}
(p, \emptyset, \emptyset) \prec(c, \emptyset, \emptyset) \prec(b, \emptyset, \emptyset) \prec(e, \emptyset, \emptyset) \prec(a, c e, f) \prec(f, a c e, \emptyset) \\
\mathbf{L i} \mathbf{i} \mathbf{~ J}
\end{array}
$$

Computing a p-proximity order

$$
\left(\begin{array}{c|cccccc}
& a & b & c & p & e & f \\
\hline a & 0 & 2 & 4 & 5 & 6 & 6 \\
b & & 0 & 2 & 3 & 4 & 6 \\
c & & & 0 & 3 & 4 & 6 \\
p & & & & 0 & 3 & 5 \\
e & & & & & 0 & 1 \\
f & & & & & & 0
\end{array}\right)
$$

$$
\begin{gathered}
(p, \emptyset, \emptyset) \prec(c, \emptyset, \emptyset) \prec(b, \emptyset, \emptyset) \prec(e, \emptyset, \emptyset) \prec(a, \emptyset, \emptyset) \prec(f, \emptyset, \emptyset) \\
p \prec c \prec b \prec e \prec a \prec f
\end{gathered}
$$

Li

How to use the p-proximity order

- Choose p that is not apex.
- Refine $\{\{p\}, X \backslash\{p\}\}$. Because no module (except possibly $X \backslash\{$ apex $\}$), the partition contains one-element sets only.
- Obtain a p-proximity order \prec.

$$
p \prec e_{1} \prec e_{2} \prec \ldots \prec e_{k}
$$

Next goal

Partition $X \backslash\{p\}$ into two sides $L \cup R$: elements at the left (resp. right) of p in $<$.

$$
\prec+L \cup R \quad \Longrightarrow \quad<\quad \text { LiJ }
$$

Choosing side

Lemma

Let \prec be a p-proximity order, and $u \prec v$.
(i) $d(u, v)<d(p, v)$ implies side $(u)=\operatorname{side}(v)$,
(ii) $d(u, v)>d(p, v)$ implies side $(u) \neq \operatorname{side}(v)$.

Proof.

(ii)

Lis

The constraint graph G

Define the constraint graph $G=(V, E)$:

$$
\begin{aligned}
& V=X \backslash\{p\} \\
& E=\{(u, v): u \prec v \wedge d(u, v) \neq d(p, v)\}
\end{aligned}
$$

If G has a single connected component: pick a side for an arbitrary $x \in X \backslash\{p\}$, propagate to deduce L and R.

The component graph H

Definition

Tangled components C, C^{\prime} : C and C^{\prime} are not comparable under \prec.

Define the component graph $H=(K, F)$:

$$
\begin{aligned}
& K=\{C: C \text { connected component of } \mathrm{G}\} \\
& F=\left\{\left(C, C^{\prime}\right): C, C^{\prime} \text { are tangled }\right\}
\end{aligned}
$$

Analysis of tangled components

Suppose C, C^{\prime} are tangled. We may assume $x, z \in C, y \in C^{\prime}$ with $x z \in E$ and $x \prec y \prec z$.

- $d(p, y)=d(x, y)($ as $x y \notin E)$,
- $d(p, z)=d(y, z)($ as $y z \notin E)$.

Lemma

(i) if $d(x, z)<d(p, z)$, then $\operatorname{side}(x)=\operatorname{side}(z) \neq \operatorname{side}(y)$,
(ii) if $d(x, z)>d(p, z)$, then $\operatorname{side}(x) \neq \operatorname{side}(z)=\operatorname{side}(y)$

Thus if H has a single connected component: pick a side for an arbitrary $x \in X \backslash\{p\}$, propagate to deduce L and R.

Tangled lemma proof

We have $d(x, y)=d(p, y)$ and $d(y, z)=d(p, z)$ and $x \prec y \prec z$.
(i) If $d(x, z)<d(p, z)$, then $\operatorname{side}(x)=\operatorname{side}(z)$, and $d(x, z)<d(p, z)=d(y, z)$.
y

- $\quad x \prec y \quad x \quad d(x, y)>d(x, z) \quad z \quad y \prec z$
(ii) If $d(x, z)>d(p, z)$, then $\operatorname{side}(x) \neq \operatorname{side}(z)$, and $d(y, z)=d(p, z)<d(x, z)$.

Last missing piece

Now we just need:

Lemma

H is connected.
Proof. Let m be the maximum of \prec and M be p plus the vertices not determined by side (m).

Let $x, y \in M, z \in X \backslash M$.
$x \prec z$ and $y \prec z$ (as no entanglement here).
Then $x z, y z \notin E$ thus $d(x, z)=d(p, z)=d(y, z)$.
M is an mmodule.
As (X, d) is flat (and m is not apex), $M=\{p\}$.

Algorithmically

1: let $m \in X$, maximum for \prec
2: let $L=[], R=[m]$, Undecided $=\operatorname{reverse}(X \backslash\{p, m\})$
3: for $q \in X \backslash\{p\}$ in decreasing order for \prec do
4: \quad let Skipped $=[]$
5: \quad for $x \in$ Undecided from first to last do
6: \quad if $d(x, q)=d(p, q)$ then
7:
8:
9:
10:
11:
Skipped $\leftarrow x \cdot$ Skipped
else
if $d(x, q)<d(p, q) \Leftrightarrow q \in L$ then
$L \leftarrow x \cdot L, R \leftarrow$ Skipped $+R$
else
$R \leftarrow x \cdot R, L \leftarrow$ Skipped $+L$
Skipped $\leftarrow[]$
Undecided \leftarrow reverse(Skipped)
15: return reverse $(L)+[p]+R$

proximity order + side bipartition

Flexible framework:

- build mmodule tree, translate to PQ -tree using flat Robinson ordering,
- build ordering of p-copoints (maximal mmodules not containing p), recurse on copoints and build PQ-tree,
- contract p-copoints to get a flat Robinson quotient space, merge compatible orders of copoints with order of quotient space.

Available implementation for the last method.

Open problems

- $o\left(n^{2}\right)$ with additional information (promise to be Robinson, minimum spanning tree for d, \ldots),
- extension to circular Robinson,
- extension to other topologies than the line,
- 3D-matrices.

