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Abstract. The second welfare theorem tells us that social welfare in an economy
can be maximized at an equilibrium given a suitable redistribution of the endow-
ments. We examine welfare maximization without redistribution. Specifically, we
examine whether the clustering of traders into k submarkets can improve welfare
in a linear exchange economy. Such an economy always has a market clearing ε-
approximate equilibrium. As ε → 0, the limit of these approximate equilibria need
not be an equilibrium but we show, using a more general price mechanism than the
reals, that it is a “generalized equilibrium”. Exploiting this fact, we give a polyno-
mial time algorithm that clusters the market to produce ε-approximate equilibria
in these markets of near optimal social welfare, provided the number of goods and
markets are constants. On the other hand, we show that it is NP-hard to find an
optimal clustering in a linear exchange economy with a bounded number of goods
and markets. The restriction to a bounded number of goods is necessary to obtain
any reasonable approximation guarantee; with an unbounded number of goods, the
problem is as hard as approximating the maximum independent set problem, even
for the case of just two markets.

1 Introduction

The fundamental theorems of welfare economics are considered “the most remarkable
achievements of modern microeconomic theory” [23] and are the “central set of propositions
that economists have to offer the outside world - propositions that are in a real sense, the
foundations of Western capitalism” [11]. Informally, they state (under certain conditions
that we discuss later)

First Fundamental Welfare Theorem. A competitive equilibrium is pareto
efficient.

Second Fundamental Welfare Theorem. Any pareto efficient solution can be
supported as a competitive equilibrium.

The First Welfare Theorem is widely viewed as “a mathematical statement of Adam
Smith’s notion of the invisible hand leading to an efficient allocation” [31]. The Second
Welfare Theorem implies that we can separate out issues of economic efficiency from issues
of equity. Specifically, by redistributing the initial endowments (by lump-sum payments),
a set of prices exists that can sustain any pareto solution. This second theorem has “funda-
mental implications for how we think about economic organization” [32] and is “arguably
the theoretical result that has had the most dramatic effect on economic thinking” [10].
Despite this, “much of public economics takes as its starting point the rejection of the
practical value of the second theorem” [26]. Why this discrepancy? To understand this,



note that lump-sum transfers are theoretically considered a very desirable form of taxation
as they do not distort incentives within the pricing mechanism. However this is essentially
accomplished by a massive distortion of the initial market! Moreover, these are personal-
ized liabilities which in turn can be viewed as an extremely unfair form of taxation in that
they don’t depend upon the actions or behaviours of the agents, and are impractical for a
myriad of implementational and political reasons (see, for example, [4], [5], [26] and [25]).

This observation motivates our work. Can the market mechanism be used to sustain
pareto allocations without redistribution? In particular, suppose that without redistribu-
tion a single market leads to low social welfare (or even has no competitive equilibrium
at all). In these circumstances, can the market mechanism still be used to produce an
allocation of high social welfare? We address this question under the classical model of
exchange economy, and show that indeed this can often be achieved provided the single
market can be clustered into submarkets.

1.1 The Exchange Economy.

We consider the classical model of an exchange economy – an economy without production.
We have n traders i ∈ {1, 2, . . . , n} and m goods j ∈ {1, 2, . . . ,m}. (To avoid any ambiguity
between traders and good we will often refer to good j as good gj). Each trader i has an
initial endowment ei ∈ Rm+ , where eij is the quantity of good j that she owns, and a utility
function ui : Rm+ → R. The traders have no market power and so are price-takers. Given
a set of prices p ∈ Rm+ , where pj is the price of good j, trader i will demand the best
bundle she can afford, that is, argmaxxi

ui(xi) s.t. p ·xi ≤ p ·ei. These prices and demand
bundles form an Walrasian (competitive) equilibrium if all markets clear: demand does not
exceed supply for any good j. That is,

∑
i xij ≤

∑
i eij . In this paper we focus on the

basic case of linear utility functions – the linear exchange model. Here the function ui(.)
can be written as ui(xi) =

∑m
j=1 uij xij where uij ≥ 0 is the utility per unit that trader

i has for good j. (We denote by ui the vector of utility coefficients for trader i.)

1.2 The Fundamental Welfare Theorems.

An allocation is pareto efficient if there is no feasible allocation in which some trader is
strictly better off but no trader is worse off. The first welfare theorem states that any
Walrasian equilibrium is pareto efficient. It holds under very mild conditions, such as
monotonic utilities or non-satiation. Clearly for this result to be of interest, though, we
need this economy to possess Walrasian equilibria. In groundbreaking work, Arrow and
Debreu [3] showed that this is indeed the case, under certain conditions such as concave
utility functions and positive endowments.1 Interestingly, equilibria need not exist even in
a linear exchange economy. However, there is a combinatorial characterization for existence
due to Gale [13], and we discuss this characterization and other properties of the linear
exchange economy in detail in Section 2.

Observe that pareto efficiency is not a particularly restrictive notion: an allocation is
efficient unless there is an alternative that is universally agreed to be better (or at least as
good). This requirement of unanimity has important implications. Allocations that may

1 As well as the possibility of non-concave utility function, numerous other factors may affect the
practicality of the welfare theorems: market power and the presence of price-makers; incomplete
or asymmetric information; externalities; convergence issues for equilibria; the existence of
multiple equilibria; economies of scale when production is added to the exchange economy, etc.
Such issues are not our focus here.
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be viewed as societally better outcomes may be blocked by a single agent. For example,
pareto allocations can be extremely inequitable. The second welfare theorem attempts to
address this concern: Any pareto solution can be supported as a Walrasian equilibrium.
Specifically, by redistributing the initial endowments via lump-sum payments, a set of
prices exists that can sustain any pareto solution. (The second theorem also requires
concave utility functions.) Thus, the second welfare theorem implies that we can separate
out issues of economic efficiency from issues of equity.

As stated, however, the second theorem is of limited practical value due to the infea-
sibility of direct transfer payments. Thus our goal is to obtain non-redistributive second
welfare theorems. Specifically, maximising the social welfare,

∑n
i=1 ui(xi), is a fundamen-

tal question in economics; so, can we support at equilibrium an allocation with high social
welfare? For example, in a linear exchange economy it is particularly easy to find an op-
timal social allocation. For each good j, simply give all of it to the trader i for whom it
proffers the greatest utility per unit. However, even in this basic case, a Walrasian equilib-
rium may produce very low social welfare. Intuitively the reason is simple: a trader with a
large utility coefficient for a good may not be able to afford many units of it. This may be
because (a) the good is in high demand and thus has a high price and/or (b) the trader
has a small budget because the goods she initially possesses are abundant and, thus, have
a low price.

On the other hand, the second welfare theorem tells us that, with redistribution, it
is possible to find prices that support an allocation of optimal welfare. Can any more
practical, market-based mechanisms achieve this? To answer this we consider a mechanism
that is allowed to cluster the traders into trading groups.

1.3 Market Clustering.

Suppose we partition the traders into k separate markets, for some integer k. In each market
t, trade then proceeds as normal with a distinct set of Walrasian prices pt generated. The
combined effect of this clustering is an allocation that may be very different than would
have resulted from a single market. So, first, can market clustering be used to improve
social welfare? If so, second, can it be used to optimize social welfare?

The answer to the first question is yes. Trivially, the option to segment the market
cannot hurt because we could simply place all the traders in the same market anyway.
In fact, market clustering may dramatically improve social welfare; we give an example
in Section 3 where the ratio between the social welfare with two markets and the social
welfare with one market is unbounded.

The answer to the second question, however, is no. Not every pareto solution can be
supported by market clustering. In particular, there are cases where the optimal social
solution cannot be obtained by clustering. Indeed, we give an example in Section 3 where
the ratio between the optimal social welfare and the optimal welfare that can be generated
by market clustering is also unbounded.

The main focus of this paper then becomes to efficiently obtain as large a welfare as
possible under market clustering.

We remark that the basic idea underlying market clustering, i.e. the grouping and
separation of traders, is a classical one in both economic theory and practice. In particular,
it lies at the heart of the theory of trade. On the one hand, countries should trade together
(grouping) to exploit the laws of comparative advantage; on the other hand, trade between
countries may be restricted (separation) to protect the interests of certain subsections (e.g.
specific industries or classes of worker). Interestingly, of course, whilst separation has a net
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negative effect on welfare in international trade models, our results show it can have a large
net positive effect in general equilibrium models. Other examples that can be viewed as
market clustering arise in the regulation of oligopolies and in the issue of trading permits.
A less obvious example concerns bandwidth auctions where participants are grouped into
“large” (incumbant) and “small” (new-entrants). Trade, with the mechanism in the form
of feasible bidding strategies, is then restricted depending upon the group.

1.4 Our Results.

A k-equilibrium is a partition of the set of traders into k markets together with
an equilibrium for each of these k markets.

Our main result, in Section 6, is a polynomial time algorithm that finds an ε-approximate
k-equilibrium, of almost optimal social welfare, provided the number of goods and markets
are constants. The key to this result is a limit theorem in Section 5 showing that, in a
single market, ε-approximate equilibria converge to what we call a generalized equilibrium.

On the other hand, in Section 4 we show that it is NP-hard to find an optimal k-
equilibrium in a linear exchange economy with a bounded number of good and markets.
The restriction to a bounded number of goods is necessary to obtain any reasonable approx-
imation guarantees; for linear exchange economies with an unbounded number of goods,
the problem is as hard as approximating the maximum independent set problem, even for
the case of just 2 markets.

2 Walrasian Equilibria in the Linear Exchange Model

Take an equilibrium with prices p and allocations xi for the Walrasian model with linear
utilities. Recall, we may assume that the following hold:

Budget Constraints: Trader i cannot spend more than she receives: p · xi ≤ p · ei (1)

Optimality:Each trader i optimizes the bundle of goods she buys:
ui · xi is maximized subject to (1)

(2)

Market Clearing: Demand does not exceed supply, for any gj :
∑
i

xij ≤
∑
i

eij (3)

2.1 Properties of Equilibria

The following claims are well-known facts (see e.g. [16]).

Claim 1. At equilibrium, the budget constraint (1) is tight for any trader.

Claim 2. At equilibrium, the market clearing condition (3) is tight for any gj with pj > 0.

Claim 3. At equilibrium, for any subset S of traders,

there is a good gj s.t.
∑
i∈S

xij >
∑
i∈S

eij iff there is a good gj′ s.t.
∑
i/∈S

xij′ >
∑
i/∈S

eij′

Claim 4. At equilibrium, for any i with Pi := p · ei > 0 and any gj with pj > 0

uij
pj
≤ ui · xi

Pi
(4)

Moreover, the inequality is tight for any i, j with xij > 0.

4



2.2 The Existence of Equilibria in a Single Market

Gale [13] gave a characterisation for when linear exchange economies possess equilibria.
Observe that the price of every good will be strictly positive provided each good is owned
by at least one trader, and at least one trader desires it. We may assume this is the case
as any good that does not satisfy this condition may be removed from the model; in this
case supply will exactly equal demand for each good. Gale also assumes every trader is
non-altruistic in that they each desire at least one good. (We say that a trader i is an
altruist if uij = 0 for every good j.)

Theorem 5. [13] An altruist-free linear exchange economy has a Walrasian equilibrium
if and only if there is no super self-sufficient set of traders. ut

Here, a subset S of traders is called super self-sufficient if

1. Self-Sufficiency:
∑
i/∈S eij = 0 for every good gj such that

∑
i∈S uij > 0.

2. Superfluity:There is a good gj such that
∑
i∈S eij > 0 and

∑
i∈S uij = 0.

It will be useful to reinterpret Gale’s condition combinatorially using the market graph.
The market graph GM for a given market is a directed graph whose set of vertices is the
set of goods in that market. There is an arc j → j′ with label i if there is a trader i with
eij > 0 and uij′ > 0; thus trader i has good gj and, depending upon the prices, is willing
to trade it for good gj′ . Let h(S) denote the goods that are the heads of arcs with labels
from traders in S, and let t(S̄) denote the goods that are the tails of arcs corresponding
to traders not in S. Then S is self-sufficient if h(S)∩ t(S̄) = ∅. In this case, h(S) induces a
directed in-cut in the market graph. (Thus, a sufficient – but not necessary – condition for
the existence of an equilibrium is the strong connectivity of the market graph. Moreover,
any directed cut will correspond to a self-sufficient set.) If, in addition, h(S) is a strict
subset of t(S), then S is super self-sufficient. For example, the market graph shown in
Figure 1 does not have an equilibrium. It represents a market with 6 traders and 5 goods

g1, . . . g5: each arc g
i→ h represents one trader i with eig = 1 and uih = 1, all other values

being 0. Then traders {4, 5, 6} form a super self-sufficient set, so this market does not have
an equilibrium.

g1

g2 g3 g4

g5

1 2

3 4

56

Fig. 1. A market graph with a super self-sufficient set and, therefore, no equilibrium.

We can use the market graph to test Gale’s condition efficiently. Furthermore, Jain [16]
gave a polynomial time algorithm to find an equilibrium provided one does exist.2

2 In the linear exchange model the equilibria need not be unique. However, in a single market all
equilibria give the same welfare [13].
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2.3 The Existence of Equilibria in a Market Clustering.

Recall a trader i is an altruist if uij = 0 for every good j. An economy is altruistic
if it is allowed to contain altruistic traders. It is important for us to understand the
implications of altruism even for economies without altruists. This is because clustering
may create de facto altruists in the submarkets. Moreover such altruists are one of the
factors that allow the equilibria to exist in a market clustering, even if the single market
has no equilibrium. We can easily extend Gale’s theorem to altruistic economies.

Theorem 6. An altruistic, linear exchange economy has an equilibrium if and only if
every super self-sufficient set of traders contains at least one altruist.

Proof. An altruist i is willing to trade with any agent as she is, trivially, equally happy
to possess any good. So in the market graph corresponding to an economy with altruistic
traders we may include arcs from any good altruist i owns to every other good. Thus,
trader i cannot be in any set S for which h(S) forms a directed in-cut. ut

So altruistic economies need not have equilibria. However, they can always be clustered
into markets with equilibria provided the number of markets k is at least the number of
goods m.

Theorem 7. An altruistic, linear exchange economy with m goods has an m-equilibrium.

Proof. We prove this by induction on the number of goods. An altruistic economy with
one good gj has a trivial equilibrium. Now take an altruistic economy with m goods. If
it has no super self-sufficient set of traders consisting entirely of non-altruists then, by
Theorem ??, it has an equilibrium. Otherwise let S be a minimal super self-sufficient set
of non-altruists. By minimality, the market induced by S contains an equilibrium as it has
no super self-sufficient subset.

As they are not altruistic, each trader in S desires at least one good. By definition,
however, traders in S desire no goods held by traders in S̄. So there is at least one good
held by S that is not held by traders in S̄. Thus the market induced by the traders in S̄
contains at most m− 1 goods. By induction it can be partitioned into m− 1 clusters that
each have an equilibrium. Together with the cluster S, we obtain an m-equilibrium. ut

For example, consider again the market in Figure 1. If we partition the traders into
two, with trader 3 alone in the first market and traders {1, 2, 4, 5, 6} in the second market,
then both resulting markets have an equilibrium (with x32 = 1 in the first market, and
p3 = 0 in the second market).

Theorem 7 is also tight. There are examples where m clusters are needed otherwise at
least one of them has no equilibrium. For example, take a market with m traders. Trader
i is interested only in good gi, and has a positive endowment of goods gi, gi+1, . . . , gm.
It is easy to check that any cluster that contains more than one trader contains a super
self-sufficient set.

3 Single Markets, Market Clustering and Welfare Redistribution.

In this section, we examine the potential benefits of market clustering and the limits of
its power as a tool. First, we have seen that equilibria may not exist in the single market
case (i.e. when market clustering is prohibited). In such instances, by Theorem 7, market
clustering can always be applied to produce equilibria. Furthermore, even when equilibria
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do exist in the single market case, market clustering may lead to huge improvements in
social welfare in comparison. On the other hand, market clustering is not as powerful as
welfare redistribution; specifically, market clustering does not always support every pareto
allocation. To see this we consider two measures regarding the social welfare function:

1. The Clustering Ratio: the ratio between the maximum social welfare under market
clustering and the social welfare obtained in a single market.

2. The Redistribution Ratio: the ratio between the maximum achievable social wel-
fare (with welfare redistribution) and the maximum welfare under market clustering.

In Appendix A we give examples to show that both ratios can be unbounded. Indeed,
the clustering ratio can be unbounded even if we are restricted to two clusters, and the
redistribution ratio can be unbounded even if we can partition into an unlimited number
of clusters.

4 The Hardness of Market Clustering

In this section, we consider the hardness of the k-market clustering problem. First we show
in Appendix B that the problem is NP-hard even if we only have a fixed number of goods
and a fixed number of markets, that is, m and k are constant.

Theorem 8. Given an instance of the 2-market clustering problem with five goods and
linear utility functions, it is NP-hard to decide whether there is a clustering that yields a
social welfare of value at least Z, for any Z > 0.

(We provide a partial complement to this result by giving in Section 6 a polynomial
time algorithm to find an approximate Walrasian equilibria when there are a fixed number
of goods and a fixed number of markets).

Then we show, in Appendix B, a much stronger hardness result for the market clustering
problem when the number of goods is unbounded.

Theorem 9. For any constant δ > 0 and maximum social welfare Z, unless NP = ZPP,
it is hard to distinguish between the following two cases:

– Yes-Instance: There is a clustering that yields a social welfare of value at least Z1−δ.

– No-Instance: There is no clustering that yields a social welfare of value at least Zδ.

5 Approximate Walrasian Equilibria.

We are interested in finding an ε-approximate market equilibrium; that is, for each market,
our algorithm outputs a price p and an allocation x satisfying the following conditions.

– Budget Constraints: Trader i cannot spend more than she receives: xi · p ≤ ei · p
– Approximate Optimality: Subject to the budget constraints, each trader i purchases

a bundle xi whose utility is similar to that of the optimal bundle x∗i : ui·xi ≥ (1−ε)ui·x∗i
– Market Clearing: Demand never exceeds supply: for any gj ,

∑
i xij ≤

∑
i eij
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5.1 Existence of Approximate Walrasian Equilibria.

Compared to exact market equilibria, which do not always exist, there is always an ap-
proximate market equilibrium with arbitrary small approximation:

Theorem 10. For ε > 0, every market has a market-clearing ε-approximate equilibrium.

By market-clearing ε-approximate equilibrium, we mean an ε-approximate equilibrium
for which the approximate market clearing inequality is tight. This theorem can be in-
ferred from the algorithm of [15]. For completeness, we give a direct proof of this fact in
Appendix C.

5.2 Properties of Approximate Walrasian Equilibria.

We now discuss some properties of equilibria that will later be very useful to us in designing
efficient algorithms. Given a market, we use the following definitions:

– umax = maxi,j uij is the maximum coefficient of any utility function.
– umin = mini,j:uij>0 uij is the minimum non-zero coefficient of any utility function.
– pmax = maxj pj is the maximum price of any good in the market.
– pmin = minj:pj>0 pj the minimum non-zero price of any good in the market.
– emin = mini,j:eij>0 eij .

Assume wlog that
∑
i eij = 1, for every good gj . We can connect the above values via the

market graph. Recall that n denotes the number of traders and m the number of goods;
then we obtain

Lemma 1. If the market graph is strongly connected then, at a market equilibrium,

pmax

pmin
≤ enm

e

(
umax

eminumin

)nm
In particular, scaling so that pmin = 1 gives pmax ≤ enm/e

(
umax

eminumin

)nm
.

Proof. We may assume (solely for the duration of this proof) that each trader has a positive
endowment for exactly one good and no two traders have positive endowments for the same
good [16]. To do this, consider a trader i with endowment ei. For each good gj such that
ei,j > 0 we create a new trader ij with eijj = eij , uij = ui and eijj′ = 0, for all j′ 6= j.
So each trader now has only one good. Furthermore, if two traders have the same good,
then we simply give the good two different names (and replicate the utility functions of
other traders accordingly). Now, each trader represents a unique good, i.e., a trader i has
a positive endowment for the unique good gi. So we have at most nm traders/goods.

These transformations maintain the strong connectivity of the market graph. Moreover,
all the copies of the same original good will have the same price in an equilibrium. After
these transformations, the number of units of each good will in general be less than one.
Thus, we scale all the initial endowments so that each trader i has one unit of a good gi.
In addition, we must scale the coefficients of utility functions; otherwise, the scaling would
effect the social welfare. Specifically, for each good i, we divide the initial endowments of
trader i by eii, and we multiply the utilities of every trader for this good by eii, so as to
keep the prices unchanged.
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We may assume that no good has a price of zero. By Equation (4), we have:

u′ij
pj
≤
∑
` u
′
i` · xi`
pi

For a pair i, j with u′ij > 0, we get:

pi
pj
≤
∑
` u
′
i` · xi`
u′ij

≤ u′max

u′min

∑
`

xil

Assume p′min = p′i0 and p′max = p′is , where s ≤ nm. Because the market is strongly
connected, there is a sequence of traders with indices i0, i1 . . . , is, s ≤ nm, such that
u′ij−1ij

> 0 for all i ∈ {1, . . . , s}. Multiplying the previous inequalities for all consecutive
terms of this sequence, we get:

pmax

pmin
=
s−1∏
j=0

pij+1

pij
≤
(
u′max

u′min

)s
·
s∏
j=0

(∑
`

xj`

)
≤
(nm
s

)s(u′max

u′min

)nm
≤ enm

e

(
u′max

u′min

)nm
Here, the second inequality follows from the Arithmetic-Geometric Mean Inequality

and the fact
∑s
j=0

∑
` xj` ≤

∑s
j=0

∑
` ej` ≤ nm by the market clearing constraint (3).

Now, observe that there is a pair i, j such that u′min = ejjuij ≥ eminumin, and there is a
(different) pair i, j such that u′max = ejjuij ≤ umax. ut

The same reasoning applied to approximate equilibria gives:

Lemma 2. If the market graph is strongly connected, at an ε-approximate market equi-
librium:

pmax

pmin
≤ enm/e

(
umax

(1− ε)uminemin

)nm
It is possible for a market that is not strongly connected to have an equilibrium: the owners
of the goods reachable from a strongly connected set induce a self-sufficient set but not
necessarily a super self-sufficient set. However, in this case we cannot bound the ratio
pmax/pmin as seen from the following lemma.

Lemma 3. Consider a market with equilibrium p,x. Let W be a proper subset of goods
such that for any player i, if there is some j ∈W with eij > 0, then uik = 0 for all k /∈W
(i.e. W is the shore of a directed cut in the market graph). Then, for any B > 1, p′,x is
also an equilibrium where:

p′j =

{
pj if j /∈W ,
Bpj if j ∈W .

Proof. The lemma follows from the following two facts. First, xij = 0 for any good gj /∈W
and any trader i with

∑
k∈W eik > 0 since then uij = 0 by the definition of W . Second,

xij = 0 for any trader i with
∑
k∈W eik = 0 and gj ∈W . Consequently, scaling the prices

of goods in W does not effect the equilibrium. ut

An implication of this lemma is that the strongly connected components have price
allocations that are essentially independent of each other: for example one could decompose
the problem, find local equilibria in each component, and then scale the prices accordingly
to get a global equilibrium. Also, again by scaling the prices of W , we can assume that
the minimum price in W is no more than umax/umin times the maximum price outside
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W , as it does not change the optimality of the allocations (it would be a problem if
there was a trader with

∑
j /∈W uij = 0 and

∑
j /∈W eij = 0, but then taking this trader

plus {i :
∑
j∈W eij > 0} would give a super self-sufficient set). This gives the following

strengthening:

Lemma 4. Any market having an equilibrium has one such that:

pmax

pmin
≤ enm

e

(
umax

eminumin

)nm

5.3 Limits of Equilibria

By Theorem 10, for any ε > 0 there is a market-clearing ε-approximate equilibrium. When
ε tends to 0, the prices of these approximate equilibria may diverge (if no exact equilibrium
exists), but the allocations of goods to players, as they are chosen from a compact set,
admit at least one limit point, an allocation x̊. We call such an allocation a limit allocation.
In particular, if the market admits an exact equilibrium, then x̊ is the allocation of an exact
equilibrium (if x̊ could not be obtained as a limit of approximate equilibria with converging
prices, one could exhibit a super self-sufficient set and this would be a contradiction). In
any case, x̊ satisfies the market clearing constraints with equality.

The allocation x̊ may not be supported by a set of real prices. For example, there is
obviously no set of prices supporting x̊ when the market does not have an exact equilibrium.
We show that x̊ can be supported by taking prices from a more general set than the real
numbers. Consider the set Q = N×R+, our new set of “prices”. We denote by π1 and π2

the first and second projection, i.e. π1(x, y) = π2(y, x) = x. We extend these projections
to vectors (and abuse notation) by: πi ((vj)j) = (πi(vj))j . We then redefine the notion of

equilibrium in terms of Q. For p ∈ Qm and x̊ ∈ Rm×n+ , let the rank ri of i be the maximum
a such that

∑
j : π1(pj)=a eij > 0, for all i. The pair p,x is a generalized equilibrium if:

– Budget Constraints: For all i ∈ {1, . . . , n}, for all a ≥ ri,∑
j : π1(pj)=a

π2(pj) · xij ≤
∑

j : π1(pj)=a

π2(pj) · eij

– Optimality: For each trader, xi maximizes the utility ui · xi over all allocations
satisfying the budget constraint.

– Market Clearing: No good is in deficit:∑
i

xij ≤
∑
i

eij for all goods j with π2(pj) > 0.

This is indeed a generalization: if we force the prices to be in {0}×R+ then a generalized
equilibrium would give a Walrasian equilibrium. An ε-approximate generalized equilibrium
is defined by replacing the optimality condition by: ui · xi is at least (1 − ε) times the
utility of a best response of trader i, for any trader i.

Theorem 11. For any market, each limit allocation x̊ gives a generalized equilibrium.

The proof of Theorem 11 is given in Appendix D. A generalized equilibrium can be
approximated by an approximate Walrasian equilibrium with almost as high welfare. The
converse is not true, an approximate equilibrium may achieve a welfare arbitrarily high
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compared to a generalized equilibrium; consider the market with two traders and two
goods, e11 = e22 = 1, u12 = L, u22 = 1, all the other values are zero. In this market, the
only generalized equilibrium has welfare 1, but there are approximate equilibrium with
welfare ε · L+ (1− ε), and this tends to +∞ when L tends to +∞.

Lemma 5. Let x̊, p̊ be a generalized equilibrium. For any ε > 0, there is an approximate
equilibrium with total welfare at least 1− ε times the welfare of x̊, p̊.

Proof. (Sketch: the proof is similar to the proof of Theorem 10.) Fix M such that uij/(M ·
π2(p̊j)) > uij′/π2(p̊′j) for any i, j and j′ with x̊ij′ 6= 0 and π1(p̊j) > ri, and

∑
ri<a

eijπ2(p̊j) <

ε ·M ·maxi:ri>a
∑
j:uij 6=0 π2(p̊j)xij . Set pj = Mπ1(p̊j)π2(p̊j).

The first set of constraints on M state that every trader achieving a positive welfare
in x̊, p̊ is at a best response in x̊,p. Then we set x′ = (1 − ε)x. Then, to each trader
i with welfare 0 in x̊, p̊, we allocate to i a best response x′i. Because of the second set
of constraints on M , these traders don’t claim more than ε of what was allocated to any
other trader in x̊. Finally, we redistribute the goods in excess in x′ to traders with excessive
budget, to get a market-clearing ε-approximate equilibrium x,p.

6 A Fully Polynomial Time Approximation Scheme

In this section, we exploit the structure we have now developed to obtain a polynomial
time algorithm to find an ε-approximate equilibrium for the k-market clustering problem
where the number of goods m and the number of markets k are constant. Moreover, this
equilibrium has a very strong welfare guarantee: it gives social welfare of at least 1 − ε
times the welfare of the optimal k-cluster generalised equilibrium.

Theorem 12. For any ε > 0 and for fixed k, n ∈ N, there is an algorithm that, given a
market M with m goods, computes within time polynomial in 1

ε and the size of the M ,
an ε-approximate generalized k-equilibrium for M with welfare at least 1 − ε the optimal
welfare of a generalized k-equilibrium.

6.1 The Dynamic Program

Our dynamic program will take as an input a set of generalized prices for every good in
each market. This follows as we may try all possible prices selected from a finite set of
prices in {1, . . . ,m}×P where P = {1, 1 + 1/b, (1 + 1/b)2, . . . , (1 + 1/b)σ−2}. Here b ∈ N+

is a parameter to be set later, and σ is such that (1 + 1/b)σ−3 ≤ enm/e
(

m·umax

eminumin

)nm
≤

(1 + 1/b)σ−2. A generalized price (a, p) encodes a real price ν(a, p) given by Ma · p where
M is an arbitrarily large constant. M is only used algebraically, we won’t need to set its
value. So, we have m · σ possible prices for each good in each market. Thus, the number
of combinations of prices to is (mσ)km, where k is the number of markets and m is the
number of goods.

Given the estimated prices, the dynamic program runs over each market to compute an
approximate equilibrium that maximizes the total social welfare. We denote the estimated
prices in market t by pt ∈ ({1, . . . ,m} × P )

m
, i.e. ptj is the price of a good j in a market

t. We denote an initial endowment and a final allocation in a clustered market by eti and

xti. (Thus,
∑k
t=1 eti = ei.)

The algorithm considers each trader iteratively. At each iteration, it assigns the trader
to a market and gives a near-optimal bundle to this trader, according to her utility func-
tion and the prices in that market. Once the ith trader is assigned, the algorithm only
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remembers the deficit (or surplus) of each good in every market – this will be key in ob-
taining an efficient algorithm. Once every trader is assigned, it selects the best possible
solution that satisfies the approximate market clearing constraint, i.e. the deficits must
be small. Thus, we encode the state of each market t by a vector yt, where ytj denotes
the surplus (or deficit) of the good j. Let It denote the set of traders already in the mar-
ket t, and xi, i ∈ It the bundles given to these traders. Ideally, we would like to have
ytj =

∑
i∈It eij −

∑
i∈It xij . Hence, the value of ytj could be any real value between −1 and

1. However, as we cannot afford to store all possible values for yt, we round these values
into a set W̃ of cardinality α · 4n, where α will be set later. To define W̃ we first define a
coarser set W .

W =

{(
b

b+ 1

)α
,

(
b

b+ 1

)α−1

, . . . ,
b

b+ 1
, 1

}
.

We then choose α to be minimal such that(
b

b+ 1

)α
≤ emin

2n(b+ 1)
and

(
b

b+ 1

)α
<

umin · emin

m · umax · pmax
· 1

(b+ 1)2

Observe that W induces a set of intervals
[
(b/(b+ 1))`, (b/(b+ 1))`−1

]
, for ` = 1, . . . α.

We can now create the set W̃ by dividing each interval of W and its negation into subinter-
vals. Specifically, for each interval

[
(b/(b+ 1))`, (b/(b+ 1))`−1

]
(resp.,

[
−(b/(b+ 1))`−1,−(b/(b+ 1))`

]
),

we divide W equally into 2n(b+ 1) subintervals and put the boundary points in W̃ . Thus,

W̃ =

α−1⋃
`=1

{(
b

b+ 1

)l(
1 +

q

2nb(b+ 1)

)
: q ∈ {0, 1, . . . , 2n(b+ 1)}

}
∪ {0}∪

α−1⋃
`=1

{(
− b

b+ 1

)l(
1 +

q

2nb(b+ 1)

)
: q ∈ {0, 1, . . . , 2n(b+ 1)}

}
We insist that the algorithm selects allocations of goods that take values from W , and

we then round down the surplus (or deficits) to values in W̃ . Formally, xt ⊆ Wn×m and

yt ⊆ W̃m for any market t. Towards this goal, let bac
W̃

denote the value of a rounded

down to the closest value in W̃ , i.e., a′ = bac
W̃

is the largest value in W̃ such that a′ ≤ a.
We now need to ensure that these allocations correspond to an approximate generalized

equilibrium (which in turn will correspond to an approximate equilibrium). To do this, for
a market t and a trader i, we say that an allocation xi of goods is compatible with i and t
if, for ri = maxj:eij>0 π1(pj):

– if uij > 0, then π1(ptj) ≥ ri,
– if xij > 0, then π1(ptj) ≤ ri,
–
∑
j:π1(ptj)≥ri π2(ptj) · xij ≤

∑
j:π1(ptj)≥ri π2(ptj) · eij (Budget constraint).

An allocation xi compatible with i and t is nearly-optimal if ui · xi ≥ (1 − ε) maxz ui · z
where z ranges over all the allocations compatible with i and t. By this definition, assuming
M is large enough, a nearly-optimal allocation is an approximate best response for trader
i in market t. The recurrence relation of our dynamic programming algorithm is then

f(0,y1,y2, . . . ,yk) =

{
0 if y1 = y2 = . . . = yk = 0
−∞ otherwise

f(i,y1,y2, . . . ,yk) = max
t∈{1,2,...,k},xi

f(i− 1,y1, . . . , byt − ei + xicW̃ , . . . ,y
k) + uixi

12



where xi ranges over the nearly-optimal allocations compatible with i and t.
Finally, an allocation is valid if 0 ≤ yt ≤ 1 − (b/(b + 1))3 for all t, i.e., there is no

market having a positive deficit, or a surplus greater than 1 − (b/(b + 1))3. Notice that
some of the surplus may have been lost in the rounding steps; we will show later that
these additional losses amount to a fraction at most 1/(b + 1) of each good. Hence, if
f(n,y1, . . . ,yt) is finite for some valid allocation, and provided that b is sufficiently large,
it gives an approximate generalized equilibrium: the budget constraints and approximate
optimality constraints are guaranteed by the restriction on the choice of xi at each step,
and market clearing is guaranteed by the validity of the allocation.

This completes the description of the dynamic program. It remains to compare the
total social welfare to that of the optimal clustering and to analyse the running time of
the algorithm.

6.2 Quality Analysis

Because of the rounding step, our dynamic programming algorithm loses some fraction of
each good j. We have to bound the number of units of the good j that we lose. By the
scaling on W̃ , each time we round ytj , we lose at most (2n(b+ 1))−1

∑
i∈It eij units when

ytj is rounded to a positive value, and we lose at most (b/(b + 1))α ≤ emin (2n(b+ 1))
−1

units when ytj is rounded to zero. By the definition of emin, we have emin ≤
∑
i∈It eij for

all goods j. Furthermore, we round down ytj at most n times, once for each trader. Thus,
summing them up, we lose at most 1/(2(b+1)) ·

∑
i∈It eij < 1/(2b+2) units of each good j.

Now, we compare the social welfare of the approximate generalized equilibrium ob-
tained by our algorithm with that of some generalized exact equilibrium.

Lemma 6. For any market M = (n,m,u, e) and any ε > 0, there is an exact generalized
equilibrium such that

maxj π2(pj)

minj:π2(pj) 6=0 π2(pj)
≤ enm/e

(
pmax ·m
emin · pmin

)nm
Proof. Take an exact generalized equilibrium x,p that maximizes the total welfare. Let
Gr := {j : π1(pj) = r}, Ir := {i : ri = r} and Ar := {i ∈ Ir : ∀j ∈ Gr, uij = 0}. For
each possible rank r, let MR be the market obtained by restricting M to the goods Gr.
Define xrij = xij and prj = π2(pj) for any trader i and good j in MR. Fix some rank r.

Claim 13. We may assume that
∑
j∈Gr

prjxij =
∑
j∈Gr

prjeij for any i.

Proof. By market-clearing for x,p, we have
∑
i xij =

∑
i eij for any j ∈ Gr. By optimality,

we also have
∑
j∈Gr

prjeij =
∑
j∈Gr

prjxij for any i ∈ Ir −Ar. Substracting the two equali-

ties, we get
∑
j∈Gr

(∑
i∈Ar

prjeij +
∑
i:ri>r

prjeij
)

=
∑
j∈Gr

(∑
i∈Ar

prjxij +
∑
i:ri>r

prjxij
)
.

Because urij = 0 for any i with ri > r or any i ∈ Ar, we can redistribute the goods of Gr
allocated to these traders to fulfill the condition of the claim. ut

Then xr,pr is an equilibrium in Mr because of the previous claim (the optimality
constraints and market-clearing constraints follow from the definition of generalized equi-
librium).

Let r be some rank and consider Mr. We want to compute an approximate equilibrium
for Mr such that we can bound the prices. If there is no altruist in Mr, apply Lemma ??.
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Otherwise, for any altruist i, let ji such that pjix
r
iji

is maximised. Define the utility vector
ur

urij =

uij if i is not an altruist in Mr,
1 if i is altruist in Mr and j = ji,
0 otherwise.

Then in the market defined by e and ur, xr,pr is an approximate solution, where only
the altruists of Mr do not follow a best response, and the approximation ratio is at most
(m−1)/m by the choice of uri for altruist trader i (and because there are at most m goods

in MR). Hence, by applying Lemma 2 we get pmax

pmin
≤ enm/e

(
mumax

uminemin

)nm
which conludes

the proof of the lemma. ut

Fix any optimal clustering and consider any market t. Take a generalized equilibrium
p∗,x∗ as in Lemma 6. We show that the dynamic program outputs an approximate gen-
eralized equilibria with total welfare (1 − ε) times the welfare of p∗,x∗. This is done by
building from p∗,x∗ a set of generalized prices p′ and allocations x′ computable by the
dynamic program.

We assume wlog that p∗min := minj:p∗j>0 π2(p∗j ) = 1. Denote pmax := maxj:p∗j>0 π2(p∗j ).

p′ is obtained by rounding down the second components of prices to values in P , hence
b/(b+ 1) · π2(p∗) ≤ π2(p′) ≤ π2(p∗). Consequently we have for each trader i and a ≥ ri:

b

b+ 1

∑
j:π1(p′j)=a

π2(p′j)x
∗
ij ≤

b

b+ 1

∑
j:π1(p′j)=a

π2(p∗j )x
∗
ij ≤

b

b+ 1

∑
j:π1(p′j)=a

π2(p∗j )eij ≤
∑

j:π1(p′j)=a

π2(p′j)eij

Hence, b/(b+ 1) · x∗ satisfies the budget constraint for the prices p′.
Next, we have to modify b/(b + 1) · x∗ further so that it satisfies the condition in our

dynamic programming algorithm. Namely, we round down the coefficients of b/(b+ 1) ·x∗
to W . This gives an allocation x′ with the properties:(

b

b+ 1

)2

x∗ij ≤ x′ij ≤ x∗ij if x∗ij ≥
(

b

b+ 1

)α
, and x′ij = 0 otherwise.

Clearly, x′ also satisfies the budget constraint inequalities. We must check that x′i is an
almost optimal choice for trader i. We get for any good j:(

b

b+ 1

)3

π2(p∗j ) · x∗ij ≤
b

b+ 1
π2(p∗j ) · x′ij ≤ π2(p′j) · x′ij ≤ π2(p∗j )x

∗
ij

when x∗ij ≥
(

b
b+1

)
or x∗ij = 0, otherwise uijx

′
ij = 0 and uijx

∗
ij ≤

(
b
b+1

)α
uij . We take care

of this special case, when x′ij = 0 < x∗ij . To this purpose, notice first that the welfare of a
trader i with

∑
j:π1(p∗j )=ri

uij > 0 is lower bounded by emin·umin

pmax
, as emin is the minimum

possible budget for a trader (other traders have welfare 0). The maximum ratio utility per
unit of price achievable is umax

pmin
. Hence, a quantity smaller than (b/(b+ 1))α of some good

bought by a trader contributes to a fraction of her welfare at most
(

b
b+1

)α
umax·pmax

umin·emin
which

is less than (1/m)(1/(b + 1))2 ≤ (1/m)
(
1− (b/(b+ 1))3

)
by the choice of α. Hence, over

all goods, the fraction of welfare lost in rounding down x∗ is at most 1 − 2(b/(b + 1))3.

This bounds our approximation ratio: 1− ε ≤ 2
(

b
b+1

)3

which is true for b = d3/εe.
With this choice, x′ and p′ satisfy the approximate market equilibrium constraints, thus

the dynamic algorithm will find a solution with welfare at least u · x′ ≥ (b/(b+ 1))2u · x∗
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6.3 Running Time Analysis.

Now consider the complexity of the dynamic program. We have that:

– |W | = α+ 1 (by definition),

– |W̃ | = 2(α− 1)(2n(b+ 1)− 1) + 3 = Θ(αnb),
– Complexity for one iteration: O(k · |W |m) = O(kαm),

– Number of iterations (for one set of prices): n · |W̃ |km = O(n(αnb)km),
– Total complexity for one set of prices: O(nkαm(αnb)km),
– Number of possible price allocations: (mσ)km,
– Total complexity: O(nkm+1kα(k+1)m(mbσ)km).

Thus, we have a (1− ε)-approximation algorithm with a running time of

O

(
n(3k+1)m+1m(2k+1)mk

(
1 +

3

ε

)3km+m(
1

e
+ log

m · umax

eminumin

)(k+1)m(
log

m · umax

uminemin

)km)

The input of the k-market clustering problem in a standard binary representation has
a size of Ω(n(log(1/emin) + log(umax/umin)). Thus, the running time of our algorithm is
polynomial in the size of the input when m and k are constant.
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Elements of Pure Economics, London: George Allen and Unwin, from the 1926 definitive edition,
1954.

[34] S. Winter, “A simple remark on the second optimality theorem of welfare economics”, Journal
of Economic Theory, 1, pp99-103, 1969.

Appendix A: Single Markets, Market Clustering and Welfare
Redistribution

The Clustering Ratio.

First, we give a simple example where the clustering ratio is unbounded even if we are
constrained to cluster into at most two markets. That is, let f1 be the social welfare at
equilibrium with one market and let f2 be the social welfare given by the optimal clustering
of the traders into two markets. Then we will show that the ratio ρ = f2/f1 is unbounded.
Consider the following scenario, with three traders and two goods, and L� 1.

ei ui
g1 g2 g1 g2

i
1 L - - 1
2 1 - - L2

3 - 1 1 -
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Each trader is only interested in the good she does not possess, but only trader 2 has
a large utility coefficient for any good. Thus, the social welfare will be dominated by the
utility of the second trader.

For a single market, at the Walrasian equilibrium, we have (L + 1)p1 = p2 (applying
Claim 4 for trader 3), where p1 and p2 are the prices of g1 and g2, respectively. Therefore,
traders 1 and 2 purchase L/(L + 1) and 1/(L + 1) units of g2, respectively, and trader 3
purchases L+ 1 units of g2. The associated social welfare is

L

L+ 1
+

L2

L+ 1
+ (L+ 1) = 2L+ 1

On the other hand if we cluster into 2 markets with trader 1 in one of the markets on
her own, then trader 2 will purchase 1 unit of g2 giving a social welfare of

0 + L2 + 1

So, clearly, if we set L to be arbitrarily large, the ratio between the social welfare with two
markets and with a single market is unbounded.

The Redistribution Ratio.

Now consider the redistribution ratio. Clearly, for the linear exchange model, the maximum
social welfare we can obtain via arbitrary welfare redistributions is

∑
j(maxi uij) ·(

∑
i eij).

This is generally not achievable by a Walrasian equilibrium even if we can cluster into an
unlimited number of markets. In fact, redistribution ratio is also unbounded. Consider the
following scenario with two traders and two goods g1, g2 and g3. Let L � 1 be a large
number. The endowments and utilities are given below.

ei ui
g1 g2 g1 g2

i
1 1 - - L2

2 - 1 1 L

The maximum social welfare is clearly more than L2 as we could allocate all of good 2
to trader 1. At equilibrium in a single market, we have p1 = 1 and p2 = L and thus trader
2 will keep L−1

L units of good 2. This only leads to a social welfare of of

L2 · 1

L
+

(
L · L− 1

L
+ 1 · 1

)
= 2L

Clearly, partitioning into more than one market cannot improve the situation here, so the
optimal clustering is the single market. Thus, if we set Lto be arbitrarily large then the
ratio between the optimal social welfare and the maximum social welfare achievable by
market clustering is unbounded.

Appendix B: The Hardness of Market Clustering

Clustering with a Bounded Number of Goods.

The market clustering problem in a linear exchange economy is NP-hard even when we
have two markets and four goods.
Theorem 8. Given an instance of the 2-market clustering problem with five goods and
linear utility functions, it is NP-hard to decide whether there is a clustering that yields a
social welfare of value at least Z, for any Z > 0.
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Proof. We give a reduction from the Partition problem, where we are given a set of n
integers A = {a1, a2, . . . , an}, and the goal is to decide whether there is a subset A′ ⊆ A
such that

∑
ai∈A′ ai =

∑
ai∈A−A′ ai = 1

2

∑
ai∈A ai. We may assume ai > 0 for all i, as

Partition is NP-complete in this case [20]. Also, we assume wlog that S ≥ 5 since we
can multiply every integer in A by a positive integer.

Our key idea in the proof is to design an economy that can be clustered into two
markets with a total social welfare of f(x) = x/(x+ 1) + (c− x)/(c− x+ 1). The function
f attains its maximum over [0, c] at x0 = c/2. The reduction will follow, provided we
can ensure that the market clustering of traders corresponding to x also corresponds the
optimal partition of the integers.

Towards this goal, consider the following economy with n + 4 traders and 5 goods.
Again, the LHS of the table show the initial endowments and the RHS shows the utility
coefficients. We take K �

∑
i ai � 1.

ei ui
g1 g2 g3 g4 g5 g1 g2 g3 g4 g5

i

i ∈ {1, . . . n} ai ai - - - - - - - 1 + δ
n+ 1 1 1 K - - - - - 1 1
n+ 2 - - - 1 1 1 - K - -
n+ 3 1 1 - K - - - 1 - 1
n+ 4 - - 1 - 1 - 1 − K -

Claim 14. To optimise welfare, traders n+1 and n+2 must be in one market and traders
n+ 3 and n+ 4 in the other market.

Proof. Suppose traders n + 1 and n + 2 are in the first market and traders n + 3 and
n + 4 are in the second market. Consider good g3. Only traders n + 2 and n + 3 want
g3. So trader n + 2 will obtain all K units of trader n + 1’s endowment of g3 because
trader n + 3 is not present in their market. This gives trader n + 2 a utility of at least
K2. Similarly with respect to good g4, trader n+ 4 will receive a utility of at least K2 in
the other market. Thus, social welfare will be at least 2K2 with such a partitioning. The
existence of such equilibria (regardless of the cluster assignment of traders 1 to n) follows
from Gale’s characterisation.

Now consider the other ways to cluster. There are 2K+8+2
∑
i ai units of goods in total,

so the maximum welfare of traders 1 to n+1 and n+3 is at most (1+δ)(2K+8+2
∑
i ai)�

3K. Consequently, to achieve a high welfare, traders n+ 2 and n+ 4 must do well.
Thus, the other possibility is if traders n+ 1 to n+ 4 are all in the same market. Let

A :=
∑
i∈S ai where S ⊆ {1, . . . , n} is the set of traders in the same market as traders

n+ 1 to n+ 4. The market graph of the market is strongly connected, so the equilibrium
prices are positive.

By symmetry, we have p1 = p2 and p3 = p4; we may fix p2 = 1. Now only trader n+ 4
has a non-zero utility for the good g2 so she must get it. Then by Claim 4, 1

p2
≥ K

p4
, so

p3 = p4 ≥ K. We consider two cases:

(i) If p5 > p3, then traders n+ 1 and n+ 3 will not buy g5. Thus only the traders 1 to n
will buy g5. So, by Claim 1, 2p5 = 2A. But then p5 � K ≤ p3, a contradiction.

(ii) If p5 < p3, then traders n + 1 and n + 3 will spend all their money on good 5. Thus
2p5 = (p1 + p2)(A+ 2) + (p3 + p4)K = 2A+ 4 + 2Kp3 > 2p3, a contradiction.

This proves that p5 = p3 = K. From this we can compute the best bundle for any trader,
whose utilities are given in this table:
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Trader 1 to n n+ 1 n+ 2 n+ 3 n+ 4
budget 2A 2 +K2 2K 2 +K2 2K
welfare 2A(1 + δ)/K (2 +K2)/K 2K (2 +K2)/K 2K

Hence this solution has low social welfare. ut

So we may assume that traders n + 1 and n + 2 are in the first market and traders
n + 3 and n + 4 are in the second market. The traders 1 to n must be partitioned into
these two markets. Let’s say that a subset S of the traders 1 to n go in the first market
and the other traders go into the second market.

We analyse the total welfare in Market 1. Let A1 =
∑
i∈S ai where S is the set of indices

of traders from {1, n} in this market. As nobody wants g2, we have p2 = 0. The other goods
are supplied and are desired so will have positive prices; fix p1 = 1. At equilibrium, trader
n+ 2 buys all of g1 and g3, so p3 = Kp1 = K, by Claim 4. So, applying Claim 1 for trader
n + 2 gives that p4 + p5 = (A1 + 1)p1 + Kp3 = K2 +A1 + 1. From this the traders in S
receive A1 and trader n+ 1 receives K2 + 1.

Trader n+1 must buy all of g4 so, by Claim 4, we have p4 ≤ p5. If p4 < p5, only traders
1 to n would buy g5 and therefore, by Claim 1, we obtain p5 = 1/A1. So p4 + p5 < 1/A1,
a contradiction. Hence p4 = p5 = 1

2 (K2 +A1 + 1). This gives the following welfares.

Trader 1 to n n+ 1 n+ 2
budget A1 K2 + 1 K2 +A1 + 1
welfare 2(1 + δ)A1/(K

2 +A1 + 1) 2(K2 + 1)/(K2 +A1 + 1) K2 +A1 + 1

Thus, the total welfare for the first market is

2(1 + δ)A1

K2 +A1 + 1
+

2(K2 + 1)

K2 +A1 + 1
+K2 +A1 + 1 = 2δ · A1

K2 +A1 + 1
+K2 +A1 + 3

Symmetrically in Market 2, with A2 :=
∑
i/∈S ai, we get:

2δ · A2

K2 +A2 + 1
+K2 +A2 + 3

Over both markets the total welfare is

2δ ·
(

A1

K2 +A1 + 1
+

A2

K2 +A2 + 1

)
+ 2K2 +

∑
i

ai + 6

Thus to optimise welfare over the two markets we need to choose S to maximise∑
i∈S ai

1 +K2 +
∑
i∈S ai

+

∑
i/∈S ai

1 +K2 +
∑
i/∈S ai

So we are trying to maximise a function a function f defined by

f(x) =
x

1 +K2 + x
+

(c− x)

1 +K2 + (c− x)

The function f attains its maximum over [0, c] at x0 = c/2. Here c =
∑
i ai so this choice

solves the partition problem. ut
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Market Clustering with an Unbounded Number of Goods.

In general, if the number of good is unbounded, the market clustering problem in a linear
exchange economy is at least as hard as the maximum independent set problem. This holds
even if we are allowed to partition the traders into as many markets as we wish (that is,
k =∞).

In the Independent Set problem, we are given an undirected graph G = (V,E), and
the goal is to find a maximum cardinality set S ⊆ V such that no two vertices of S are
adjacent in G. This problem is notoriously hard to approximate well.

Theorem 15 ([14]). For any constant γ > 0, given a graph G = (V,E) on n vertices,
unless NP = ZPP, it is hard to distinguish between the following two cases:

– Yes-Instance: The graph G has an independent set of size n1−γ .
– No-Instance: The graph G has no independent set of size nγ . ut

Here we present a reduction from Independent Set that produces a similar hardness
result for the market clustering problem (the case k =∞):
Theorem 9. For any constant δ > 0, unless NP = ZPP, it is hard, considering an instance
of the market clustering problem with linear utility functions, to distinguish between the
following two cases:

– Yes-Instance: There is a clustering that yields a social welfare of value at least Z1−δ.
– No-Instance: There is no clustering that yields a social welfare of value at least Zδ.

where Z is the maximum social welfare.

Proof. Take an instance G = (V,E) of Independent Set with V = {v1, . . . , vN}. Set
the parameter γ in Theorem 15 to γ = δ/2. We now build an instance of the k-market
clustering problem with N + 1 traders and N + 1 goods. For each i ∈ {0, . . . , N}, the
endowment of the trader i is eii = 1, eij = 0 for any j 6= i. Thus, every trader has a unique
specific good. The utility functions ui are defined with respect to the edge set. Specifically,
for any trader i, with i = 1, 2, . . . , N , set

ui0 = ε2

uij =

{
ε if {vi, vj} ∈ E
0 otherwise

Here, we choose ε� 1/N . The utility u0 of trader 0 is defined as follows.

u0j = 1 for all j = 1, 2, . . . , N
u00 = 0

Yes-Instance: Suppose the graphG has an independent set S of sizeN1−γ . Then there is
a clustering yielding a social welfare of N1−2γ . To see this, place trader 0 and all the traders
corresponding to nodes of S in the first market; put the remaining traders in the second
market. Consider the first market. This has an equilibrium by Gale’s characterisation.
Since S is an independent set, trader 0 is the only trader who desires the goods held by
traders in S. Thus, at equilibrium, the traders in S are willing to trade with trader 0 but
not amongst themselves. Therefore, trader 0 has utility of N1−γ . Hence, the social welfare
of the first market is at least N1−γ > N1−2γ .
No-Instance: Suppose the graph G has no independent set S of size Nγ . We will show
that there is no clustering that yields a social welfare of N2δ. First, observe that the total
social welfare incurred by the traders 1, . . . , N is at most εN + ε2 � 1. We set p0 = 1.
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Next, consider the social welfare of trader 0. Let the equilibrium allocation and prices
be x and p, and consider the trading graph H = ({0, . . . , n}, A), with A = {ij : i, j ∈
V (H), xij > 0}. Take the component K of the trading graph containing trader 0. By
Claim 1 and Claim 2, the mapping f : E′ → R+ defined by f(ij) = pjxij is a non-zero
circulation. Thus, the component K must be strongly connected. Hence there is a closed
walk i0i1, . . . , il−1il with i0 = il and xij−1ij > 0 for all j ∈ {1, . . . , l} visiting every arc of
A at least once.

Now create an auxiliary set of prices p′ where p′i = pi for all i 6= 0, and set p′0 = p0/ε.
Observe that any trader buys goods only from amongst its neighbours with the minimum
auxiliary price. We may assume that p′i0 ≥ p

′
ij

for any j ∈ {1, . . . , l}. For any j, trader j+1

(indices taken modulo l) had the option to buy from trader j and from trader j + 2, and
chose to buy from the latter. Thus, p′ij ≥ p′ij+2

by the optimality constraint. This implies
that the auxiliary prices can take at most two different values, and exactly one if l is odd.

If the auxiliary prices take on only one value, then the price of any vertex trading with
trader 0 must be 1/ε, and the welfare of trader 0 is only ε� 1.

If the auxiliary prices take on two values then K is bipartite. Let the bipartition be
A,B with v0 ∈ B. Then p′b = 1/ε for any b ∈ B. If A induces a stable set in G then trader
0 can purchase at most |A| ≤ Nγ and so has utility at most Nγ . On the other hand, if A
induces at least one edge ij in G then i had the option of buying from j rather than from
vertices in B. Thus p′a = p′j ≥ p′b = 1/ε. But p0 = 1 so trader 0 can then afford at most ε
units of good from traders in A. Thus his utility is at most ε.

Consequently, the maximum utility of the traders is at most 1 + Nγ ≤ N2γ for large
N . ut

Appendix C: Approximate Walrasian Equilibria

Theorem 10. For ε > 0, every market has a market-clearing ε-approximate equilibrium.

Proof. The proof is by induction on the number of goods g. By Gale’s condition, a market
with no altruist-free super self-sufficient sets admits an (exact) equilibrium, in particular
markets with only one good admit equilibria.

Consider a market M = (m,n,u, e), and assume the existence of an altruist-free super
self-sufficient set. Choose a minimal altruist-free super self-sufficient set S ⊂ {1, . . . , n}.
Let GS := {j ∈ {1, . . . ,m} : ∃i ∈ S, eij > 0} be the set of goods owned by traders in S.
Let H ⊂ GS be the set of goods j in MS such that

∑
i∈S eij > 0 but

∑
i∈S uij = 0. These

are the goods relevant to the second condition of the definition of super self-sufficient sets,
hence H 6= ∅. Let MS be the restriction of market M to goods GS − H and traders S.
Then the market MS has no super self-sufficient set by minimality of S. Hence there is an
exact equilibrium pS ,xS on MS .

Notice that H is a proper subset of GS , as S is altruist-free. Define the market MT

with traders T := ({1, . . . n} − S) ∪ {0}, and goods GT := ({1, . . . ,m} −GS) ∪ H. The
new trader 0 is altruistic (u0 = 0) with endowments e0h =

∑
i∈S eih for any h ∈ H, and

e0j = 0 for any j ∈ GT − H. By induction on the number of goods, there is a market-
clearing ε-approximate equilibrium pT ,xT on market MT .

Let A be the set of altruistic traders in market MT . In particular, 0 ∈ A. Define
P :=

∑
i∈A p·ei to be the total budget of altruistic traders in MT . Let QS = maxi∈S pS ·ei
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be the maximum budget of a trader in MS . By scaling the prices pS , we may assume that:

εQS ≥ P (5)

pSk
uik

>
pj
uij

for any trader i ∈ T , goods j ∈ GT and k ∈ GS with xij > 0. (6)

Our goal is to merge the two markets MS and MT , and Inequality (6) will ensure that
any non-altruistic trader inMT will not have a better response after merging. Inequality (5)
will be used to prove the ε-optimality of the responses of traders in S.

We define a price allocation p and goods allocation x at equilibrium for the market M .

pj =

{
pTj if j ∈ GT
pSj if j ∈ GS −H

For a non-altruistic trader i in T , its allocation in M is xij = xTij for any good j in
market T , xij = 0 otherwise. This allocation is a best response for trader i at prices p by
Inequality (6) .

For an altruistic trader i 6= 0 in MT , set xi to be any best response for i in M,p. In
particular, xij > 0 implies that j ∈ GS −H. For any good j in GS −H, let ζj :=

∑
i∈A xij

be the total quantity of good j claimed in M by altruistic traders of MT , and for any good
j in H, let ρj :=

∑
i∈A x

T
ij be the total quantity of good attributed in MT to altruists.

Notice that for any j ∈ GS −H, ζj ≤ ε
∑n
i=1 eij by Inequality (5).

For a trader i ∈ S and a good j ∈ GS , set

xij =

(
1− ζj∑n

k=1 ekj

)
xSij ≥ (1− ε)xSij

Because xSij was a best exact response, xij (restricted to j ∈ GS) is an approximate best
response in M,p. Also, we have for any j ∈ GS :

n∑
i=1

xij =
∑
i∈S

(
1− ζj∑n

k=1 ekj

)
xSij +

∑
i∈A

xij

=
∑
i∈S

xSij +
∑
l∈A

(
1−

∑
i∈S x

S
ij∑n

k=1 ekj

)
xlj =

∑
i∈S

xSij

Hence, the market is clearing on S.
For a trader i ∈ S and a good j ∈ GT −H, we set

xij =
pS · xSi −

∑
k∈GS−H pkxik

pS · ζ
ρj

This is a way to redistribute the goods previously claimed by altruistic traders to traders
in S who “gave” part of their claims to altruists, in order to reach exact market-clearing.
Then, for j ∈ GT −H we have:

∑
i∈S

xij =
pS · xS −

∑
i∈S
∑
k∈GS−H pkxik

pS · ζ
ρj =

pS · (xS −
∑
i∈S xi)

pS · ζ
ρj = ρj

Moreover, the utility of good j ∈ GT−H for trader i ∈ S is zero, hence xi is an approximate
best response. ut
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Appendix D: Limits of equilibria are generalized equilibria

Theorem 11. For any market, any limit allocation x̊ gives a generalized equilibrium.

Proof. Let (xn)n be a sequence of market-clearing approximate equilibria in a market M ,
with approximation factor converging to 0, such that (xn)n converges to x̊. For any n, let
pn be the set of prices supporting xn in a market-clearing approximate equilibrium. We
choose (xn)n such that pnj converges monotonically in R+ ∪ {+∞}.

Again, we may assume that for any good gj , there is a trader i that desires the good
(uij > 0). Otherwise pnj = 0 for any n and this good could have a generalized price
(0, 0). Consequently, for any good gj , we have pnj > 0 for all n ≥ 0 such that xn is an
ε-approximate equilibrium for ε < 1.

Let C be the partition of the vertices of the market graph into strongly connected
components.

Claim 16. Let C ∈ C be some component. Scale the prices (pn)n such that the maximum
price of any good in C is always 1. Then the sequence of prices of goods in C converges to
a set of positive prices.

Proof. Otherwise, there is at least one good in C whose price converges to zero. Since
pnmax = 1, by strong connectivity, there is an arc (j, j′) with pnj → γ > 0 and pnj′ → 0 when
n tends to +∞. Let i be a trader with eij ≥ emin > 0 and uij′ ≥ umin > 0. Then as n
tends to +∞, the ratio uij/p

n
j′ tends to +∞, while the budget of i tends to some constant

larger than emin · γ, hence the welfare of i tends to +∞, contradiction. ut

Denote C ∼ C ′ for C,C ′ ∈ C if there are j ∈ C, j′ ∈ C ′ such that pnj /p
n
j′ converges to a

non-zero value. Then it is true for any j ∈ C, j′ ∈ C ′ by Claim 16, and ∼ is an equivalence
relation. Let J1, . . .Jl be the equivalence classes, and denote Ji =

⋃
C∈Ji

C. We can order
J1, . . . Jl such that if pnj /p

n
j′ converges to zero, j ∈ Jh and j′ ∈ Jh′ , then h < h′. We denote

J−a = J1 ∪ . . . Ja−1 and J+
a = Ja+1 ∪ . . . ∪ Jl.

For any h ∈ {1, . . . , l}, scale the prices (pn)n such that the minimum price of a good
in Jh is 1, then set the generalized price of any j ∈ Jh to p̊j = (h, limn→+∞ pnj ). We now
prove that p̊, x̊ is a generalized equilibrium.
Budget constraint: Let i be a trader and j a good maximizing p̊j = (ri, pj). Scale the
prices (pn)n such that the minimum price in Jri is 1. For any α > 0, for n sufficiently
large, the budget of i is upper-bounded by

∑
j′ eij′p

n
j′ ≤ (1 +α)

∑
j′∈Jri

eij′p
n
j′ . As pnj′/p

n
j′′

tends to 0 for any goods j′ ∈ Jri and j′′ ∈ J+
ri , x

n
ij′′ also tends to x̊ij′′ = 0. This proves

that for any a > ri:
∑
j:π1(p̊j)=a x̊ijπ2(p̊j) = 0.

Moreover,
∑
j eijp

n
j =

∑
j∈J−ri

eijp
n
j +
∑
j∈Jri

eijp
n
j ≥

∑
j∈Jri

xnijp
n
j as uij = 0 when j ∈

J−ri . Because
∑
j∈J−ri

eijp
n
j tends to zero, limn→+∞

∑
j∈Jri

eijp
n
j ≥ limn→+∞

∑
j∈Jri

xnijp
n
j ,

that is
∑
j∈Jri

eijπ2(p̊j) ≥
∑
j∈Jri

x̊ijπ2(p̊j).

Market clearing: Let j ∈ Ph be any good. Then
∑
i x

n
ij = 1, hence

∑
i x̊ij = 1 =

∑
i eij .

Optimality: Let i be any trader. We know that
∑
j∈J−ri

uij = 0. If
∑
j∈Jri

uij = 0, then

the maximum welfare achievable by i is zero, so x̊i is a best response. We may assume
that there is a j ∈ Jri such that uij > 0. For any ε ∈ [0, 1/2], there is n = nε large enough
such that the ratio utility/price for any good in J−ri is at most ε · minj∈Jri ,uij>0 uij/p

n
j ,

and the approximation factor of xn,pn is at most ε. Hence

(1 + 2ε)
∑
j∈Jri

uijx
n
ij ≥ uix

n
i =

∑
j∈J−ri

uijx
n
ij +

∑
j∈Jri

uijx
n
ij ≥ (1− ε) ·

(
max
j∈Jri

uij
pnj

)
·
∑
j∈Jri

eijp
n
j

23



When ε tends to 0 (and thus nε → +∞), we get
∑
j uijx̊ij ≥

(
maxj∈Jri

uij

π2(p̊j)

)∑
j∈Jri

eijπ2(p̊j),

and this is the optimality constraint for exact generalized equilibria. ut
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