MMODULES AND ROBINSON DISSIMILARITIES

Mikhael Carmona, Victor Chepoi, Guyslain Naves, Pascal Préa

Aix-Marseille University and École Centrale Marseille

June 21, 2023, UBC, Vancouver

Dissimilarity

Definition

(X, d) dissimilarity space:

• for all
$$x \in X$$
, $d(x, x) = 0$,

• for all
$$x, y \in X$$
 distinct, $d(x, y) = d(y, x) > 0$.

d(x, y): the dissimilarity or distance between x and y; how much x and y are dissimilar.

No triangular inequality $(d(x, y) + d(y, z) \ge d(x, z))$.

Equivalent to nonnegative symmetric square matrices (rows and columns indexed by X) with zeros exactly on the diagonal.

Robinson matrix

Definition

M Robinson matrix: *M* is nonnegative symmetric square with zeros exactly on the diagonal, and each row (or column) is bitonic:

$$m_{i,1} \ge m_{i,2} \ge \ldots \ge m_{i,i} = 0$$

 $0 = m_{i,i} \le m_{i,i+1} \le \ldots \le m_{i,r}$

$$\left(\begin{array}{ccccccc} 0 & 1 & 4 & 5 & 5 & 6 \\ 1 & 0 & 2 & 4 & 5 & 5 \\ 4 & 2 & 0 & 3 & 3 & 4 \\ 5 & 4 & 3 & 0 & 1 & 2 \\ 5 & 5 & 3 & 1 & 0 & 1 \\ 6 & 5 & 4 & 2 & 1 & 0 \end{array}\right)$$

Robinson space

A dissimilarity space (X, d) is Robinson if there is a permutation on X such that the associated matrix, with rows and columns ordered along that permutation, is Robinson.

	а	b	С	d	е	f
а	0	5	1	4	2	5
b	5	0	6	2	4	1
с	1	6	0	5	4	5
d	4	2	5	0	3	1
е	2	4	4	3	0	3
f	5	1	5	1	3	0

	С	а	е	d	f	b
С	0	1	4	5	5	6
а	1	0	2	4	5	5
е	4	2	0	3	3	4
d	5	4	3	0	1	2
f	5	5	3	1	0	1
b	6	5	4	2	1	0

Decision problem

Question

Given a dissimilarity space (X, d) with X finite, decide whether (X, d) is Robinson.

Definition

Compatible order: order for the rows and columns which makes the matrix Robinson.

Question

Given a Robinson space, find a (all) compatible order(s).

Example: line distances

Line distances: take $X \subset \mathbb{R}$, and d(x, y) = |x - y|. The (restriction of the) usual order < on \mathbb{R} is a compatible order.

Example: ultrametrics

Ultrametrics: take X the leaves of a tree, where all leaves are at the same depth. Let d(x, y) be the height of the least common ancestor of x and y. A left-to-right ordering of the leaves is a compatible order.

Compatible orders in ultrametrics

- Any reordering of the children of each node of the tree gives a different compatible order.
- Actually, any compatible order is obtainable like this.
- Thus the tree encodes the set of compatible orders.

PQ-trees

Definition

PQ-tree on X: tree with leaves X, and each internal node is either a P-node (Permutation-node, circle), or a Q-node (rectangle).

Represented orders

Equivalence on PQ-trees. PQ-trees are equivalent:

 by reordering *arbitrarily* the order of children of P-nodes (any permutation),

$$P(\alpha_1,\ldots,\alpha_k) \leftrightarrow P(\alpha_{\sigma(1)},\ldots,\alpha_{\sigma(k)})$$

by reversing the order of children of Q-nodes.

$$Q(\alpha_1, \alpha_2, \ldots, \alpha_k) \leftrightarrow Q(\alpha_k, \ldots, \alpha_2, \alpha_1)$$

Definition

An order on X is represented by a PQ-tree \mathcal{T} if it is the left-to-right order of leaves of a PQ-tree equivalent to \mathcal{T} .

Represented orders (example)

24 represented orders:

▶ efgdcba,

- ► gabcdfe,
- ► fedcbag,
- ▶ abcdg<mark>fe</mark>,...

Compatible orders of an ultrametric

For an ultrametric, making each node a P-node gives a representation of the set of compatible orders.

Compatible order of a line distance

For a line distance, having a single Q-node, with children in the same order as on the line gives a representation of the set of compatible orders.

The consecutive-ones property

Let M be a $\{0, 1\}$ -matrix.

Question

Can we permute the columns of M, such that in each row, the 1s are consecutive?

The consecutive-ones property

Theorem (Booth and Lueker)

The set of permutations for which the 1s are consecutive is either empty, or representable by a PQ-tree.

Algorithm:

- 1. start with $\mathcal{T} := P(1, \ldots, n)$,
- 2. for each row, add to \mathcal{T} the constraint that the 1s of that row must be consecutive (or fail).

Applying Booth and Lueker to Robinson

Definition

The ball with center $x \in X$ and radius $r \in \mathbb{N}$ is

$$B(x,r):=\{y\in X: d(x,y)\leq r\}.$$

а	b	С	d	е	f
0	0	1	0	0	0
0	1	1	1	0	0
0	1	1	1	1	0
1	1	1	1	1	0
1	1	1	1	1	1

Balls with center c

Applying Booth and Lueker to Robinson

Theorem (Mirkin and Rodin)

A dissimilarity space is Robinson if and only if the incidence matrix of balls has the consecutive-ones property.

Furthermore, compatible orders are exactly those orders where the 1s are consecutives.

Theorem

The set of compatible orders of a Robinson space is representable by a PQ-tree.

Also, gives a polynomial-time algorithm.

Deciding whether a dissimilarity is Robinson.

Let n = |X|.

- Mirkin and Rodin, 1984: $O(n^4)$,
- Chepoi and Fichet, 1997, divide-and-conquer: $O(n^3)$,
- Atkins, Boman, Hendrickson, 1998, spectral method: O(nT(n) + n² log n),
- Seston, 2008, threshold graphs: $O(n^2 \log n)$,
- Fortin and Préa, 2014, PQ-trees: $O(n^2)$,
- ▶ Laurent and Seminaroti, 2017, LexBFS: $O(n^2 + nm \log n)$.

 $O(n^2)$ is optimal (size of the input).

Goals

- To find a simpler $O(n^2)$ algorithm, efficient in practice, that do not use Booth and Lueker algorithm,
- To study the correspondance between PQ-trees and mmodule trees (and ultrametrics).
- This talk:
 - 1. Introduction to Robinson spaces and PQ-trees (done),
 - 2. Mmodules and their relations to PQ-trees,
 - 3. Flat Robinson spaces.

Mmodules

Definition Mmodule $M \subseteq X$: for each $x, y \in M$ and each $z \notin M$, d(x, z) = d(y, z).

An mmodule is a set of elements indistinguishable from elements outside the set. Example: $\{d, e\}$.

	а	b	С	d	е
а	0	1	3	4	4
b		0	2	4	4
С			0	2	2
d				0	1
е					0

Mmodules

- ➤ X is an mmodule, so is any one-element set and Ø (trivial mmodules).
- Reminiscent of modules in graph theory. Mmodule = metric-module or matrix-module.
- Maximal modules in graphs can be computed with a partition refinement technique.
- Known as *clans* in symmetric 2-structure (Erhenfeucht and Rozenberg).

Some properties of mmodules

Lemma

Let M_1, M_2 be mmodules, then

- (i) $M_1 \cap M_2$ is an mmodule,
- (ii) if $M_1 \cap M_2 \neq \emptyset$, then $M_1 \cup M_2$ is an mmodule,
- (iii) if $M_1 \cap M_2 = \emptyset$, then d(x, y) is constant for $x \in M_1$, $y \in M_2$.

Lemma

Let M_1, M_2 be distinct maximal mmodules (maximal by inclusion distinct from X), then

- (i) if $M_1 \cap M_2 \neq \emptyset$, $M_1 \cup M_2 = X$,
- (ii) if M is an mmodule contained in $M_1 \cup M_2$, then $M \subseteq M_1$ or $M \subseteq M_2$.

Partitions and copartition

Lemma

The maximal mmodules \mathcal{M}_{max} are either a partition of X, or their complements are a partition of X (that is, they are a copartition of X).

	a	b	c	d	e	f		а	b	с	d	e	f
а	0	1	2	2	4	4	а	0	2	4	4	4	4
b		0	2	2	4	4	b		0	4	4	4	4
С			0	1	3	3	С			0	2	4	4
d				0	3	3	d				0	4	4
е					0	2	е					0	3
f						0	f						0

 \mathcal{M}_{\max} : ab, cd, ef

 \mathcal{M}_{\max} : abcd, cdef, abef

The mmodule tree

Lemma

There is a unique tree, the **mmodule tree**, with leaves X, and inner nodes labelled \cup and \cap , such that

- (i) if a node α is a ∪-node, its arity is at least 3, and for any child β of α, X(β) is an mmodule (partition case);
- (ii) if a node α is a ∩-node, its arity is at least 2, and for any children β₁,..., β_k of α, X(β₁),..., X(β_k) is an mmodule (copartition case);

(iii) any proper mmodule appears exactly once as in (i) or (ii).

 $X(\beta)$: set of leaves with ancestor β . This holds for any dissimiliarity space (not just Robinson). The order of childrens does not matter.

Example of mmodule tree

	а	b	С	d	е	f	g
а	0	2	2	3	5	5	5
b		0	2	3	5	5	5
С			0	3	5	5	5
d				0	4	4	4
е					0	1	3
f						0	2
g							0

Mmodule tree and PQ-tree

Erhenfeucht, Gabow, MacConnell, Sullivan 1994: $O(|X|^2)$ -time algorithm to build the mmodule tree.

Question

For Robinson spaces, are the mmodule tree and PQ-tree identical? Or at least can we build the PQ-tree from the mmodule tree?

At least, the order of children of Q-nodes matters, while the order of children of \cap -nodes does not.

Question

When restricted to a Robinson dissimilarity whose PQ-tree is a single Q-node, can we find the compatible order efficiently?

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order < such that for any x < y < z,

$$\max\{d(x,y),d(y,z)\} \leq d(x,z).$$

An alternative definition for Robinson

Lemma

(X, d) is a Robinson space if and only if there is an order < such that for any x < y < z,

$$\max\{d(x,y),d(y,z)\} \le d(x,z).$$

Block

Definition

Block of a set of permutations/orders on X: subset $B \subseteq X$ such that the elements of B are consecutive (an interval) in any of these permutations.

Lemma

Given a PQ-tree on X with block B, (i) either there is a node α with $B = X(\alpha)$, (ii) or there is a Q-node $\alpha = Q(\beta_1, \dots, \beta_k)$ such that $B = X(\beta_i) \cup X(\beta_{i+1}) \cup \dots \cup X(\beta_j)$.

PQ-nodes are mmodules

Lemma

Let α be a node of the PQ-tree for (X, d), then $X(\alpha)$ is an mmodule.

Proof. Let $x, y \in X(\alpha)$, $z \notin X(\alpha)$, and < compatible order with x < y < z. Then $d(y, z) \le d(x, z)$.

Reversing the order of $X(\alpha)$ in < gives a compatible order <' with y <' x <' z. Then $d(x, z) \le d(y, z)$.

Thus d(x, z) = d(y, z).

Characterization of PQ-nodes

Theorem

 $M \subseteq X$ is a block and an mmodule iff there is a node α in the PQ-tree such that $M = X(\alpha)$.

Proof: show that for $Q(\beta_1, \ldots, \beta_k)$, for i < j with $(i, j) \neq (1, k)$, $X(\beta_i) \cup \ldots \cup X(\beta_j)$ is not an mmodule.

Flat Robinson spaces

Definition

Flat Robinson space: a Robinson space having only two compatible orders (reverse from each other).

Example: line distances are flat.

Flat Robinson space have PQ-tree reduced to a single internal node of type Q.

Corollary

If all the mmodules are trivial (X and one-element sets), then (X, d) is flat and its PQ-tree has a single node of type Q.

Flat Robinson spaces have single node?

Is the converse true? Are the mmodules of flat Robinson spaces always trivial? No!

Consequence

PQ-tree and mmodule tree are not similar!

Conical node

Definition

conical node: a Q-node $Q(\beta_1, \ldots, \beta_k)$ with a (unique) child β_i and δ such that $d(\beta_i, \beta_j) = \delta$ for each $j \neq i$. apex child: the child β_i in that case. split child: β_i when it is a P-node with associated value δ .

	а	b	С	d	е	f
а	0	1	2	2	2	4
b		0	2	2	2	3
С			0	2	2	2
d				0	2	2
е					0	2
f						0

Conical nodes and flat Robinson spaces

Lemma

If (X, d) is flat Robinson space,

- (i) either all its mmodule are trivial,
- (ii) or there is $p \in X$ and δ with $d(p, x) = \delta$ for all $x \in X \setminus \{p\}$. $X \setminus \{p\}$ is the only non-trivial mmodule. Also p is not in a diametral pair.

In case (ii), the Q-root is conical, with leaf p apex.

	a	b	c	d	е
а	0	1	2	3	3
b		0	2	2	3
С			0	2	2
d				0	2
е					0

Special ∩-node and large child

Definition

Special \cap -node: a \cap -node whose associated value is less than the diameter of one of its child.

Large child: the child (unique for Robinson space) of a \cap -node whose diameter is more than the \cap -node associated value

Conical Q-node and special \cap -node are the only bad cases, for which the correspondance

 $\begin{array}{l} \cap \text{-node} \leftrightarrow \text{P-node} \\ \cup \text{-node} \leftrightarrow \text{Q-node} \end{array}$

does not work.

From mmodule trees to PQ-trees and back

Easy cases (no special node, no conical node):

In case (b), it requires σ .

From mmodule trees to PQ-trees and back

Bad case: special \cap -node to conical Q-node.

From mmodule trees to PQ-trees and back

Bad case: conical Q-node to special \cap -node.

Translation

This gives:

Theorem

Given a Robinson space, one can build the mmodule tree from the PQ-tree, and the PQ-tree from the module tree in time O(|X|) (without counting the time spent to order children of Q-nodes).

Solving the flat Robinson case

It remains to show how to order the children of Q-node. More generally: find the compatible order (up to reversal) for a flat Robinson space.

- 1. choose arbitrarily a pivot p,
- 2. sort vertices by their *proximity* to *p*,
- 3. choose for each vertex its side, left or right of p.

Step 2 is based on the partition refinement algorithm (used to build the mmodule tree).

(used by Erhenfeucht at al. to build the mmodule tree)

Input: a partition \mathcal{P} of X

Output: a partition \mathcal{P}' , refining \mathcal{P} (for all $S' \in \mathcal{P}'$, there is $S \in \mathcal{P}$ with $S' \subseteq S$), where each $S' \in \mathcal{P}'$ is an mmodule.

Idea: Keep for each part S a set of candidate *distinguishers* Z_S .

Invariant: For any $x, y \in S$, if there is $z \in X \setminus S$ with $d(x, z) \neq d(y, z)$, then $z \in Z_S$.

Procedure: Iteratively pick z in some Z_S , and refine S depending on the distances from z.

 $\{(S, Z_S) : S \in \mathcal{P}\} = \{(abc, defg), (defg, abc)\}$

 $\{(abc, defg), (defg, abc)\} \\ \longrightarrow \{(ab, cefg), (c, abefg)(defg, abc)\}$

(а	b	С	d	е	f	g	
	а	0	2	2	4	4	4	5	-
	b		0	2	4	4	4	5	
	С			0	3	3	4	4	-
	d				0	1	2	2	-
	е					0	2	2	
	f						0	2	
ĺ	g							0	

 $\{(ab, cefg), (c, abefg)(defg, abc)\}$ $\longrightarrow \{(ab, \emptyset), (c, abefg), (defg, abc)\}$

(а	b	С	d	е	f	g	
	а	0	2	2	4	4	4	5	-
	b		0	2	4	4	4	5	
	С			0	3	3	4	4	-
	d				0	1	2	2	-
	е					0	2	2	
	f						0	2	
ĺ	g							0	

 $\{(ab, \emptyset), (c, \emptyset)(defg, abc)\}$ $\longrightarrow \{(ab, \emptyset), (c, \emptyset), (def, gbc), (g, def bc)\}$

1		а	b	С	d	е	f	g`
	а	0	2	2	4	4	4	5
	b		0	2	4	4	4	5
	С			0	3	3	4	4
	d				0	1	2	2
	е					0	2	2
	f						0	2
(g							0

 $\{(ab, \emptyset), (c, \emptyset), (def, gbc), (g, defbc)\}$ $\longrightarrow \{(ab, \emptyset), (c, \emptyset), (def, c), (g, defbc)\}$

1		а	b	С	d	е	f	g	
	а	0	2	2	4	4	4	5	-
	b		0	2	4	4	4	5	
	С			0	3	3	4	4	-
	d				0	1	2	2	-
	е					0	2	2	
	f						0	2	
Ĺ	g							0	

 $\{(ab, \emptyset), (c, \emptyset), (def, c), (g, defbc)\}$ $\longrightarrow \{(ab, \emptyset), (c, \emptyset), (de, f), (f, de)(g, defbc)\}$

(а	b	С	d	е	f	g`	١
	а	0	2	2	4	4	4	5	
	b		0	2	4	4	4	5	
	С			0	3	3	4	4	
	d				0	1	2	2	
	е					0	2	2	
	f						0	2	
Ĺ	g							0	Ι

 $\{(ab, \emptyset), (c, \emptyset), (de, f), (f, de)(g, defbc)\}$ $\{(ab, \emptyset), (c, \emptyset), (de, \emptyset), (f, \emptyset)(g, \emptyset)\}$

(а	b	С	d	е	f	g`
	а	0	2	2	4	4	4	5
	b		0	2	4	4	4	5
	С			0	3	3	4	4
	d				0	1	2	2
	е					0	2	2
	f						0	2
Ĺ	g							0

$$\mathcal{P}' = \{ab, c, de, f, g\}$$

p-proximity order

Definition

p-proximity order for a compatible order <: a total order \prec for some $p \in X$, such that:

1. *p* is the minimum,

2. for all $q \in X$, $\{q\} \cup \{x \in X : x \prec q\}$ is an interval of <.

p-proximity order

 $p \prec x \prec y$ is equivalent to saying that y is not between p and x in <.

Lemma

Let
$$x, y \in X \setminus \{p\}$$
, y is not between p and x if
(i) either $d(p, x) < d(p, y)$;
(ii) or $d(p, x) = d(p, y)$ and there is $q \in X$ with $q \prec x$,
 $q \prec y$ and $d(q, x) < d(q, y)$;
(iii) or $d(p, x) = d(p, y)$ and there is $q \in X$ with $x \prec q$,
 $y \prec q$ and $d(y, q) < d(x, q)$.

Case (ii): q is an *in-pivot*, case (iii): q is an *out-pivot*.

Proof

Case (ii). Let $x, y \in X \setminus \{p\}$ with d(p, x) = d(p, y). Let $q \in X$ with $q \prec x$, $q \prec y$ and d(q, x) < d(q, y). Assume q < p. Possible cases:

In any case, y is not between p and x.

Modify the partition refinement algorithm:

$$(S,Z) \implies (S,\operatorname{In}_S,\operatorname{Out}_S) \text{ with } \operatorname{In}_S \prec S \prec \operatorname{Out}_S$$

When refining S with in-pivot $q \in In_S$: partition S into

$$S_1 \cup S_2 \cup \ldots \cup S_k$$
 with $d(q, S_1) < d(q, S_2) < \ldots < d(q, S_k)$
Set $S_1 \prec S_2 \prec \ldots \prec S_k$.
Set $\operatorname{In}_{S_i} = S_1 \cup \ldots \cup S_{i-1} \cup \operatorname{In}_S \setminus \{q\}$.
Set $\operatorname{Out}_{S_i} = S_{i+1} \cup \ldots \cup S_k \cup \operatorname{Out}_S$.

Slightly more complicated rules when $q \in Out_S$.

$$(p, \emptyset, \emptyset) \prec (abcef, p, \emptyset)$$

 $(p, \emptyset, \emptyset) \prec (bce, \emptyset, af) \prec (af, bce, \emptyset)$

$$(p, \emptyset, \emptyset) \prec (bce, \emptyset, af) \prec (af, bce, \emptyset)$$
$$(p, \emptyset, \emptyset) \prec (c, \emptyset, bef) \prec (b, c, ef) \prec (e, cb, f) \prec (af, bce, \emptyset)$$

d١

1 ()

(d, d)

11

$$(p, \emptyset, \emptyset) \prec (c, \emptyset, \emptyset) \prec (b, \emptyset, \emptyset) \prec (e, \emptyset, \emptyset) \prec (af, bce, \emptyset)$$

 $(p, \emptyset, \emptyset) \prec (c, \emptyset, \emptyset) \prec (b, \emptyset, \emptyset) \prec (e, \emptyset, \emptyset) \prec (a, ce, f) \prec (f, ace, \emptyset)$
L i S

 $(p, \emptyset, \emptyset) \prec (c, \emptyset, \emptyset) \prec (b, \emptyset, \emptyset) \prec (e, \emptyset, \emptyset) \prec (a, \emptyset, \emptyset) \prec (f, \emptyset, \emptyset)$ $p \prec c \prec b \prec e \prec a \prec f$

How to use the *p*-proximity order

- Choose p that is not apex.
- Refine {{p}, X \ {p}}. Because no module (except possibly X \ {apex}), the partition contains one-element sets only.
- ▶ Obtain a *p*-proximity order ≺.

$$p \prec e_1 \prec e_2 \prec \ldots \prec e_k$$

Next goal

Partition $X \setminus \{p\}$ into two sides $L \cup R$: elements at the left (resp. right) of p in <.

$$\prec + L \cup R \implies <$$

Choosing side

Lemma

Let \prec be a *p*-proximity order, and $u \prec v$. (i) d(u, v) < d(p, v) implies side(u) = side(v), (ii) d(u, v) > d(p, v) implies $side(u) \neq side(v)$.

Proof.

The constraint graph G

Define the constraint graph G = (V, E):

$$V = X \setminus \{p\}$$

 $E = \{(u, v) : u \prec v \land d(u, v) \neq d(p, v)\}$

If G has a single connected component: pick a side for an arbitrary $x \in X \setminus \{p\}$, propagate to deduce L and R.

The component graph *H*

Definition

Tangled components C, C': C and C' are not comparable under \prec .

Define the component graph H = (K, F):

 $K = \{C : C \text{ connected component of } G\}$ $F = \{(C, C') : C, C' \text{ are tangled}\}$

Analysis of tangled components

Suppose C, C' are tangled. We may assume $x, z \in C, y \in C'$ with $xz \in E$ and $x \prec y \prec z$.

• d(p, y) = d(x, y) (as $xy \notin E$),

•
$$d(p,z) = d(y,z)$$
 (as $yz \notin E$).

Lemma

(i) if
$$d(x, z) < d(p, z)$$
, then side $(x) = side(z) \neq side(y)$,
(ii) if $d(x, z) > d(p, z)$, then side $(x) \neq side(z) = side(y)$

Thus if *H* has a single connected component: pick a side for an arbitrary $x \in X \setminus \{p\}$, propagate to deduce *L* and *R*.

Tangled lemma proof

We have
$$d(x, y) = d(p, y)$$
 and $d(y, z) = d(p, z)$ and
 $x \prec y \prec z$.
(i) If $d(x, z) < d(p, z)$, then $\operatorname{side}(x) = \operatorname{side}(z)$, and
 $d(x, z) < d(p, z) = d(y, z)$.

y
 $\downarrow p \xrightarrow{x \prec y} x \xrightarrow{d(x, y) > d(x, z)} z \xrightarrow{y \prec z}$
(ii) If $d(x, z) > d(p, z)$, then $\operatorname{side}(x) \neq \operatorname{side}(z)$, and
 $d(y, z) = d(p, z) < d(x, z)$.

y
 $\downarrow z \xrightarrow{y \prec z}$
 $\downarrow y \prec z$

LIS

Last missing piece

Now we just need:

Lemma

H is connected.

Proof. Let *m* be the maximum of \prec and *M* be *p* plus the vertices not determined by side(m).

Let $x, y \in M$, $z \in X \setminus M$. $x \prec z$ and $y \prec z$ (as no entanglement here). Then $xz, yz \notin E$ thus d(x, z) = d(p, z) = d(y, z). M is an mmodule. As (X, d) is flat (and m is not apex), $M = \{p\}$.

Algorithmically

```
1: let m \in X, maximum for \prec
 2: let L = [], R = [m], Undecided = reverse(X \setminus \{p, m\})
 3: for q \in X \setminus \{p\} in decreasing order for \prec do
         let Skipped = []
 4:
         for x \in Undecided from first to last do
 5:
 6:
             if d(x,q) = d(p,q) then
 7:
                  Skipped \leftarrow x \cdot Skipped
 8:
             else
 <u>9</u>:
                  if d(x,q) < d(p,q) \Leftrightarrow q \in L then
10:
                    L \leftarrow x \cdot L, R \leftarrow Skipped + R
11:
                  else
                   R \leftarrow x \cdot R, L \leftarrow Skipped ++ L
12:
13:
                  Skipped \leftarrow []
          Undecided \leftarrow reverse(Skipped)
14:
15: return reverse(L) ++ [p] ++ R
```


proximity order + side bipartition

Flexible framework:

- build mmodule tree, translate to PQ-tree using flat Robinson ordering,
- build ordering of *p*-copoints (maximal mmodules not containing *p*), recurse on copoints and build PQ-tree,
- contract *p*-copoints to get a flat Robinson quotient space, merge compatible orders of copoints with order of quotient space.

Available implementation for the last method.

Open problems

- ▶ o(n²) with additional information (promise to be Robinson, minimum spanning tree for d, ...),
- extension to circular Robinson,
- extension to other topologies than the line,
- 3D-matrices.