
The steady-states of splitter networks
Basile Couëtoux1, Bastien Gastaldi2, Guyslain Naves3

Abstract: We introduce splitter networks, which abstract the behavior of conveyor belts found in the
video game Factorio. Based on this definition, we show how to compute the steady-state of a splitter
network. Then, leveraging insights from the players community, we provide multiple designs of splitter
networks capable of load-balancing among several conveyor belts, and prove that any load-balancing
network on n belts must have Ω(n log n) nodes. Incidentally, we establish connections between splitter
networks and various concepts including flow algorithms, flows with equality constraints, Markov chains
and the Knuth-Yao theorem about sampling over rational distributions using a fair coin.

1 Introduction

The transportation of materials or data within various networks represents an inexhaustible source of
mathematical problems, which has lead to almost as many solutions, theories and algorithms. These
advancements have brought about significant improvements across diverse fields including supply chain
management, logistics, network optimization. Transportation also serves as a central component in nu-
merous games, as evidenced by the transportation category on BoardGameGeek which lists almost two
thousand games [4]. In Factorio [24], a video game published in 2020 by Wube Software, players must
mine natural resources to feed a rocket-building factory on an hostile planet. A major part of the game-
play involves the movement of resources within the factory, employing various mechanism: robotic arms,
conveyor belts, drones or trains.

In this work, we study the conveyor belts of Factorio. An item placed on a belt will move at a constant
speed toward the end of the belt, until it reaches that end, or is blocked by an item preceding it. Belts in
Factorio can be combined using a splitter, connecting one or two incoming belts to one or two outgoing
belts. A splitter takes items from the incoming belts and places them on the outgoing belts, trying to
split the flow as fairly as possible between the incident belts, while maximizing the throughput. Given
the scale of a typical Factorio game, players frequently encounter the need to balance the loads across
multiple belts, and the community has devised numerous efficient networks to address this load-balancing
problem.

An intriguing aspect of Factorio is its encouragement for players to construct vast systems of au-
tomation, requiring intensive planning and optimization. Ultimately, the limiting factor arises from the
CPU load generated by game state updates. Consequently, players are incentivized to prioritize resource
efficiency, particularly concerning gameplay elements that entail frequent computations such as splitters.
This motivates the minimization of the number of splitters in load-balancing networks.

Our goal is two-fold: first we model the steady-state of a network of splitters. The network of conveyor
belts is abstracted as a directed graph, with nodes corresponding to splitters and arcs to belts. A steady-
state is a throughput function on the arcs; a circulation with additional constraints to capture the fact
that splitters are fair and locally optimizing. We present two polynomial-time algorithms for computing
a steady-state in a splitter network. An analogy is made with two classical maximum-flow algorithms:
the blocking-flow algorithm [8] and the push-relabel algorithm [10]. In contrast to maximum flows, the
primary challenge arises when a belt reaches full capacity, as its supplying splitter may no longer stay
both fair and maximizing. In that case, the splitter is allowed to become unfair, but that decision changes
the constraints applied to the flow, making the problem fundamentally non-convex. In a second part, we
showcase various load-balancing network designs sourced from the Internet, formalizing concepts defined
by the players community. Furthermore, we prove that those designs approach optimality. Specifically, we
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Figure 1: 3 splitter networks given with capacities and associated steady-states. Splitter will be represented
by circle vertices, terminals by square vertices. Each terminal is tagged by its capacity, and each arc by
its throughput. Saturated arcs are bolder than fluid arcs.

prove that any balancing network on n belts must have Ω(n log n) splitters, by exhibiting a relation with
the problem of sampling the uniform distribution over a set of n elements using only a fair coin. The core
design is the Beneš network, a circuit-switching network well-known in the field of telecommunication [1,
2].

The blocking-flow-like algorithm relies on finding circulations with equality constraints. A circulation
on a directed graph is a flow without any excess at any vertex. Given a directed graph (G,A), we denote
δ+(v) and δ−(v) the sets of outgoing and incoming arcs incident to a vertex v. Let C= be a partition of
A such that for each part C ∈ C=, there is some vertex v with C ⊆ δ+(v). The C=-circulation problem is
to decide whether there is a non-zero circulation f that is constant within each part. While this problem
can easily be solved using linear programming, we require a good characterization of graphs admitting a
C=-circulation, Additionaly a polynomial-time algorithm is needed to either construct a C=-circulation or
identify an obstacle that prevents its existence. The algorithm relies on the computation of a stationary
distribution of an auxiliary graph. In contrast, solving maximum integral flow problems with additional
equality constraints is known to be NP-hard [17], even when the partition is exactly the sets of leaving
arcs of each vertex [23, 18].

Sorting networks [12] and Beneš networks have topologies similar to splitter networks, with nodes
of in-degree and out-degree 2. In microfluidics, mixing graphs are used to produce droplets of specific
concentration, using devices that produces two identical droplets from two droplets of any concentration [7].
The concentration values on the arcs are subject to equality constraints similar to those of splitter networks,
but without a maximizing constraint. The topology of splitter networks is nonetheless more general than
these examples, as splitter networks may have directed cycles, those being necessary in particular to achieve
load-balancing with an arbitrary number of outputs.

In an answer to a question on the mathematics section of stackexchange, David Ketcheson attempted
to model and compute the throughputs of splitter networks [11]. Rather than binary categorizing each belt
as full or not, each arc is assigned a density and a velocity. The density will be monotonically increasing,
and the velocity monotonically decreasing during the run of the algorithm, until a steady-state is reached.
In fact the velocity increases only after the density reaches its maximum at one. Therefore this description
is equivalent to our solution, which involves a throughput function and a set of full belts. Unfortunately
his algorithm does not always terminate, and its solutions do not satisfy that splitters use their incoming
belts fairly. Ketcheson also gave a procedure, albeit non-polynomial, to determine whether a network (not
necessarily load-balancing) may limit throughput. Hovewer, this procedure is applicable only to networks
without directed cycle. In [15], Leue modeled splitter networks using Petri nets, and uses model checking
to check the load-balancing properties of some small networks.

The Factorio community is very active and creative. Players have designed load-balancing networks
of various sizes, with efficient embeddings into the grid while respecting the constraints of the game.
Additionally, they have developped general methods for constructing arbitrary large load-balancing net-
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works. They introduced the concept of balancing networks, along with the more robust properties of being
throughput unlimited or universal, and subsequently designed networks that exhibit these characterics. A
notable example is the universal balancer presented by pocarski [20], although it uses non-fair splitters too;
our universal balancer only uses fair splitters. They also discovered the relationship with Beneš networks.
Factorio-SAT [21] is a project that uses a SAT-solver to find optimal embeddings of splitter networks in
the grid. The project VeryFactory uses a SAT-solver to check various load-balancing properties of splitter
networks [14]. Factorio belts are actually sufficiently complex to be Turing-complete [16]. There are many
implementations of various devices inside Factorio, ranging from raytracers to programming language in-
terpreters, using the diverse set of available gameplay mechanisms. Factorio has been the inspiration for
several other academic works [22, 19, 5, 6, 9].

The rest of this section presents an overview of the main concepts and results of this work. Then
Section 2 is dedicated to the C=-circulation problem, which is a requirement for the next Section 3,
that focuses on the two algorithms to compute a steady-state. Section 4 contains the constructions and
proofs of the load-balancing designs. Section 5 formalizes the proof for the lower bound on the number
of splitters in a load-balancing network. In Section 6, we define networks that simulate arcs of arbitrary
rational capacities. In Section 7, we investigate splitter networks when each splitter may receive priorities,
therefore one incident arc over the others. Using priorities, we will define in Section 8 a balancer with a
number of fair splitters closer to our lower bound. Finally in Section 9 we will present some perspectives.

1.1 Splitter networks and their steady-states

We start by modeling networks of conveyor belts and splitters by directed graphs, where each single belt
is an arc, and each splitter is a node (thus abstracting the length of the belts).

Definition 1. A splitter network is a directed graph G (with possible loops or parallel arcs) whose vertex
set can be partitioned into three sets V (G) = I ⊎ S ⊎O where

(i) I is the set of inputs, and d+(i) = 1, d−(i) = 0 for any input i;
(ii) O is the set of outputs, and d−(o) = 1, d+(o) = 0 for any output o;
(iii) S is the set of splitters, and d−(s) = d+(s) = 2 for any splitter s.

We will use the word flow to informally describe the material transported by the network, and through-
put for the amount of flow going through the arcs. Our work aims to understand the throughputs inside
a splitter network at steady state, when some maximum throughputs are forced on its inputs and its
outputs, which are respectively the sources and sinks of the flow passing through the network. To this
end we will consider capacity functions on the input and output. A capacity c on an input means that
the input has an incoming flow of throughput c. The input will try to push that much into the network,
but no more. A capacity c on an output means that the output will accept a maximum throughput of c.
We consider that the maximum throughput of any arc is 1, with all belts being identical.

A splitter can be described using two operational rules. The first rule, which takes precedence, is to
maximize the amount of flow that goes through it. The secondary rule is to be fair. A splitter is fair
relatively to its outgoing arcs: it tries to push as much flow onto each of them. It is also fair relatively
to its incoming arcs: it tries to pull as much flow from each of them. As the maximization rule takes
precedence, it will not be fair when being unfair leads to higher throughput. For instance, consider the
network in Figure 1 (a), depicting a network with a single splitter. As one of the output has a lower
capacity, it pushes more flow toward the other output, thereby maximizing the total throughput, while
still being as fair as possible as it minimizes the difference of throughputs on its outgoing arcs.

The throughput of an arc may reach a limit when its head is an output with a low capacity. For
example in Figure 1 (a), an output of capacity 0.4 acts as a bottleneck. In other cases the head of an arc
is a splitter, which itself is limited by what its outgoing arcs can accept. For example in Figure 1 (b), as all
the outputs have reached their capacities, the splitter cannot accept more flow, even if the bottom input
could provide even more flow. In terms of conveyor belts, some belts will initially receive more items that
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Figure 2: An example of steady-state in a moderately small network, and the reverse network with its
steady-state obtained by reversal. Notice that the reversed steady-state satisfies rule R8 but not rule R8S.

they can deliver, causing them to fill up. Once full, they can only accept from upstream as much as they
deliver downstream, which may in turn limit throughputs upstream. We say that such belts are saturated.

The output capacities are not the only factor that limit the total throughput and create bottlenecks.
This can be observed in Figure 1 (c). There, the rightmost splitter tries to be fair and send some of the
flow back to the left. The leftmost splitter also tries to be fair, thus accept the flow coming from the right.
This results in the stabilization into the given throughputs. This example illustrates that the throughput
is not globally maximized, contrary to the expectation of a total throughput of 1 for this network. Instead,
it is only 0.5.

The following definition formalizes the notions of capacity, throughput and saturations, as well as the
behaviour of splitters related to the flow going through the network in a steady state.

Definition 2. Let G = (I ⊎ S ⊎ O,E) be a splitter network, and let c : I ∪ O → [0, 1] be the maximal
capacities of each input and output node. A steady-state for (G, c) is a pair (t, F ) where

R1 t : E → [0, 1] is the throughput function;
R2 F ⊆ E is the set of fluid arcs, E \ F is the set of saturated arcs;
R3 for each i ∈ I with δ+(i) = {e}, t(e) ≤ c(i) and moreover if e ∈ F then t(e) = c(i);
R4 for each o ∈ O with δ−(o) = {e}, t(e) ≤ c(o) and moreover if e /∈ F then t(e) = c(o);
R5 for each s ∈ S, with δ−(s) = {e1, e2} and δ+(s) = {e3, e4}, t(e1) + t(e2) = t(e3) + t(e4);
R6 for any e1, e2 ∈ E with {e1, e2} = δ−(s) and e1 /∈ F , t(e1) ≥ t(e2);
R7 for any e1, e2 ∈ E with {e1, e2} = δ+(s) and e1 ∈ F , t(e1) ≥ t(e2);
R8 for any uv ∈ E \ F and vw ∈ F , t(uv) = 1 or t(vw) = 1.

Rules R3 and R4 say that the throughputs are limited at each input and each ouput, and moreover, an
input pushes as much flow as allowed by its capacity on a fluid arc. Similarly an output absorbs as much
flow as allowed by its capacity from a saturated arc. Rule R5 imposes the conservation of flow. Rules R6
and R7 enforce the fairness constraints: a splitter consumes no less flow from a saturated arc than from
another incoming arc. A saturated arc represents a belt that is full. Therefore, the splitter is not limited
in how much flow it can pull from that arc, and thus cannot pull less than from the other incoming arc.
Similarly it produces no less flow in a fluid outgoing arc than in another outgoing arc. In particular, if
both incoming arcs are saturated, or if both outgoing arcs are fluid, they must have equal throughput,
suggesting the following definition.

Definition 3. Given a splitter network G = (I ⊎ S ⊎ O,E), and a set F ⊆ E of fluid arcs, we say that
two arcs e, e′ ∈ E are

in-coupled if e, e′ /∈ F and there is a splitter vertex v ∈ S with δ−(v) = {e, e′},
out-coupled if e, e′ ∈ F and there is a splitter vertex v ∈ S with δ+(v) = {e, e′},
coupled if they are in-coupled or out-coupled.
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Finally rule R8 imposes the maximization of the throughput by each splitter. Indeed, a saturated arc
can provide more flow, while a fluid arc can absorb more flow. Thus, a steady-state cannot contain a
saturated arc followed by a fluid arc. The only exception is when one of them already has a throughput
of 1.

We will prove in Section 3.4 that the definitions of splitter networks and steady-states exhibit a remark-
able symmetry. By reversing each arc, exchanging the role of inputs and outputs, and complementing the
set of fluid arcs, a steady-state is transformed into a steady-state of the reverse graph, as seen in Figure 2.

For convenience, when defining or representing splitter networks, we will allow splitters with in-degree
one or out-degree one (see Figure 2 for instance). This is justified by the fact that if a splitter s has
in-degree one, we can add a dummy input node i with capacity c(i) = 0. An arc from i to s can then
be added, that will always remain fluid. Similarly if s has out-degree one, we can add a dummy output
node o with capacity c(o) = 0, and an always-saturated arc from s to o. The throughputs on those arcs
are forced to be 0. Therefore it does not induce any new constraint on the non-dummy arcs as rules R6
and R7 are clearly true for those arcs.

Additionally, for convenience, for any input i ∈ I with outgoing arc e, we note t(i) := t(e), and similarly
for any output o ∈ O with incoming arc e, t(o) := t(e). We also extend the capacities to arcs by setting
c(e) to be either c(i) if e ∈ δ+(i), i ∈ I, or c(o) is e ∈ δ−(o), o ∈ O, or 1 otherwise.

1.2 Existence and computation of steady-states

Let F be a fixed set of fluid arcs. Then the set of possible throughput functions t of a steady-state (t, F )
can be described as a polyhedron. Indeed, each of the rules R1, R3, R4, R5, R6, R7 can be encoded by
linear inequations. Rule R8 is non-convex, but we will later introduce its slight strengthening, rule R8S.
That stronger rule admits an encoding as a family of linear inequations. Thanks to linear programming,
finding a steady-state thus reduces to finding a set of fluid arcs that admits a steady-state. Nevertheless,
we still need to find F . We propose two algorithms to compute a steady-state, which relates to two families
of maximum flow algorithm:

a push-relabel-like algorithm, where we relax the conservation rule R5, thus defining a pre-steady-
state by analogy with pre-flows. Given a set F , we use a linear program to compute an optimal
pre-steady-state (t, F ) (for some well-chosen objective), and prove that either (t, F ) is a steady-state,
or there is an arc e ∈ F such that (t, F \ e) is also a (non-optimal) pre-steady-state. Then after at
most |E| steps we get a steady-state;
a blocking-flow-like algorithm, where we relax the rule R3 on input capacities, removing the re-
quirement that an input whose throughput is less than its capacity must have a saturated outgoing
arc. This defines the notion of sub-steady-state. Given a set F , we solve a linear system to find a
sub-steady-state t, and prove once again that either (t, F ) is a steady-state or there is an arc e ∈ F
such that (t, F \ e) is a sub-steady-state.

The pre-steady-state algorithm is technically simpler but requires an LP-solver. The sub-steady-state
only requires an algorithm to compute stationary distributions in directed graphs. We defer a complete
presentation and proof of these algorithms to Sections 3.2 and 3.3, and focus for now on explaining the
sub-steady-state algorithm.

Definition 4. Given G = (I ⊎S ⊎O,E) a splitter network with capacities c : I ⊎O → [0, 1], a sub-steady-
state for (G, c) is a pair (t, F ) satisfying R1, R2, R4, R5, R6, R7 and the strong maximization rule R8S,
and for any i ∈ I and e ∈ δ+(i), t(e) ≤ c(i).

The algorithm starts with the trivial sub-steady-state (t : e→ 0, E), and will improve it iteratively until
reaching a steady-state. At each iteration of the algorithm, we will be trying to increase the throughputs
of the arcs without violating any rule. Unlike in maximum flows, we do not have the choice of which
leaving arc to increase the flow on. Furthermore, rule R8 forces each splitter to send as much flow forward
as possible. A non-obvious consequence is that, when increasing the input capacities, throughputs can
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Figure 3: Four examples of throughput changes at a single splitter, depending on which arcs are fluid.

Network:

Residual graph:

Figure 4: Configurations of splitters and the corresponding vertex in the residual graph. The outgoing
arcs from a vertex of the residual graphs are highlighted in red: notice that in a sub-steady-state, the
throughputs on these arcs must be equal.

only increase on fluid arcs, and can only decrease on saturated arcs. This suggests a definition of the
residual graph for the sub-steady-state (t, F ). Its vertex set is {z} ∪ S, where z is obtained by identifying
all the inputs and outputs into a single node. Its edge set contains some fluid arcs and the reverses of
some saturated arcs.

Consider the splitters in Figure 3. We examine what happens when we increase the throughput on
edge e1 by +ε, or in case (d) when we decrease t(e3) by ε. In case (a), by rule R7, the throughputs on
the two leaving arcs must stay equal, hence both increases by ε/2. In case (b), only the throughput of
the fluid leaving arc e4 can increase. In case (c), both leaving arc are saturated, the splitter cannot push
more flow downward, hence it is forced to push back flow through its incoming saturated arcs. Thus t(e2)
decreases while t(e1) increases, by no more than (t(e2)− t(e1))/2 because of rule R6. Finally in case (d),
if we decrease t(e3), then t(e1) and t(e2) must decrease by half as much.

Case (c) presents a challenge due to rule R6, which imposes t(e1) ≤ t(e2). When t(e1) = t(e2), the
throughput of e1 cannot increase, and the throughput of e2 cannot decrease. We say that e1 and e2 are
tight. In such a case, removing e1 from F is allowed by rule R6. Fluid arcs e with t(e) = c(e) or saturated
arc with t(e) = 0 are also tight, since we cannot modify their throughput further. Then we define the
edge-set of the residual graph to only contain non-tight fluid arcs and reverses of non-tight saturated arcs.

Due to the conservation rule R5, any iterative change to the throughputs of the network must be in
accordance with a circulation of the residual graph. Because of rules R6 and R7, some arcs are constrained
to have the same throughput. Therefore the chosen circulation itself has similar constraints. This is
illustrated in Figure 4, where the arcs that have equal throughput are highlighted in the residual graph.
As may be readily checked, those constraints are exactly set on the leaving arcs in the residual graph of
each vertex corresponding to a splitter. As for the special vertex z, obtained from the identification of the
inputs and the outputs, we may non-deterministically select one of its leaving arc. Then we force all other
arcs leaving z to have zero flow, by removing those arcs from the residual graph. From the residual graph,
we compute a circulation satisfying each equality constraint. First compute a stationary distribution of
a random walk on the residual graph. Then assign to each arc the probability of being the next arc in
a random walk from that distribution. This results in a so-called stationary circulation (see Figure 9).
One must be careful if the residual graph is not strongly connected. Then either we can find a strongly
connected subgraph induced by the leaving arcs of some subset of vertices, or the residual graph contains
a sink (as in Figure 10). In the former case we can still find a circulation, while in the latter case, we will
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Figure 5: A network having several steady-states. Any value for ε between 0 and 1
2 gives a steady-state.

be able to remove some arc from F .
Once a circulation is found, we increase the throughput as much as possible. This process will result

in the creation of at least one sink in the updated residual graph. We show that when the residual graph
contains a sink, some arc can be safely removed from F and becomes saturated. This bounds the number
of steps until the algorithm stops, when z itself becomes a sink. At this point, any arc leaving an input
node is either at full capacity or is saturated. Hence rule R3 is satisfied, (t, F ) is a steady-state. Some
additional details, not covered in this presentation, are provided in Section 3.3. An example of run of the
algorithm on a simple network is given in Figures 9 to 14. Summarizing the discussion, we get:

Theorem 1. There is an algorithm that given a splitter network G = (I ⊎ S ⊎ O,E) with capacities
c : I ⊎O → [0, 1], finds a steady-state (t, F ) in time O(|S|2 + |S| sd(Gz)), where Gz is the graph obtained
by identifying I∪O into a single vertex z, and sd(Gz) denotes the time to compute a stationary distribution
on any orientation of a subgraph of Gz.

Steady-states are not unique: a directed cycle with no input or output can have any constant through-
put on all its arcs. Figure 5 showcases a more interesting network, having one input, one output, and
many possible steady-states. However, in this example, all steady-states have the same throughputs on
the inputs and outputs. Is there a network with two steady-states having different throughputs on their
inputs and outputs? We conjecture that this cannot happen: steady-states are unique up to minor modi-
fications, as in Figure 5. Those modifications would be adding or removing some arcs from F , and adding
or subtracting a circulation from the residual graph that leaves the inputs and outputs unchanged.

1.3 Balancers

We now define load-balancing networks and their properties. The goal of a load-balancing network is to
divide some input flow evenly between several output belts. In the simplest case, the output belts can
receive an arbitrarily large flow (up to the capacity of the belt). In more general cases, some outputs
may be restricted but we still want the flow to be divided as evenly as possible, without limiting the
total throughput available. We distinguish three properties of load-balancing networks. The first of these
properties considers networks where the output capacities are not constrained.

Definition 5. A splitter network G = (I ⊎ S ⊎ O,E) is a balancer if for any c : I ⊎ O → [0, 1] such that
for each output o ∈ O, c(o) = 1, there is a steady-state (t, F ) for (G, c) with t constant on δ−(O). An
(n, p)-balancer is defined as a balancer with |I| = n inputs and |O| = p outputs.

When |I| = |O| = 2k, the simple balancer of order k is a balancer network. It can be defined recursively:
a simple balancer of order k + 1 is made from two simple balancers of order k in parallel. We identify
each pair of outputs with equal index from the two balancers, creating a new splitter whose leaving arcs
go to new output nodes. The recursive process is highlighted by blue boxes in Figure 6. A drawback of
the simple balancer occurs when the output capacities are not uniformly 1. Then the balancing property
is lost, as can be seen on the network in the left side of Figure 6.

Another limitation of simple balancers is that the total throughput at steady-state is not as much as
we could expect. A simple upper bound on the total throughput is min{c(I), c(O)}. It is reasonable to
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Figure 6: On the left, the simple balancer of order 3, with a steady-state that is not balanced when some
output capacity is not 1. The capacity of each input (resp. output) is given at their left (resp. right). On
the right, a simple balancer of order 2, with a steady-state with total throughput less than both the total
input capacity and the total output capacity.

Figure 7: A Beneš network of order 4 with the recursive structure being made explicit.

expect from a load-balancing network to always reach that bound. However, simple balancers do not have
this property, as shown by the example on the right side of Figure 6. Improving over the definition of
simple balancer, the concept of throughput-unlimited balancer imposes a maximized global throughput.

Definition 6. A balancer G = (I ⊎ S ⊎O,E) is throughput-unlimited if for any c : I ⊎O → [0, 1], there is
a steady-state (t, F ) for (G, c) such that total throughput t(I) = t(O) is maximized at min{c(I), c(O)}.

Notice that it has to be balancing only when the output capacities are uniformly 1. Beneš networks
are throughput-unlimited networks with |O| = |I| = 2k. They can be described as gluing two simple
balancers, where the second balancer is reversed, see Figure 7. Observe that Beneš networks are their own
reverses.

On the negative side, Beneš network are still not balancing when output capacities are not uniformly 1,
for instance one could extend the steady-state in the network on the left side of Figure 6 to a steady-state
in a Beneš network with the same throughputs. This calls for a stronger property, that a network should
be load-balancing and throughput-unlimited for any capacity function. This is the notion of universal
balancer.

Definition 7. A splitter network G = (I ⊎ S ⊎ O,E) is universally balancing if for each capacity c :
I ⊎O → [0, 1], there is a steady-state (t, F ) and α, β ∈ R≥0 such that
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(i) for each input i, t(δ+(i)) = min{c(i), α},
(ii) for each output o, t(δ−(o)) = min{c(o), β}.
(iii) the total throughput T := t(δ+(I)) equals min{c(I), c(O)}.

In Section 4, we will show how to build a universal balancer with |I| = |O| = 2k. From such a universal
balancer, by ignoring any set of inputs and outputs (setting their capacities to 0), we can make balancers
with arbitrary numbers of inputs and outputs. We will also prove that every balancer presented here
contains Θ(n log n) splitters where n is the number of inputs and outputs.

Proposition 1. The number of splitters in the simple balancer, Beneš network and universal network of
order k are respectively S(k) = k · 2k−1, B(k) = (2k − 1) · 2k−1, and U(k) = (k + 1)2k+2.

1.4 Lower bounds on the number of splitters

.
Our next goal is to provide an Ω((n + p) log(n + p)) lower bound on the number of splitters in a

(n, p)-balancer. We begin with what may seem as an unrelated problem: sampling in a discrete probability
distribution. Given a fair coin that can be tossed arbitrarily often, how to choose an outcome in {1, . . . , d},
with probabilities given by a distribution π ∈ [0, 1]d? First, consider the case when π(i) is a rational for
each i ∈ {1, . . . , d}, say π(i) = pi/q where q is a common denominator. Then a sequence of coin tossing
can be described as a (possibly infinite) binary decision tree, with each leaf labeled with a sampled value.
Here we present a construction of such a tree. Start from a single vertex, which serves as the root. Grow
the tree in repeated iterations. At each iteration, add two children to every unlabelled leaf. As soon as the
deepest level of the tree contains at least q leaves, label pi of these leaves with i, for each i ∈ {1, . . . , d}.
Once labeled, each leaf becomes definitive and will not grow anymore. The process goes on by once again
growing the unlabelled leaves, as long (possibly infinitely) as some unlabelled leaf exists. After the tree
is completed, the tree can be optimized using a simple trick repeated multiple times. If at any depth
d, two leaves share a common label, move them under a common parent, then replace these two leaves
with a single leaf at depth d − 1 bearing the same label. This process can be generalized to irrational
probabilities, and gives a sampling algorithm that minimizes the number of coins tossed:

Theorem 2 ([13]). Let π ∈ [0, 1]d a discrete probability distribution (so 1π = 1). Then the mini-
mum expected number of coin tosses necessary to sample an element with probability distribution π is∑d

i=1

∑
k∈N

k
2k
binaryk (πi). This minimum is achieved by a binary decision tree where at each depth k and

for each i ∈ J1, dK, the number of leaves with label i is binaryk (πi).

Consider a splitter network, and think of the flow as discrete, arbitrarily small items. An item enters
the network from some input, then meets splitters repeatedly until reaching an output. When an item
arrives at a splitter with both outgoing arcs being fluid, it will continue on any of the two outgoing arcs,
without preference for one over the other because the splitter is fair. It implies that, from the perspective of
this single item, the splitter network behaves like a coin-tossing network, with each splitter corresponding
to a coin toss. If the network is a balancer, the sampled distribution is the uniform distribution on O.

Formally, when all the arcs remains fluid, increasing a single input capacity from 0 to 1 results in a
non-decreasing throughput on each arc. Because all arcs are still fluid, the sub-steady-state algorithm
performs a single iteration. Therefore the increase in throughputs follows a single stationary circulation.
As illustrated on Figure 8, it is obtained from the embedding of a binary decision tree T onto the splitter
network. The increase in throughput on an arc e is the sum of probabilities of the edges mapped to e.
Furthermore, in a balancer network, the increase of throughput is the same on every output. This implies
that, as we progressively increase each input capacity from 0 to 1, each binary decision tree must uniformly
sample from O.

In each binary decision tree, label each edge e with the probability of its usage during sampling. The
sum of these labels represents the expected number of tosses, and can be bounded as shown in Theorem 2.
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Figure 8: The infinite decision tree (in blue) used to sample uniformly over a three-element set {a, b, c}
can be embedded from any input into a (3, 3)-balancer. Moreover, the sum of the probabilities of the 3
trees, one from each input, will be at most one on any arc, which shows that this network is indeed a
simple balancer.

When mapped into the splitter network, for an arc e, the sum of these labels on each edge of the tree
mapped to e is the additional throughput on e. By summing over all the binary decision tree, we get
that the sum of all labels is at most the number of outgoing arcs of all splitters, that is 2|S|. Applied on
balancers, it yields:

Theorem 3. Let G = (I ⊎ S ⊎O,E) be an (n, p)-balancer, such that when all input capacities are 1, the
steady-state has no saturated arc. Then

|S| ≥ 1

2
|I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)

For a balancer with |I| = |O| = 2k, since
∑

k∈N
k
2k
binaryk

(
1
|O|

)
= k

2k
, we get a lower bound of

k2k−1 splitters, matching the value of S(k). Therefore the simple balancer of order k is optimal among
all balancer networks without any saturated arcs in their steady-states. By extending this argument to
steady-states with saturated arcs, we can remove that restriction, albeit at the cost of halving the lower
bound.

Consider the various configurations of fluid and saturated arcs incident to a splitter, illustrated in
Figure 3. If a splitter has two fluid outgoing arcs, any additional flow is evenly distributed between the
two outputs, akin to the probabilities of a coin toss. If a splitter has two incoming saturated arcs, by
rule R8, its outgoing arcs are saturated or at full capacity. In an augmenting circulation, the throughput
on those arcs may only decrease by the same quantity by rule R6: the splitter still acts as a coin toss,
but on the flow that is pushed back. Otherwise, a positive change in throughput on an incoming arc will
be followed by an increase on a single outgoing fluid arc or a decrease on a single incoming saturated
arc. Similarly a negative change of throughput on an outgoing saturated arc will impact only one other
arc. Any additional unit of flow entering the splitter would be routed deterministically. Therefore, in the
embedding of a binary decision tree into the splitter network, a node cannot be mapped to such a vertex,
and no coin toss occurs here. Thus any splitter, depending on which of its incident arcs are fluid, acts as
either a coin toss or a deterministic router. Thus, even in the presence of saturated arcs, we can embed
a binary decision tree, by mapping each edge to a directed path in the residual graph. The inner nodes
of any such path are deterministic splitters, while its extremities are tossing splitters. By Corollary 3,

10



the throughput on each arc increases until it becomes saturated, then decreases. Therefore its throughput
varies by at most 2 during the whole algorithm. This limits the extent to which an arc can be utilized by
the embeddings of binary decision trees, leading us to the following conclusion:

Theorem 4. Let G = (I ⊎ S ⊎O,E) be an (n, p)-balancer. Then

|S| ≥ 1

4
|I||O|

∑
k∈N

k

2k
binaryk

(
1

|O|

)
We will formalize this discussion and prove the theorem in Section 5

2 The C=-circulation problem

Let G = (V,E) be a directed graph. We consider a partition C= ⊆ 2E of the arcs, such that each C ∈ C=
is a subset of the outgoing arcs C ⊆ δ+(v) of some vertex v ∈ V . Two arcs e′, e′′ ∈ E are considered
C=-coupled (or just coupled when no ambiguity arises) if there is C ∈ C= such that e′, e′′ belongs to C (an
arc is coupled to itself). An arc e′ is single if {e′} ∈ C=, indicating that it is not coupled to another arc.
The tuple (G, e, C=), where e ∈ E, is then an instance of the C=-circulation problem: find a circulation in
G that is non-zero on e and is constant on any set of C=. It can be expressed as finding a vector x with
xe > 0 satisfying the following linear system:

x(δ+(v))− x(δ−(v)) = 0 (v ∈ V )
xe − xe′ = 0 (e, e′ ∈ C ∈ C=)

x ≥ 0
(1)

Theorem 5. An instance (G = (V,E), ts, C=) of the C=-circulation problem has a solution x with xts > 0
if and only if there is no set S ⊆ V \ {t} with a partition S = S0 ⊎ S1 . . . ⊎ Sk where s ∈ S0 and for any
arc e ∈ δ+(Si), there is an arc e′ coupled to e (possibly e = e′) such that e′ ∈ E[Si, Sj ] and i < j.

Proof. Suppose S = S0 ⊎ S1 . . . ⊎ Sk exist and let x denote a solution to (1). We prove by induction
from k to 0 that for all i ∈ J0, kK, x(δ(Si)) = 0. This will imply that xts = 0 as ts ∈ δ−(S0). By
assumption, δ+(Sk) = ∅, and because x is a circulation, x(δ−(Sk)) = 0, proving the base case. Let
i ∈ J1, k − 1K and suppose that we have for all j ∈ Ji+ 1, kK, x(δ(Sj)) = 0. Let uv ∈ δ+(Si), then
there is an arc uw ∈ E[Si, Sj ] with j > i, where uw is either equal to or coupled with uv, hence by the
induction hypothesis xuv = xuw = 0. Thus x(δ+(Si)) = 0. Again, by x being a circulation, we get that
x(δ−(Si)) = 0.

Now suppose that there is no x ∈ RE
≥0 satisfying (1) and xts > 0. By Farkas lemma, this implies that

the following linear system has a solution y ∈ RV :

ys − yt ≥ 1∑
uv∈C

yv − yu ≥ 0 (C ∈ C=)

We may partition V into S−l, S−l+1, . . . , Sk, the equivalence classes defined by the relation u ∼ v if
yu = yv, ordered based on increasing y-values, and such that s ∈ S0. Because yt < ys, t /∈ S0 ∪S1 . . .∪Sk.

Let i ∈ J0, kK and let uv ∈ δ+(Si). Let C ∈ C= with uv ∈ C. Then
∑

uw∈C yw − yu ≥ 0 implies that
either yw = yu for all uw ∈ C, which is not the case as uv ∈ δ+(Si) hence yu ̸= yv, or there is some uw ∈ C
with yw > yu. But then w ∈ Sj with j > i, proving that the partition S satisfies the desired property.

Corollary 1. An instance (G = (V,E), ts, C=) of the C=-circulation problem where G is strongly connected
has a solution x with xts > 0.
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Proof. By contraposition, consider an instance lacking a non-zero circulation, and let S0 ∪ . . .∪ Sk be the
partition given by Theorem 5. Then δ+(Sk) is empty, indicating that G is not strongly connected.

We can compute efficiently a C=-circulation in the strongly connected case. We do so by restricting
the problem to a spanning subgraph in which the classes in C= coincides with the leaving arcs of each
vertex.

Lemma 1. There is an algorithm that, given an instance (G = (V,E), ts, C=) of the C=-circulation problem
with G strongly connected, find a feasible solution x with xts > 0 in time O(|E|+ sd(G)), where sd(G) is
the complexity of computing a stationary distribution on any subgraph of G.

Proof. Let T denote a maximal in-arborescence of G rooted at t. Let

E′ := {e ∈ E : e is coupled to some arc in T ∪ {ts}}.

By construction, t is reachable from any vertex in (V,E′). Because ts ∈ E′, s and t are in the same
strongly connected component of (V,E′). Let H = (VH , EH) be the strongly connected component of
(V,E′) containing s and t. Because any vertex in T has out-degree at most 1, and by our choice of E′, for
any v ∈ V , δ+(v) ∩ E′ ∈ C=. Let C=H := {C ∈ C= : C ⊆ EH}.

We can rewrite the problem of finding a C=H -circulation on H, by setting yv := xe for e ∈ δ+(v):∑
uv∈δ−(v)

yu = d+(v)yv,

y ≥ 0,

and then setting πv = d+(v)yv: ∑
uv∈δ−(v)

πu
d+(u)

= πv,

π ≥ 0.

We recognize the last system as the one defining a stationary distribution of a Markov chain over H,
provided that we add the constraint 1π = 1. As H is strongly connected, the stationary distribution
exists and is nowhere zero. Thus we obtain a non-zero C=H -circulation for H. We extend it into a non-zero
C=-circulation for G by setting xe = 0 for any edge not in EH .

The strongly connected case serves as a basis for an algorithm solving the general problem.

Lemma 2. There is an algorithm that, given an instance (G = (V,E), ts, C=) of the C=-circulation
problem, in time O(|E| log4 |V |+ sd(G)), either find a feasible solution x with xts > 0 or correctly assert
that none exists. Here sd(G) is the complexity of computing a stationary distribution on any subgraph of
G.

Proof. We start by computing a strongly connected subgraph H of G containing ts and ensuring that for
any C ∈ C=, either C ⊆ E(H) or C∩E(H) = ∅. If no such H exists, then the C=-circulation instance does
not admit a non-zero solution. If H exists, we reduce the problem of finding x to computing a stationary
distribution in H.

To compute H, we use a dynamic decremental single-sink reachability algorithm with sink t. If ever t
becomes unreachable from s, then we conclude that the instance does not admit a non-zero solution. The
algorithm keeps a queue of vertices to delete, initially the vertices from which t is not reachable. While
the queue is non-empty, it takes a vertex from it and delete its incident arcs and all the arcs coupled to
them. As soon as it detects that some vertex v cannot reach t, it queues that vertex v for deletion. When
the queue is empty, remove all the vertices not reachable from s and return the remaining subgraph H.
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First, suppose that this algorithm fails to build H because t becomes unreachable from s. Each time
a subset of vertices becomes disconnected from t, we label it Si (with decreasing index i, adjusting the
value of the starting index at the end of the algorithm). When such a component appears, all its leaving
arcs must have been removed, which means they are coupled to an arc entering some already removed
component. Hence we get the sequence S0, S1 . . . Sk proving that a non-zero C=-circulation cannot exist.

Suppose now that the algorithm returns a subgraph H = (VH , EH). By construction, for any C ∈ C=,
either C ⊆ EH or C∩EH = ∅. Indeed, if any arc of C is removed during the main loop, then C is removed
in the same iteration. If some arc of C is removed during the final phase, when vertices unreachable from
s are removed, then the vertex v for which C ⊆ δ+(v) must not be reachable from s and thus C was
removed.

Next we claim that H is strongly connected. By construction, for any vertex v, there is a path from
t to v starting with ts. Moreover, notice that before removing the vertices unreachable from s, there was
a path from v to t. Thus any vertex on this path is also reachable from s and is kept during the last
phase. Hence t is reachable from v, proving that H is strongly connected. We then apply Lemma 1 to
compute x, and extend it to G by setting xe = 0 for any arc not in H. The complexity follows by using
the decremental single-sink reachability algorithm from [3].

The next lemma gives a sufficient condition for the existence of a non-zero C=-circulation, when we
may choose any arc to be positive instead of the specific arc ts as above.

Lemma 3. Given a connected directed graph G = (V,E) and a partition C= of E that is a refinement of
the out-incidencies of G, then

either there is a non-zero C=-circulation in G,
or there is a vertex v ∈ V with δ+(v) = ∅,

and we can find one or the other in time O(|E|+ sd(G)).

Proof. One can find in time O(|E|) a strongly connected component X of G that is a sink component:
δ+(X) = ∅. If |X| = 1 we are done, because v ∈ X is a sink. Now, assume that |X| > 1.

Because for any C ∈ C=, there is a vertex v with C ⊆ δ+(v), for any arc e ∈ E[X], any arc coupled
to e is also in E[X]. Hence, a C=-circulation x of G[X] can be extended to a C=-circulation on G by
setting xe = 0 for each e /∈ E[X]. Such a C=-circulation on G[X] exists and can be computed in time
O(|E|+ sd(G)) by Lemma 1.

3 Computing a steady-state

In this section, we give two algorithms to compute a steady-state in a splitter network.

3.1 A stronger maximization rule

The algorithms use a slightly stronger property than rule R8:

R8S for any arcs uv ∈ E \ F and vw ∈ F , t(vw) = 1.

Clearly rule R8S implies rule R8. The two rules are actually almost equivalent:

Lemma 4. If (t, F ) is a steady-state, then there is a steady-state (t, F ′) that satisfies rule R8S, with
F ⊆ F ′.

Proof. By induction on the number of splitters on which rule R8S is not true. Let uv /∈ F , vw ∈ F with
t(vw) < 1, by rule R8 t(uv) = 1. Let u′v be the arc in-coupled to uv. If u′v is fluid, then (t, F ∪ {uv})
is a steady-state as rule R6 is checked on v and rule R7 is checked on u. If u′v is saturated, by rule R6,
t(u′v) = 1, then (t, F ∪ {uv, u′v}) is a steady-state for similar reasons. Notice that in both cases, the
modification preserves rule R8S on any splitter for which it held. Hence the number of those splitters
increases by one.
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3.2 An push-relabel-like algorithm to compute steady-states

In analogy with a pre-flow in a push-relabel max-flow algorithm, we relax the conservation rule R5, to
define:

Definition 8. Given a splitter network G = (I ⊎S ⊎O,E) with capacities c : I ⊎O → [0, 1], a pre-steady-
state for (G, c) is a pair (t, F ) satisfying R1, R2, R3, R4, R6, R7, and R8S, and such that for each splitter
s ∈ S,

t(δ+(s)) ≤ t(δ−(s)).

The next claim which can be readily checked, asserts the existence of a simple pre-steady-state.

Claim 1. The pair (t, E(G)) is a pre-steady-state for (G, c), where

t : uv →
{
c(u) if u ∈ I,
0 otherwise

We proceed by iteratively improving upon this initial pre-steady-state. Let G = (I ⊎ S ⊎ O,E) be
a splitter network with capacities c : I ⊎ O → [0, 1]. Let F ⊆ E be a set of fluid arcs. If (t, F ) is a
pre-steady-state, then t is a feasible solution to the following linear program:∣∣∣∣∣∣∣∣∣∣∣∣

max t(δ−(O)) subject to
0 ≤ t ≤ 1 (e ∈ E) t(δ+(s)) ≤ t(δ−(s)) (s ∈ S)
t(is) ≤ c(i) (is ∈ δ+(I)) t(is) = c(i) (is ∈ δ+(I) ∩ F )
t(so) ≤ c(o) (so ∈ δ−(O)) t(so) = c(o) (so ∈ δ−(O) \ F )
t(wv) ≤ t(uv) (uv ∈ E \ F,wv ∈ E) t(uw) ≤ t(uv) (uv ∈ F, uw ∈ E)
t(vw) = 1 (uv ∈ E \ F, vw ∈ F )

(PSS)

Conversely, the following lemma is immediate:

Lemma 5. Given G = (I ⊎S ⊎O,E) a splitter network, c : I ⊎O → [0, 1] a capacity function and F ⊆ E
a set of fluid arcs, for any feasible solution t of (PSS), (t, F ) is a pre-steady-state of (G, c).

Our algorithm is based on the next lemma.

Lemma 6. Let t⋆ be an optimal solution to (PSS) such that
∑

e∈F t(e)−
∑

e∈E\F t(e) is maximized. Then
either (t⋆, F ) is a steady-state, or there is an arc e ∈ F such that (t⋆, F \ {e}) is a pre-steady-state.

Proof. Assume that (t⋆, F ) is not a steady-state: there is a vertex s ∈ S with t⋆(δ−(s)) − t⋆(δ+(s)) > 0.
Let {e1, e2} = δ−(s) with t⋆(e1) ≤ t⋆(e2), and {e3, e4} = δ+(s) with t⋆(e3) ≤ t⋆(e4).

Case 1: there is a fluid leaving arc e ∈ {e3, e4} ∩ F such that e is in-coupled to an arc e′ ∈ E \ F and
t⋆(e) = t⋆(e′). Then (t⋆, F \ {e}) is a pre-steady-state, as rules R6 and R8S are clearly still satisfied.

Case 2: there is a fluid leaving arc e ∈ {e3, e4} ∩ F such that e ∈ δ−(o) for some output o ∈ O, and
t⋆(e3) = c(o). Then (t⋆, F \ {e}) is a pre-steady-state, as rules R4 and R7 are clearly still satisfied.

We may now assume that the fluid leaving arcs do not check the conditions for cases 1 and 2. Conse-
quently, increasing the output t⋆(e) to t⋆(e) + ε for some sufficiently small ε do not break any rule on the
destination node of e.

Case 3: e3 and e4 are both fluid, with t⋆(e3) = t⋆(e4) < 1. Then, for some ε > 0 sufficiently small, (t⋆+
εχ{e3,e4}, F ) is a pre-steady-state, because we increase the throughput on both arcs uniformly, preserving
rule R7. achieving a better objective than t⋆. The throughput of this pre-steady-state improves over t⋆, a
contradiction.
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Case 4: exactly one of e3, e4 is fluid with throughput strictly less that one, and we may assume it is
e4 by rule R7. Then, for some ε > 0 sufficiently small, t⋆ + εχ{e4} is a better solution then t⋆, again a
contradiction.

We may now assume that e3 /∈ F or t⋆(e3) = 1, and that e4 /∈ F or t⋆(e4) = 1.

Case 5: e2 ∈ F . Then (t⋆, F \ {e2}) is a pre-steady-state, as rules R6 and R8S are both satisfied.

We may now assume that e2 ∈ E \ F .

Case 6: e1 ∈ F and t⋆(e1) = t⋆(e2). Then (t⋆, F \ {e1}) is a pre-steady-state, as rules R6 and R8S are
satisfied.

Case 7: e1 ∈ E \ F . Then t⋆ − εχδ−(s) is a better solution than t⋆ for some ε > 0 sufficiently small,
which leads to a contradiction.

Case 8: t⋆(e1) < t⋆(e2), e1 ∈ F , e2 /∈ F . Then, for some ε > 0 sufficiently small, t⋆−εχ{e2} is a better
solution to (PSS) than t⋆, again a contradiction.

This leads to the iterative algorithm of repeatedly solving the LP and removing an arc from F , that
stops after at most |E| + 1 iterations, and solves |E| + 1 linear programs of polynomial size in the worst
case.

Notice that the proof still holds with additional constraints t(e) ≥ le for any fluid arc e, and t(e) ≤ ue
for any saturated arc e. This is because the algorithm tries to increase the throughput on fluid arcs, and
decrease it on saturated arcs. Therefore, as long as the algorithm can be initialized with a feasible solution,
we can find a steady-state that also checks these constraints. The feasible solution is a pre-steady-state
that already satisfies those additional constraints. This implies the following corollary.

Corollary 2. Given G = (I ⊎ S ⊎ O,E) a splitter network, c : I ⊎ O → [0, 1] a capacity function and
(t0, F0) a pre-steady-state for G, c. Then there exists steady-state (t, F ) for G, c such that

(i) F ⊆ F0;
(ii) for each arc e ∈ Fo, t(e) ≤ t0(e);
(iii) for each arc e ∈ E \ F , t(e) ≥ to(e).

Proof. Find a steady-state with the additional constraints t(e) ≤ t0(e) for each e ∈ F0, and t(e) ≥ t0(E)
as long as e is a fluid arc.

3.3 A blocking-flow-like algorithm to compute steady-states

Let (t, F ) be a sub-steady-state for a splitter network G = (I ⊎S ⊎O,E) with capacities c : I ⊎O → [0, 1].
Similar to the blocking-flow algorithm, we employ a notion of residual graph. We notice that throughput
values may be bounded by rules R6, which governs the throughputs entering a splitter, and R7, which
bounds the throughput at the outputs. Let s be a splitter, with δ−(s) = {e, e′}, where e ∈ F and
e′ ∈ E \ F , and t(e) = t(e′), then t(e) is lower-bounded and t(e′) is upper-bounded by rule R6. We say
that e is upper-tight and e′ is lower-tight. We also say that a fluid arc e is upper-tight when t(e) = c(e),
and a saturated arc e is lower-tight when t(e) = 0. Thus, an arc is tight when its throughput cannot be
modified without violating some rule. Furthermore, rules R6 and R7 imposes some arcs to have equal
throughput: out-coupled fluid arcs, or in-coupled saturated arcs. Any modification to such an arc imposes
a modification to its coupled arc. Therefore, we say that a fluid arc is loose if none of its out-coupled fluid
arcs is upper-tight. A saturated arc is loose if none of its in-coupled saturated arcs is lower-tight.

Definition 9. Let G = (I ⊎ S ⊎ O,E) be a splitter network, with capacities c : I ⊎ O → [0, 1] and a
sub-steady-state (t, F ). The residual graph for (t, F ) is the pair (H, C=) where H = (VH , EH) is a graph
defined by
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VH := {z} ∪ S where z is a new vertex.
for each loose fluid arc uv ∈ F , ϕ(u)ϕ(v) ∈ EH ,
for each loose saturated arc uv ∈ E \ F , ϕ(v)ϕ(u) ∈ EH ,

where ϕ(u) = z if u ∈ I ∪O, ϕ(u) = u otherwise.
We denote ρ the natural bijection from the loose arcs in E to EH . For each loose uv ∈ E, let

Cuv := {ρ(u′v′) : u′v′ ∈ E loose and coupled with uv} and C= := {Cuv : uv ∈ E loose}. Notice that
C= forms a partition of EH , and for all C ∈ C=, there is a vertex v ∈ VH with C ⊆ δ+H(v). The connected
component of H containing z will be called its main component.

Coupled arcs must have the same throughput, thus their throughput can only be changed by an equal
amount. We define C= to be the partition of the arcs into the sets of coupled arcs. Our next result is that
a C=-circulation of the residual graph fills the role of an augmenting flow for the sub-steady-state.

Definition 10. For a sub-steady-state (t, F ), we define ψ(t, F ) by

ψ(t, F ) = |{e ∈ E \ F : t(e) = 0}| − |{e ∈ F : t(e) < c(e)}| (3)

Lemma 7. Let G = (I ⊎ S ⊎ O,E) be a splitter network with capacities c : I ⊎ O → [0, 1]. Let x be a
non-zero circulation on the residual graph H of a sub-steady-state (t, F ). Then there is a value λ > 0 such
that (t, F ) is a sub-steady-state, where

t(e) :=


t(e) if e ∈ E is not loose,
t(e) + λxρ(e) if e ∈ F is loose,
t(e)− λxρ(e) if e ∈ E \ F is loose.

Moreover, either ψ(t, F ) > ψ(t, F ), or there is an arc e ∈ F such that (t, F := F \{e}) is a sub-steady-state
with ψ(t, F ) > ψ(t, F ).

Proof. We compute λ > 0 to be the maximum value such that (t := t + λx, F ) is a sub-steady-state. A
positive λ exists because the support of x is the set of loose arcs of G, thus choosing λ small enough will
not break any sub-steady-state rule. Notice that by definition of t, the contribution of any arc e to ψ
cannot decrease, thus we need only find one arc whose contribution increases. By the maximality of λ,
there is a loose arc in (t, F ) that is no longer loose in (t, F ), that is:

either there is an arc e ∈ F , t(e) < t(e) = c(e), hence ψ(t, F ) > ψ(t, F );
or there is an arc e /∈ F , t(e) > t(e) = 0, hence ψ(t, F ) > ψ(t, F );
or there is a vertex v ∈ S with δ−(v) = {e, e′}, e ∈ F , e′ ∈ E \ F with t(e′) > t(e) and t(e′) = t(e)
(e and e′ stop being loose). By rule R8S, arcs in δ+(v) are either saturated or have throughput
1 in t and in t. Then (t, F \ {e}) is a sub-steady-state as rules R6 and R8S are satisfied, and
ψ(t, F \ {e}) > ψ(t, F ), as the contribution of e increases.

Lemma 8. Let (t, F ) be a sub-steady-state for a splitter network G = (I ⊎ S ⊎ O,E) with capacities
c : I ⊎O → [0, 1], and let H be its residual graph. If the main connected component of H contains a sink
v ∈ S, then there is an arc e ∈ δG(v) such that (t, F \ {e}) is a sub-steady-state.

Proof. First, if an edge e is fluid with t(e) < c(e) but e is not in H, then e is not loose. By definition of
loose, e is out-coupled to a fluid arc e′ that is upper-tight. Therefore, e′ is in-coupled to a saturated arc
e′′ /∈ F with t(e′) = t(e′′). In that case, (t, F \ {e′}) is a substeady-state (checking rules R6 and R8S).
Similarly, if e is saturated such that t(e) > 0 but the reverse of e is not in H, then e is in-coupled to
a lower-tight arc e′. e′ is in-coupled to a fluid arc e′′ with t(e′) = t(e′′). In that case, (t, F \ {e′′}) is a
substeady-state.

Consider a sink v in H. We may now assume that for any e ∈ δ+G(v), either t(e) = c(e) or e /∈ F ,
and for any e ∈ δ−G(v), t(e) = 0 or e ∈ F . Let e ∈ δ−G(v) such that t(e) is maximum. If e ∈ F , then
(t, F \{e}) is a sub-steady-state, as rules R6 and R8S are satisfied. If e /∈ F , then t(e) = 0, and by rule R6
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Figure 9: Starting from a trivial sub-steady-state, we compute a residual graph and a stationary circu-
lation in this graph (the two vertices marked z should be identified). Then we increase the throughputs
accordingly, as much as possible without violating a sub-steady-state rule, by adding λ = 6 times the
circulation at which point some edge reaches its capacity (see Figure 10).

0 =
∑

e∈δ−G(v) t(e) =
∑

e∈δ+G(v) t(e), hence δ+G(v) ⊆ E \ F . Because v is not isolated, the arc e′ out-coupled
to e must be loose. If e′ is saturated, it is in-coupled to the lower-tight arc e, contradicting the fact that
e′ is loose. Then e′ is fluid, with t(e′) = 0, and (t, F \ {e′}) is a sub-steady-state, as rules R6 and R8S are
satisfied on v and rule R7 is satisfied on the origin of e′.

As in an augmenting-path algorithm, we will repeatedly build the residual graph, and deduce either
that the current pair (t, F ) is a steady-state, or find a better solution.

Lemma 9. There is an algorithm that, given a splitter network G = (I ⊎ S ⊎ O,E) with capacities
c : I ⊎O → [0, 1], and a sub-steady-state (t, F ), either checks that (t, F ) is a steady-state, or find another
sub-steady-state (t, F ) such that ψ(t, F ) > ψ(t, F ) and that runs in time O(n+ sd(Gz)), where sd(Gz) is
the complexity of finding a stationary distribution on any residual graph for G.

Proof. We apply Lemma 3 to the main component of the residual graph H, from which we get one of two
cases.

Case 1: there is a non-zero circulation. By Lemma 7, the sub-steady-state can be improved by this
circulation into a new sub-steady-state (t, F ) with ψ(t, F ) > ψ(t, F ).

Case 2: there is a sink v in the main component of H. If v /∈ S, v is the special vertex z obtained
by identifying the vertices of I ∪ O, then every arc in δ+G(I) is saturated or not loose, which implies that
rule R3 is checked, hence (t, F ) is a steady-state. If v ∈ S, by Lemma 8 there is a fluid arc e ∈ δ−G(v) ∩ F
such that (t, F \ {e}) is a sub-steady-state.

Proof of Theorem 1. The algorithm repeatedly applies Lemma 9 from the initial sub-steady-state (t : e→
0, F ). Each iteration takes time O(|E|+ sd(G)) and increases ψ by one. As ψ is initially −|E|, and is at
most |E|, this bounds the number of iterations by 2m, from which we get the claimed complexity.

3.4 Reverse splitter networks and consequences

We present some consequences of the algorithms and of the following fact that splitter networks can be
reversed. Because splitters are fair on their input as well as on their output, splitter networks and steady-
states display a useful symmetry. For an arc set X, we denote

←−
X := {vu : uv ∈ X} the set of reverse

arcs of X.

Definition 11. Let G = (I ⊎ S ⊎ O,E) be a splitter network, we denote
←−
G the reverse of G, defined as

the splitter network (O ⊎ S ⊎ I,
←−
E ), where the inputs and outputs are interchanged.
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Figure 10: We compute a new residual graph, which does not contain the arc with throughput 1, since
this arc cannot increase. Then the existence of a sink prevents us to find a stationary circulation in this
residual graph (the two vertices marked z should be identified). We remove from F the incoming arc to
the sink with highest throughput, and go to the next iteration.
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Figure 11: We compute a new residual graph, including the reverse of the newly saturated arc. Then
we compute a stationary circulation in this residual graph. This leads to an improved sub-steady-state
(taking λ = 3·26

4·14 , when another edge reaches throughput 1, see Figure 12)
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Figure 12: The next residual graph contains a sink, thus we remove one more arc from F . This yields
the residual graph on the right. We compute the stationary circulation in this residual graph. Then we
imporve the sub-steady-state according to this circulation (here λ = 4

7 , when the incoming arcs of the
central vertex become tight, see Figure 13)
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Figure 13: Again the residual graphs contains sinks, that we remove by making some arcs saturated. This
yields the residual graph on the right, free of any sink. We compute a stationary circulation in this residual
graph, and use it to improve the sub-steady-state (taking λ = 9

14 , when the incoming arcs of the leftmost
splitter become tight, see Figure 14)
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Figure 14: After removing one more arc from F , z becomes a sink in the residual graph. It implies that
(t, F ) is a steady-state. The algorithm stops.
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Figure 15: Increasing the input capacities may result in reduced effective throughputs on some inputs, as
if they are in competition. Similarly, increasing the output capacities may also result in reduced effective
throughputs on some outputs.

Lemma 10. Let G = (I ⊎ S ⊎O,E) be a splitter network with capacities, c : I ⊎O → [0, 1], and (t, F ) a
steady-state for (G, c). Then (t,

←−
E \
←−
F ) is a steady-state for (

←−
G, c).

Proof. We check that each steady-state-defining rule is satisfied. Rules R1, R2, R5 and R8 can be readily
checked. Rules R3 and R4 translates into each other, as do rules R6 and R7.

Observe that the strong maximization rule R8S does not translate well into
←−
G , hence the reverse of a

steady-state does not necessarily check rule R8S. But by Lemma 4, there is a steady-state (t,
←−
E \
←−
F ′) of

(
←−
G, c) with F ′ ⊆ F that satisfies rule R8S.

A careful look at the sub-steady-state algorithm shows that, during its resolution, each edge t(e) starts
in F with t(e) = 0, then t(e) increases, before possibly being removed from F , then t(e) decreases.

Corollary 3. If (t, F ) is a sub-steady-state for (G, c), then there exists an steady-state (t, F ) with F ⊆ F ,
and for each e ∈ E, if e ∈ F then t(e) ≥ t(e), and if e ∈ E \ F , t(e) ≤ t(e).

If we increase the input capacities to c, a steady-state (t, F ) for (G, c) becomes a sub-steady-state for
G,C). Hence,

Corollary 4. If (t, F ) is a steady-state for (G, c), and c be a capacity function with c(u) ≥ c(u) for each
input or output u ∈ I ∪O. There exists a steady-state (t, F ) for (G, c) such that:

(i) if c(o) = c(o) for each output o ∈ O, then t(e) ≥ t(e) for each e ∈ δ−(O);

(ii) if c(i) = c(i) for each input i ∈ I, then t(e) ≥ t(e) for each e ∈ δ+(I).

Proof. (t, F ) is a sub-steady-state, which we can improve using the algorithm from Theorem 1. Let (t, F )
be the resulting steady-state. Notice that if an arc e ∈ δ−(O) is saturated, by rule R4, t(e) = c(e), hence e
is not loose. Thus the throughputs of saturated arcs incident to outputs cannot decrease. This proves (i).
Then (ii) follows by taking the reverse network and applying (i) to the reverse steady-state, thanks to
Lemma 10.

Thus increasing the input capacities will not decrease the output throughputs. Notice that increasing
the input capacities may lead to the decrease in the throughput of some of the inputs, as can be seen in
the example of Figure 15.

4 Design of balancer networks

We first define formally the simple balancer of order k, for k ≥ 0, whose recursive definition was suggested
in Section 1.3, then prove that it is a balancer. For k = 0 and k = 1, the networks without splitter
and with a single splitter respectively are universal balancers. We denote Jl, uK the set of integers i with
l ≤ i ≤ u.
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Definition 12. For any integer k ≥ 2, the simple balancer of order k is the network splitter G =
(I ⊎ S ⊎O,E) where:

I :=
{
ij : j ∈

q
0, 2k − 1

y}
and O :=

{
oj : j ∈

q
0, 2k − 1

y}
,

S :=
{
s(l,j) : (l, j) ∈ J0, k − 1K×

q
0, 2k−1 − 1

y}
,

E :=
{
ijs(0,j/2), s(k−1,j/2)oj : j ∈

q
0, 2k − 1

y}
∪
⋃

l∈J0,k−2KEl,

El :=
{
(s(l,j)s(l+1,j), s(l,j)s(l+1,j⊕2l) : j ∈

q
0, 2k−1 − 1

y}
.

where ⊕ is the bitwise exclusive or.

Proposition 2. For any k ≥ 1, the simple balancer of order k is a balancer.

Proof. Let G = (I ⊎ S ⊎O,E) be the simple balancer of order k, c : I ⊎O → [0, 1] with c(o) = 1 for each
output o ∈ O. For each arc e = s(l,j)s(l+1,j′), we define J(l,j) to be the set of inputs i such that there is
a directed path from i to e. Clearly, we have that J(l,j) = J(l−1,j) ⊎ J(l−1,j⊕2l−1) and J(l,j) is the set of
integers j′ such that the binary representations of j and j′/2 coincides on the k− 1− l heavier bits. Then,
set

t(s(l,j)) :=
1

2l+1

∑
α∈J(l,j)

c(iα)

and F := E. It can be easily checked that (t, F ) is a steady-state where each output has the same
throughput.

4.1 Throughput-unlimited balancers

We now define formally the Beneš network, and prove its property of being throughput-unlimited.

Definition 13. A Beneš network of order k is a splitter network G = (I ⊎ S ⊎O,E) where
I := {ij : j ∈

q
0, 2k − 1

y
} and O := {oj : j ∈

q
0, 2k − 1

y
},

S := {s(l,j) : l ∈ J0, 2k − 2K , j ∈
q
0, 2k−1 − 1

y
},

E := {ijs(0,j/2), s(2k−2,j/2)oj : j ∈
q
0, 2k − 1

y
} ∪

⋃
l∈J0,2k−3KEl,

El := {(s(l,j)s(l+1,j), s(l,j)s(l+1,j⊕2l′ ) : j ∈
q
0, 2k−1 − 1

y
} where l′ = max{k − 2− l, l − k + 1}.

The arcs between levels l and l + 1 represent swapping a bit of weight w, where w varies from k − 2
to 0 then to k − 2 again. Alternatively, a recursive definition of a Beneš network of order k + 1 consists
in placing two Beneš networks of order k in parallel. Then identify the inputs from both networks, index
by index, into a splitter, and proceed similarly for the outputs (see Figure 7). Because the latter half of a
Beneš network is a simple balancer, it is itself a simple balancer.

Proposition 3. Beneš networks are balancer.

Proof. This follows from the fact that the subgraph of splitters s(l,j) for l ∈ Jk − 1, 2k − 2K with their
incident arcs is a simple balancer.

Proposition 4. Beneš networks are throughput-unlimited.

Proof. Let G = (I ⊎ S ⊎ O,E) be the Beneš network of order k, and c : I ⊎ O → [0, 1]. We may assume
that c(I) ≥ c(O) by the reversibility property of splitter networks Lemma 10.

We define a new splitter network GL = (VL, EL), by removing O and all vertices s(l,j) with l ≥ k, and
adding 2k new outputs O′, with arcs s(k,j/2)o′j for each j ∈

q
0, 2k − 1

y
. GL is a simple balancer of order

k between I and O′. Symmetrically we define GR = (VR, ER), a simple balancer of order k, by removing
I and all vertices s(l,j) with l < k − 1, and adding a set I ′ of new inputs.

Consider c′L : I ∪O′ → [0, 1] defined by c′L(I) = c(I) and c′L(O) = 1. By Proposition 2, there exists a
steady-state (t′L, F

′
L) for GL, cL, such that for each e ∈ δ−(O), t′(e) = c(I)/2k, and F ′

L = EL.
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Next consider cR : I ′ ∪ O → [0, 1] defined by cR(I
′) = 1 and cR(O) = c(O). The reverse of GR is a

simple balancer of order k. Therefore by Proposition 2, there exists a steady-state (
←−
tR,
←−
FR) for

←−
GR, cR,

such that for each ←−e ∈ δ−(I ′) of the reverse graph, t(←−e ) = c(O)/2k and ←−e ∈
←−
FR. Reversing the network

and the steady-state, by Lemma 10, (tR : e→←−tR(←−e ), FR = ER\
←−
FR) is a steady-state in GR. Furthermore,

for each arc e ∈ δ+(I ′), tR(e) = c(O)/2k and e ∈ ER \ FR is saturated.
We plan to build a steady-state using t′L and tR. However when c(I) > c(O), this would lead to positive

excess on splitters s(k−1,j). To avoid this, we decrease the throughputs on GL with the following procedure.
Let cL : I ⊎O′ → [0, 1] denote a capacity function with cL(I) = c(I) and cL(o) = c(O)/2k for each o ∈ O′.
Then define a throughput function tL, where tL(e) = cL(o) for each o ∈ O′ and {e} = δ−(o), and
tL(e) = t′L(e) for any other arc e /∈ δ−(O′). Then (t′L, EL) is a pre-steady-state for (GL, cL), with positive
excess on splitters s(k−1,j) when c(I) > c(O). Using the pre-steady-state algorithm and Lemma 6, there
exists a steady-state (tL, FL) for GL, cL. Furthermore, let e ∈ δ−(O′). If e is fluid, then by Corollary 2,
c(e) = c(O)/2k. If e is saturated, then by rule R4, c(e) = c(O)/2k also.

Finally, we define t(e) = tL(e) if e ∈ E ∩ EL, and t(e) = tR(e) if e ∈ E ∩ ER. Let s = s(k,j) for some
j ∈

q
0, 2k − 1

y
. Then t(δ−(s)) = c(O)/2k−1 ≥ t′(δ+(s)) = c(O)/2k−1. Let F = FL ∪FR. Then the arcs in

δ+(s) are saturated. Because rules R6, R7 and R8 hold on s and on each splitter, (t, F ) is a steady-state,
with t uniform on δ−(O).

4.2 Universal balancer

Before giving a design for universal balancer, we first define a network that behaves like a universal balancer
as long as the input and output capacities are at most 1/2.

Definition 14. The half-universal network of order k is a continous splitter network G = (I ⊎ S ⊎O,E)
where

I := {ij : j ∈
q
0, 2k − 1

y
} and O := {oj : j ∈

q
0, 2k − 1

y
};

S := SB;
E := {uv ∈ EB : u, v ∈ SB} ∪ F ∪ {ijs(0,j), s(2k,j)oj : j ∈

q
0, 2k − 1

y
};

F := {s(2k,j)s(0,j) : j ∈
q
0, 2k − 1

y
};

(IB ⊎ SB ⊎ OB, EB) is the Beneš network of order k + 1, and SB = {s(l,j) : l ∈ J0, 2kK , j ∈q
0, 2k+1 − 1

y
}.

See the left side of Figure 16. The half-universal network is its own reverse. Its design includes loopback
connections from each output back to each input. When the throughput of an output reaches its capacity,
any excess throughput can be redirected back through one of these loopback arc, to the entry of the
network. From there, it flows again to different outputs. Hence, the loopback arcs prevent the occurence
of saturated arcs inside the Beneš network, as long as at least one output has not reached its maximum
capacity. Consequently, the balancing property of the Beneš network is also preserved. This is done at
the cost of reducing by half the throughput, as we send back half of the flow. This limitation justifies the
name half-universal, and our universal balancer will use two half-universal networks in parallel.

Proposition 5. Let G = (I ⊎S ⊎O,E) be the half-universal splitter network, and let c : I ⊎O → [0, 1/2].
Then there is a steady-state (t, F ) for (G, c) and α, β ∈ R≥0 such that

(i) for each input i, t(δ+(i)) = min{c(i), α},
(ii) for each output o, t(δ−(o)) = min{c(o), β}.
(iii) the total throughput T := t(δ+(I)) equals min{c(I), c(O)}.

Proof. We may assume that c(I) ≤ c(O) by Lemma 10, because the half-universal network is its own
reverse. We build a steady-state with the stated properties. Let β ≥ 0 be such that

∑
o∈O min{c(o), β} =

c(I). Observe that β ≤ maxo∈O c(o) ≤ 1
2 . Let fj be the loopback arc s(2k,j)s(0,j) and J ′ := {j ∈q

0, 2k − 1
y
: c(oj) < β}.
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Beneš(k + 1)

Beneš(k + 1) Beneš(k + 1)

Figure 16: A schematic representation of a half-universal network on the left, and of a universal network
on the right.

For j ∈
q
0, 2k − 1

y
, set

t(δ−(oj)) := min{c(oj), β},
t(δ+(ij)) := c(ij),

t(fj) := 2β −min{c(oj), β} ≤ 1.

Let (t⋆, EB) be the steady-state of the Beněs network of order k, when the input capacities are given by
the values of t(δ+(ij)) and t(fj) (for j ∈

q
0, 2k − 1

y
) and the output capacities are uniformly 1. For any

arc e in the Beneš subnetwork, set t(e) := t⋆(e).
We claim that (t, E \ {δ−(oj) : j ∈ J ′}) is a steady-state. Indeed, by Proposition 4, the flow going

through the Beneš subnetwork is

t(I) + t(F ) = c(I) +
∑
o∈O

2β −min{c(o), β} =
∑
o∈O

2β.

By Proposition 3, the flow entering any node s(2k,j) must be 2β, which equals the leaving flow. Moreover,
Rule R7 is clearly satisfied on node s(2k,j) as t(fj) ≥ t(δ−(oj)), concluding the proof.

Definition 15. The universal network of order k is the splitter network built from two disjoint copies of
the half universal network of order k, by pairwise identifying the inputs and outputs from both copies, and
adding 2k input nodes and 2k output nodes, each with one arc linking it to one of the identified vertices.

The right side of Figure 16 illustrates the construction of a half-universal network. Again, universal
networks are their own reverse.

Theorem 6. The universal network of order k is universally balancing.

Proof. Let c : I ⊎ O → [0, 1] be a capacity function on the universal balancer G of order k. Consider a
half-universal balancer H = (IH ⊎ SH ⊎OH , EH) of order k − 1, let cH : IH ⊎OH →

q
0, 12

y
be a capacity

function defined by cH(ij) =
1
2c(ij) and cH(oj) =

1
2c(oj). Let (tH , FH) a steady-state for (H, cH) given

by Proposition 5. Then one can define a steady-state (t, F ) for (G, c) by using tH on both sides of G and
completing t to the arcs incident to output and input nodes, and easily check that it has the expected
properties.

23



0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.5

1

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.75

0.5
0.5

0.5
0.75

0.5

0.5

0.625

0.5

0.
5

0.
5

0.625

0.75

0.5625

0.5625

0.625

0.625

0.5625

0.5625

Figure 17: Adding loops on a simple balancer to reduce the number of inputs and outputs does not
necessarily preserve the balancing property.

4.3 Balancers of all sizes

We extend the construction of balancers to general (ni, no)-balancers. Given ni and no, two positive inte-
gers representing respectively the number of inputs and outputs, let k ∈ N such that m := max{ni, no} ≤
2k. Let G = (I ⊎ S ⊎O,E) be the universal network with 2k inputs and 2k outputs. Remove any surplus
inputs or outputs to achieve a network with ni inputs and no outputs. This can be accomplished by setting
their capacities to 0. We obtain a universally balancing network with ni inputs and n0 outputs.

Another method to decrease the number of outputs and inputs would be to add loopback arcs from the
surplus output to the surplus input. This would avoid the usage of dummy terminals. Loopback arcs are
also useful to reduce the number of inputs and outputs in non-universal balancer. However, preserving the
balancer property when adding loopback arcs requires some care. Indeed, in a simple balancer, balancing
is achieved when the capacities of the outputs are uniformly 1. Therefore it is necessary to ensure that
the loopback arcs remain fluid. A careless implementation of this process may result in a network failing
to be a balancer, as illustrated by Figure 17.

5 Lower bounds for the size of balancers

We begin this section by establishing Proposition 1, followed by the derivation of a lower bound on the
number of splitters in a balancer.

Proof of Proposition 1. This follows directly from the definitions for S(k) and B(k). A universal network
of order k consists in its two Beneš subnetworks of order k + 1, plus 2 · 2k additional splitters to connect
the inputs and outputs to each half-universal network. In total, we get

U(k) = 2 · (2k + 1)2k + 2 · 2k = (k + 1) · 2k+2

As a consequence, the number of splitters of any balancer discussed in Section 4 is O(n log n) where
n = max{|I|, |O|}. We proceed to establish a corresponding lower bound.

Proof of Theorem 4. Let G = (I ⊎ S ⊎ O,E) be a balancer network. Let c : I ⊎ O → [0, 1] be a capacity
function. We initialize a capacity c′ with c′(i) = 0 for each i ∈ I and c′(o) = c(o) for each o ∈ O. We
then incrementally increase the capacity of each input i, from 0 to c(i), recalculating a new steady-state at
each step. Increasing an input capacity transforms a steady-state into a sub-steady-state, therefore each
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iteration performs a series of augmentations. Denote by f1, . . . , fm the sequence of augmenting circulations
computed until reaching the final steady-state.

As G is a balancer, and each intermediary sub-steady-state is a steady-state for some choice of input
capacities, each augmenting circulation fk is uniform on δ−(O). By construction fk is non-zero on at
most one input arc ek ∈ δ+(I). The support of fk is defined as the subgraph of all arcs e such that
fk(e) > 0. We will assume that the support of each circulation intersects δ+(I) (and thus increases the
global throughput), as other circulations will not contribute to the proof and thus can be ignored.

Consider the support of fk on G. Reverse all saturated arcs, to ensure that fk is a flow on this graph.
Then contract each arc uv ̸= ek with |δ+(u)| = 1, by identifying u and v and removing uv. This action
eliminates all the vertices with out-degree one, except for one input ik. The resulting graph is denoted
Hk, and the flow gk, the restriction of fk on Hk, represents a flow from ik to O. Let δ+k and δ−k denote the
incidence functions of Hk. The following properties hold:

Claim 2. (i) each remaining splitter s in Hk has out-degree 2;
(ii) for each vertex v in Hk, gk is constant on δ+k (v);
(iii) gk is constant on δ−k (O) ∩ F .

Proof. (i) and (ii) follow from the fact that each vertex other than ik in the residual graph has out-degree
at most 2 and its outgoing arcs are coupled. This last fact follows by a simple case analysis on which
incident arcs are saturated.

By construction, fk is an augmenting circulation between two steady-states of a balancer. Conse-
quently, fk is the difference of two throughput functions that are both uniform on δ−(O). Therefore fk is
itself uniform on fluid arcs of δ−(O), and so is gk, proving (iii).

We proceed by constructing a directed arborescence rooted at ik, which may be infinite. This is
achieved by establishing a parent-child relation among the walks originating from ik in H. A walk w is a
parent of a walk w′ if the length of w′ is one plus the length of w, and w is a prefix of w′. This defines
an arborescence (T,ET ) whose root r is the empty walk and each node is a walk. Additionally, there
is a natural morphism ϕ from each walk w ∈ T to its end vertex, mapping each parent-child pair to a
directed path in H from ϕ(parent) to ϕ(child). Observe that nodes in the arborescence, whose end vertices
are splitters, possess two children. In contrast, nodes whose end vertices are outputs have no children.
Let us introduce the function p : ET → [0, 1], where p(w,w′) denotes the probability of a random walk
originating from ik having w′ as a prefix. Specifically, because the tree is binary, p(w,w′) = 2−depth(w).
For a splitter s, let Ws be the set of all walks whose end vertex is s. The expected number of occurences
of s in a random walk starting from ik, is Λ(s) =

∑
w′∈Ws

p(ww′).
Using p, we construct a flow on the graph Hk. For each arc a, let ϕ−1(a) ⊆ ET be the set of

edges e in the arborescence such that a ∈ ϕ(e). Then then flow value f ′k(a) on an arc a is defined by
f ′k(a) =

∑
e∈ϕ−1(e) p(e). Due to its construction, f ′k satisfies the conservation rules on each splitter, hence

is a flow from ik to O. Observe that the augmenting flows are defined by a linear system. For each
node v ∈ S ∪ {ik} of Hk, this linear system contains one variable, representing the amount of flow on
each outgoing arc, and one constraint, representing the conservation rule. The constraints are linearly
dependant, as their sum is zero, but have rank one less than the number of variables. Hence the solution
space has dimension 1. Therefore fk and f ′k are identical up to a scaling factor: fk = fk(ek) · f ′k. Because
fk is uniform on δ−(O), so is f ′k. This implies that (T,ET ) is the binary decision tree of a sampling process
over the uniform distribution on O. By Theorem 2, in the residual graph,∑

s∈S

∑
e∈δ−k (s)

fk(e) = fk(ek)
∑
s∈S

Λ(s) ≥ fk(ek)|O|
∑
k∈N

k

2k
binaryk (|O|) .
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Summing over all augmenting circulation f1, . . . , fm, we obtain:
m∑
k=1

∑
s∈S

∑
e∈δ−k (s)

fk(e) ≥ |I||O|
∑
k∈N

k

2k
binaryk (|O|) .

We conclude the proof by analysing the contribution of each arc to the left-hand side of the inequality.
Because of Corollary 3, a fluid arc entering a splitter contributes up to a value of 1, until it reaches a
throughput of 1. Then it may contribute as a saturated arc to the splitter from which it as a leaving arc,
again by a total amount of at most 1, until it reaches a throughput of 0. Each leaving arc of a splitter
contributes at most 1 when saturated, and each entering arc of a splitter contributes at most 1 when fluid.
Therefore, the total contribution is at most 4|S|, yielding:

|S| ≥ 1

4
|I||O|

∑
k∈N

k

2k
binaryk (|O|) .

In the case when the final steady-state contains only fluid arcs, we do not count the contribution of
saturated arcs. This leads to Theorem 3:

|S| ≥ 1

2
|I||O|

∑
k∈N

k

2k
binaryk (|O|) .

6 Simulating an arbitrary capacity

We present a way to build, for any rational r ∈ [0, 1] ∩ Q, a continuous splitter network with one input
vertex i and one output vertex o, such that, when c(i) = 1, then the throughput of any equilibrium of this
network is min{r, c(o)}. Those networks can be used as gadgets to simulate arcs with rational capacities
in larger networks, thanks to the additional property that the arc leaving i may be set as saturated if and
only if its throughput is r or c(o).

Let r = p
q ∈ Q be a positive rational with 0 < p < q. Let k ∈ N be such that 2k−1 < q ≤ 2k, k >= 1.

We construct a splitter network from a complete binary out-arborescence of depth k from a source
splitter s. The throughput entering s is fairly split among the 2k leaves. Then we partition the leaves into
three sets P,Q,R, with |P | = p, |Q| = q − p and |R| = 2k − q. Route all the flow from R back to the
root of the tree, by adding an in-arborescence from these leaves to s. Then a random walk from s ends in
P with probability p

q , and in Q with probability 1− p
q . If we send all the flow from P to an output, and

all the flow from Q back to the input, as illustrated in Figure 18, we get a splitter network with maximal
throughput r.

Informally, the arc s′s entering the root of the main arborsecence serves as the bottleneck of that
network. Its throughput, when capped at 1, equals the sum of the input throughput and the throughputs
from q−p leaves. By the rule of conservation R5, the input throughput equals the output throughput, which
is the sum of throughputs of p leaves. Therefore the throughput x at each leaf satisfies px+(q−p)x = t(ss′),
that is x = t(ss′)

q . It follows that, when t(ss′) is capped at 1, the input throughput is p
q = r. We do not

prove precisely this result because this construction has two main shortcomings:
it only holds as long as p

q ≥
1
2 . Otherwise, the tree collecting the flow back from the p− q leaves to

the input would become saturated, while we would rather have that the arc is′ is saturated.
the size of this construction is linear in q (hence exponential in the size of the encoding of the
capacities).

Optimizing over that solution would overcome these shortcomings, but we will rather directly define a
correct network with an optimal number of splitters (up to a multiplicative constant). Before introducing
an efficient design, we consider another construction based on the binary expansion of r. Because r = p

q
is rational, its binary expansion is ultimately periodic: there exist binary words x, y ∈ {0, 1}⋆ with
binary(r) = 0.xyω. Let l = |x| + |y|. We define the splitter network G′

r := (V := I ⊎ S ⊎ O,E :=
E0 ∪ Er ∪ E1−r) with
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. . .

p q − p 2k − q

Figure 18: An inefficient network to simulate a rational capacity of p
q , where 2k−1 < q ≤ 2k. This only

works when p
q ≤ 1 − p

q , because we expect the arc leaving the input node to saturate as soon as the
throughput reaches p

q .

I := {i}, O := {o},
S :=

⋃l
j=1{uj , vj , wj},

E0 := {ivl, v1u1, wlo, ulu|y|+1} ∪
⋃l−1

j=1{ujuj+1, vj+1vj , wjwj+1},
Er := {uivi : for each i ∈ J1, lK with (xy)i = 0},
E1−r := {uiwi : for each i ∈ J1, lK with (xy)i = 1}.

Then Gr is obtained by contracting any splitter s with d+(s) = d−(s) = 1 into a single arc. Figure 19
shows an example of network Gr with r = 169

504 . One way to understand this design is to unfold the loop
made by ul−1u|y|+1, making the u, v and w lines extend infinitely to the right; this gives a network that
simply split the flow following the binary expansion of r, each vertex ui distributing 2−i unit of flow. This
construction seems more compact than the construction based on trees, but can still have a large number
of splitters, as l can be as large as q−1. Also, it still needs to be adapted for some values of r to make sure
that the only saturated arcs are the arcs vi+1vi. Namely, it is sufficient to choose a periodic representation
where the period starts with a 1.

Our best construction relies on combining the main ideas of the two previous constructions:
- split the flow into 2k equal chunks, and make three groups of size p, q − p, 2k − q, so that we get

three flows of size λp2−k, λ(q− p)2−k and 1− q2−k. One flow is output, one loops back to the head
of the bottleneck arc, and one loops back to the tail of the bottleneck arc.

- use the binary representations of each group size to create the three flows.
We first give the construction for r = p

q ≥
1
2 , and we will later show how to extend it to any rational value.

For an integer n ∈ N, denote binary (n) the binary representation of n, and binaryi (n) the value of
the bit of weight 2i in that representation.

Definition 16. Let p1, p2, . . . , pl, k ∈ N>0 be integers with
∑l

i=1 pi = 2k. Let Tp1,p2,...,pl,k be a binary
out-arborescence where each leaf is labeled by an integer in J1, lK, such that for any label i ∈ J1, lK and
any depth d ∈ J1, kK, the number of leaves with label i at depth d is binaryk−d (pi).

Notice that Tp1,p2,...,pl,k always exists, but is not necessarily unique. We prove its existence by showing

27



1
2

1
8

2
63

1
126

1
4

4
63

1
53

1
252

1
504

173
504

3
8

1
2

1
2

1
4

4
63

1
63

1
252

1
8

2
63

1
126

1
4

79
252

83
252

84
252

169
504

169
504

1

1
504

u:

v:

w:

0 1 0 1 0 1 0 1 1

Figure 19: A network with maximal throughput r = 169
504 = 169

8·63 , built from the binary representation of r:
0.010(101011)ω.

that the number nd of inner nodes at depth d ∈ J0, kK is

nd = 2d −
l∑

i=1

⌊ pi
2k−d

⌋
.

The proof is by induction on d, where n0 = 1. Let d ∈ J1, kK, and assume that nd−1 = 2d−1 −∑l
i=1

⌊ pi
2k−d+1

⌋
. Then the number of nodes at depth d is twice nd−1, to which we subtract the leaves at

depth d. This yields

nd = 2nd−1 −
l∑

i=1

binaryk−d (pi)

= 2 ·

(
2d−1 −

l∑
i=1

⌊ pi
2n−d+1

⌋)
−

l∑
i=1

binaryk−d (pi)

= 2d −
l∑

i=1

2
⌊ pi
2n−d+1

⌋
+ binaryk−d (pi)

= 2d −
l∑

i=1

⌊ pi
2k−d

⌋
.

As
∑l

i=1 pi ≤ 2k, nd is non-negative, hence Tp1,p2,...,pl,k exists.

Definition 17. Given r = p
q ∈ Q, with 1

2 ≤
p
q < 1, gcd(p, q) = 1, and k ∈ N>0 such that 2k−1 < q ≤ 2k.

Let T = Tp,q−p,2k−q,k with root r. We define the splitter network Gp/q := (V := I ⊎ S ⊎O,E) where
I := {i}, O = {o} and S = {r′} ⊎ V (T ),
E := E(T ) ⊎ E(P1) ⊎ E(P2) ⊎ E(P3) ⊎ {ir′, r′r, t1o, t2r′, t3r},
for each label γ ∈ {1, 2, 3}, Pγ is a path connecting all the leaves with label γ in increasing depth
order, and tγ is the end vertex of Pγ .

The construction is illustrated in Figure 20 and Figure 21 (a).

Lemma 11. Gp/q has a steady-state (t, F ) with throughput t⋆ = min
{
c(i), c(o), pq

}
. Moreover

(i) if t⋆ = p
q , we may take F = E(Gp/q) \ {ii′};

(ii) if t⋆ = c(i), we may take F = E(Gp/q);
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Figure 20: A network of size O(log q) with maximum throughput 29
55 . The throughput values shown on

the figure should be scaled by a factor 64
55 to get the value at equilibrium. The lines P1, P2, P3 are given

by the binary encoding of p = 29 = 011101, q = 26 = 011010 and 2k − q = 9 = 001001. Figure 21 (a)
gives another representation of the same network.

(iii) if t⋆ = c(o), we may take {ii′, o′o} ⊆ F .

Proof. Let t be the following throughput function:

t(e) :=



2k−d

q if e ∈ T is from depth d− 1 to depth d,
2k+d

q

⌊
v(γ)
2d

⌋
if e ∈ Pγ , γ ∈ {1, 2, 3}, is from depth d to depth d′ > d,

p
q if e ∈ {ir′, t1o},
1− p

q if e = t2r
′

2k

q − 1 if e = t3r

1 if e = r′r

where v(1) = p, v(2) = q−p, v(3) = 2k−q. We check that (t, E\{ir′}) is a steady-state when c(i) = c(o) =
1. As 2k−1 < q ≤ 2k, the throughputs are between 0 and 1. The conservation rule R5 is easily checked on
every vertex, except vertices of Pγ . Let u ∈ V (Pγ) at depth d. let wu the incoming arc on Pγ , with w at
depth d′. Then binaryd′ (v(γ)) = binaryd (v(γ)) = 1, and binaryδ (v(γ)) = 0 for each δ ∈ Jd′ + 1, d− 1K.
This implies

2d
′−d · 2d′

⌊
v(γ)

2d′

⌋
+ 1 =

1

2d

⌊
v(γ)

2d

⌋
.

Scaling this equation by a factor 2k

q yields the conservation rule for u. Rule R6 at r′ requires that p
q ≥ 1− p

q ,
which holds by the assumption that p

q ≥
1
2 . The other rules can be readily checked. This steady-state

remains valid as long as min{c(i), c(o)} ≥ p
q .

Suppose now that min{c(i), c(o)} ≤ p
q . When c(i) ≥ c(o), we build a pre-steady-state by decreasing

t(t1o) to c(o), generating some excess on t1, and removing t1o from the fluid arcs. Then using the pre-
steady-state algorithm, the flow will be push back to i through ir′, when ir′ is saturated. Therefore
there is a steady-state with total throughput c(o) and ir′, t1o are saturated. When c(i) < c(o), we start
from (t, E \ {ir′}), take the reverse steady-state in the reverse network, then decrease its output capacity
on output i to c(i), saturating r′i and inducing some excess at r′. Then we apply the pre-steady-state
algorithm to find a steady-state. The first step of the algorithm will be to make rr′ saturated, in order to
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push back the excess at r′. From there all arcs are saturated. Running the algorithm to its termination,
we obtain a steady-state for the reverse network, that we reverse into a steady-state for Gp/q with only
fluid arcs.

When p
q <

1
2 , we construct Gp/q from G2p/q. This adds at most 2 log q additional splitters, thus the

number of splitters of Gp/q remains O(log q).

Definition 18. Let p
q ∈ Q>0 with p

q <
1
2 , we define the splitter network Gp/q := (V := I ⊎ S ⊎ O,E)

where
- I = {i}, O = {o}, S = V (H),
- E = {ii′, o′o, o′i′} ⊎ E(H),

where H is a copy of G2p/q with input i′ and output o′.

We extend the proof of Lemma 11 to every rational p
q .

Proof. We prove it by induction on the number of recursive steps in the definition of Gp/q. The base case
is given by the first proof of the lemma, when p

q ≥
1
2 . Let p

q <
1
2 , and suppose that G2p/q behaves as

expected.
Case 1: p

q ≤ min{c(i), c(o)}. Let (t′, F ′) be a steady-state on G2p/q when c′(i′) = 1 = c′(o′), obtained
by induction hypothesis. Then δ+(i′) ∩ F ′ = ∅. Let t(ii′) = t(o′o) = t(o′i′) = p

q and t(e) = t′(e) for any
other arc e. Then, checking all the rules on i, o, i′, and o′, we get that (t, F ′ ∪ {ii′, oi′} is a steady-state,
as expected.

Case 2: c(i) ≤ c(o) and c(i) < p
q . Let (t′, F ′) be a steady-state for G2p/q and c′(i′) = c′(o′) = 2c(i) < 1p

q ,
obtained by induction hypothesis. Then F ′ = E(G2p/q), all arcs are fluid. We extend this steady-state,
by setting t(ii′) = t(o′o) = t(o′i′) = c(i) and t(e) = t′(e) for any other arcs. Then (t, E(G2p/q)) is a
steady-state, with only fluid arcs.

Case 3: c(o) < min{c(i), pq}. Let (t′, F ′) be a steady-state on G2p/q when c′(i′) = c′(o′) = 2c(o) ≤ 2p
q ,

obtained by induction hypothesis. Then δ−(o′) and δ+(i′) are saturated in this steady-state. We extend
it by setting t(ii′) = t(o′o) = t(o′i′) = c(o), t(e) = t′(e) for any other arc e, and F = F ′. Then (t, F ) is a
steady-state for (G, c), with ii′ and o′o saturated, as expected.

The next theorem summarizes the previous results.

Theorem 7. For any rational r = p
q ∈ Q with r ∈ [0, 1], there is a splitter network with maximum

throughput p
q . This network may be used as a gadget to simulate an arc with capacity r. The size of this

network is linear in the size of r when r is encoded either as a ratio or by its binary expansion (prefix and
period).

The network Gp/q exhibits a curious asymmetry. It operates by splitting the input flow carefully until
reaching the exact throughput p

q . Intuitively Gp/q acts on the input. The reversed network
←−−
Gp/q is also a

capacity-simulating network, with the same maximum throughput. Intuitively
←−−
Gp/q acts on the output,

by carefully grabbing amount of flows until reaching throughput p
q . Gp/q and

←−−
Gp/q share the same general

behaviour, with two distinct strategies. Figure 21 shows an example of Gp/q together with its reverse
networks and the throughputs at maximum capacity.

We cannot extend these constructions to build network with an irrational maximum throughput.

Lemma 12. For any irrational x ∈ [0, 1]\Q, there is no splitter network with a single input i and a single
output o, such that c(i) = c(o) = 1, the total throughput of a steady-state is x.

Proof. The maximal throughput t of a network under some capacities is an optimal solution to the linear
program (PSS) for some set F of fluid arcs, hence t must be a convex combination of rational vectors. By
maximality of t, all those rational vectors have the same total throughput, which is a rational.
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Figure 21: Two networks with maximum throughput 29
55 , reverse from each other.

We conclude this section, by mentioning that the construction of a capacity-simulating network can be
extended to design networks that distribute their incoming flow over their outputs following an arbitrary
rational distribution. Considering a rational vector (p1, . . . , pl), and q ∈ N, where l is the required number
of outputs and po

q is the expected throughput for output o. Choose k with 2k−1 < q ≤ 2k. We replace

the single edge bottleneck by a bottleneck cut of size s =
⌈
p1+...+pl

q

⌉
. Then we define ri

q for i ∈ J1, sK, the

amount of flow that loop back after the bottleneck, and q′

q the amount of flow that loop back before the
bottleneck. We start from a binary out-arborescence T = Tp1,...,pl,q′,r1,...,rs . As the maximum throughput
may be larger than 1, we replicate the highest nodes of T , until each layer contains at least s nodes. For
each of the s replicated roots, we add to incoming arc, one is in the bottleneck cut, the other is a loopback
arc with throughput ri

q . Figure 22 illustrates an example of distribution network. From there, it is possible
to glue a simple balancer over the inputs to make the network throughput unlimited, and then to add even
more loopback arcs, to make a half-universal distribution network, and duplicate it to define ultimately a
universal distribution network. In such a network, the throughputs on fluid outputs arcs stay proportional
to each other, following the required distribution.

7 Priority splitters

7.1 Definition and algorithms

Factorio allows players to assign priorities to splitters, altering their behavior. A splitter that prioritizes
some output belt will send as much throughput to that belt, until saturating or reaching its capacity.
Any excess flow will then be sent on the other output belt. Similarly, a splitter will pull its flow from the
prioritized input belt, and use the other output belt only to complete its throughput.

We modify the definition of steady-states to accomodate priority splitters.

Definition 19. Let G = (I ⊎ S ⊎ O,E) be a splitter network, c : I ∪ O → [0, 1] a capacity function,
p+, p− : S → E ∪ {⊥} the so-called the output-priority and input-priority functions, such that for each
s ∈ S, p+(s) ∈ δ+(s) ∪ {⊥} and p−(s) ∈ δ−(s) ∪ {⊥}. A steady-state for (G, c, p+, p−) is a pair (t, F )
where

P1 t : E → [0, 1] is the throughput function;
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Figure 22: An splitter network defined from a rational vector (2749 ,
33
49 ,

11
49 ,

37
49), with (r1, r2, r3, r4) =

(49, 49, 11). The acyclic subgraph H, colored in blue, is obtained by replicating the highest layers of
a tree. All blue arcs (in H) between two consecutive levels have equal throughput indicated on the right,
except for the first two levels that appeared by replicating the top of the tree and form a simple balancer.
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P2 F ⊆ E is the set of fluid arcs, E \ F is the set of saturated arcs;
P3 for each i ∈ I with δ+(i) = {e}, t(e) ≤ c(i) and moreover if e ∈ F then t(e) = c(i);
P4 for each o ∈ O with δ−(o) = {e}, t(e) ≤ c(o) and moreover if e /∈ F then t(e) = c(o);
P5 for each s ∈ S, with δ−(s) = {e1, e2} and δ+(s) = {e3, e4}, t(e1) + t(e2) = t(e3) + t(e4);
P6 for any e1, e2 ∈ E with {e1, e2} = δ−(s) and e1 /∈ F , if p−(s) = e1 then t(e1) = 1 or t(e2) = 0, and

if p−(s) ̸= e2 then t(e1) ≥ t(e2);
P7 for any e1, e2 ∈ E with {e1, e2} = δ+(s) and e1 ∈ F , if p+(s) = e1 then t(e2) = 0 or t(e1) = 1, and

if p+(s) ̸= e2 then t(e1) ≥ t(e2);
P8 for any uv ∈ E \ F and vw ∈ F , t(uv) = 1 or t(vw) = 1.

Compared to the definition of steady-states for (G, c), all rules are identical except Rules P6 and P7
which generalizes Rules R6 and R7. Therefore when p− and p+ are uniformly ⊥, the two notions of
steady-states coincide.

The extended definition of steady-state preserves the symmetry already observed, therefore if (t, F ) is
a steady-state for (G, c, p+, p−), then (t,

←−−−
E \ F ) is a steady-state for (

←−
G, c,

←−
p−,
←−
p+), where←−p (e) =

←−
( p(e)).

In the Rule P7, for δ+(s) = {e1, e2}, when e1 ∈ F and p+(s) = e1, the constraint t(e1) = 1 or t(e2) = 0
is not immediately representable as a linear constraint. However, in the context of iteratively solving the
linear system, and removing arcs from F at each step, at the start of an iteration, if e1 ∈ F and t(e1) < 1,
we may force the constraint t(e2) = 0. Hence t(e2) will stay null until e1 becomes tight or saturated. Then
we can remove the constraint t(e2) = 0 as it is no longer induced by the definition of steady-state. The
same principle applies to Rule P6. Therefore, the LP-based algorithms can be adapted to compute the
steady-state of a splitter network with priorities. Likewise, the definition of residual graph can be adapted,
to accomodate priorities.

Priorities allow to change the feasible steady-states. Therefore, the question of finding a steady-
state optimizing the total throughput becomes relevant in the context of splitter network with priorities.
Formally, the input of a throughput maximization problem consists in a splitter network (G, c). Its output
is a quadruple (p+, p−, t, F ) such that (t, F ) is a steady-state for (G, c, p+, p−). The goal is to maximize
the global throughput t(δ+(I)).

We study several possible scenarii for this optimization problem: in Section 7.2 when we may choose all
the priorities, in and out of each splitter; in Section 7.3 we impose the in priorities and ask for maximizing
out priorities; and finally in Section 7.4 we impose some priorities arbitrarily, and must choose the other
priorities.

7.2 Choose input and output priorities for each splitter

Proposition 6. The throughput maximization problem is polynomial-time solvable when c = 1. Let
G = (I ⊎ S ⊎ O,E) be a splitter network. The maximum throughput equals the value of a maximum flow
from I to O in G with unit capacities.

Proof. Consider an integral maximum flow t from I to O. Because there is a minimum cut having the
same value, the maximum throughput cannot exceed t(δ+(I)). We show that we can choose F , p+ and
p− such that (t, F ) is a steady-state in (G, c, p+, p−).

For each splitter s ∈ S, with δ+(s) = {e1, e2}, we define

p+(s) =


⊥ if t(e1) = t(e2);
e1 if t(e1) = 0 and t(e2) = 0;
e2 if t(e2) = 1 and t(e1) = 1.

Define p−(s) similarly. Finally, we define F by setting saturated arcs to be precisely the arcs e with
t(e) = 0 that are reachable from I in the residual graph of the maximal flow t. This choice guarantees
that Rule P8 is satisfied. All the other rules are readily checked.
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Figure 23: An illustration of the reduction from the partition problem to finding output priorities with
maximal throughput.

7.3 Choose output priority for each splitter

Proposition 7. Given (G, c = 1) and input priorities p− : S → E, the problem of finding a steady-state
(t, F, p+, p−) with maximum throughput is polynomial-time solvable. The maximal throughput equals the
value of a maximum flow from I to O in G with unit capacities.

Proof. For an integral maximum flow t from I to O, and setting p+(s) as in the proof of Proposition 6,
(t, E) is a sub-steady-state, as can be readily checked. We initiate the sub-steady-state algorithm with
(t, E), yielding a steady-state (t′, F ). Because the sub-steady-state cannot reduce the global throughput,
and by the existence of a minimum cut of size t(δ+(I)), the throughput of (t′, F ) is precisely the value of
the maximum flow.

Corollary 5. Given (G, c = 1) and output priorities p+ : S → E, the problem of finding a steady-state
(t, F, p+, p−) with maximum throughput is polynomial-time solvable. The maximal throughput equals the
value of a maximum flow from I to O in G with unit capacities.

Proof. Apply Proposition 7 to the reverse splitter network.

In contrast, when we force each splitter to have an output priority distinct from ⊥ and the input
capacities are not uniform, finding a maximal throughput is hard.

Proposition 8. Let G = (I ⊎ S ⊎ O,E) be a splitter network, capacities c : I ∪ O → [0, 1] and input
priorities p−, with c(O) = 1 for each o ∈ o. The problem of finding output priorities p+ : S → E and
a steady-state (t, F, p−, p+) of maximum throughput is NP-hard, even when p−(s) = ⊥ for each splitter
s ∈ S.

Proof. We reduce the partition problem: given s1, . . . , sn with
∑n

i=1 si = 2, is there a subset I ⊆ J1, nK
with

∑
i∈I si = 1. The reduction is straightforward, and illustrated in Figure 23. The n leftmost terminal

have output capacities s1, s2,. . . , sn respectively. s0 and the outputs have capacity 1. The maximal
throughput is 3 if and only if the partition instance has a solution. Indeed, when a partition exists,
routing all the flows from terminals si with i ∈ I up, and all the other flows down, provides a routing
where no flow goes through u. Inversely, if any flow goes through u, it must go through v too. That flow
will concur with the one unit flow between s0 and t0, therefore forbidding the total throughput out of s0
to be one. Howerever, in order to avoid u to receive any flow, the output flow of each input si must be
fairly split between the bottom and top parts of the splitter network, hereby defining a partition.
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Figure 24: A network splitter with two capacity functions and their steady-states.

7.4 Choose output priorities for some splitters

When an arbitrary subset of priorities are imposed, the maximum throughput problem becomes intractable,
stays so even when we only choose some of the output priorities and all other splitters act fairly.

Theorem 8. Let G = (I ⊎ S ⊎ O,E) be a splitter network, c : I ∪ O → [0, 1] a capacity function,
p− : S → E ∪ {⊥} input priorities for each splitter, and p+0 : S′ → E ∪ {⊥} be a partial output-priority
function, where S′ ⊆ S. The problem of finding a steady-state (t, F, p−, p+) of maximum throughput with
p+0 being the restriction of p+ to S′ is NP-hard, even when p− and p+0 are uniformly ⊥ and c = 1.

The reduction is based on two gadgets, representing respectively the variables and the clauses of a
3-SAT formula. Before establishing the reduction, we study the two properties of the two gadgets. The
variable gadget is based on the splitter network described in Figure 24. We will exploit the fact that
its global throughput is not a convex function of the input capacities. Indeed, as depicted in Figure 24,
for the input capacities (1, 1, 0), (12 , 1,

1
2) and (0, 0, 1), the global throughput are respectively 11

4 , 10
4 and

11
4 . Therefore, by adding a splitter with undetermined priority, to provide the flow to the two opposite
inputs, we incentivize a choice of priority different from ⊥ for that additional splitter. Implementing this
modification yields the variable gadget, defined in Figure 25.

Proposition 9. Depending on the choice of p+(x?), and assuming that each arc leaving the gadget is fluid,
the throughput on the leaving arcs of the splitter network depicted in Figure 25 are either (78 ,

7
8 ,

1
2 ,

1
2), or

(58 ,
5
8 ,

5
8 ,

5
8), or (12 ,

1
2 ,

7
8 ,

7
8).

Proof. This follows immediately from the steady-states depicted in Figure 24, considering the throughput
on the leaving arc of x? will be either 1, 0, or 1

2 ,
1
2 , or 0, 1, depending on the choice of out-priority.
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Figure 25: The variable gadget. The node x? represents a splitter whose output priority is not predeter-
mined. All other splitters s are fair: p+0 (s) = p−(s) = ⊥. The leaving arcs indexed by x are connected to
gadgets of clauses containing x positively, those indexed by x are connected to gadgets of clauses containing
x negatively. If there are not enough clauses, each superfluous arc has a new terminal as destination.

Hence, each variable gadget induces a choice, that translates into some arcs carrying a throughput of 7
8

and others 1
2 . We propose a clause gadget that can accept a throughput of up to 9

4 = 1
2 +

7
8 +

7
8 , forbidding

the three inputs from having all a throughput of 7
8 . The splitter network presented in Figure 26 features

two parts: the upper part receives the flow from the variable gadget, and reduces it to an eightth of its
original value. Hopefully the remaining throughput should be at most 9

32 <
1
2 . The bottom part consists

in a capacity simulating network, with capacity 1 − 9
32 = 23

32 >
1
2 . Then we join this two flows toward

the output t1 in the splitter p. Increasing the input flow from the variable gadgets will increase the flow
entering p from above. As 9

32 <
23
32 , by respecting Rule P6, the throughput on the arc entering p from the

right would then decrease, and thus s2 would provide strictly less than 23
32 .

Proposition 10. For any throughput values f1, f2, f3 on the three entering arcs of the clause gadget,
depicted in Figure 26, there is a steady-state (t, F ) for which the three entering arcs e1, e2, e3 are fluid,
with t(ei) = fi for each i ∈ {1, 2, 3}. Moreover, f1 + f2 + f3 ≤ 9

4 if and only if t(δ+(s)) = 23
32 .

Proof. In order to show that the arcs entering the gadget are always fluid, we consider the case when the
throughput on the three entering arcs e1, e2 and e3 are uniformly 1. Then the throughput on each arc of
the upper part of the gadget can be easily computed, and the throughput on the arc e entering p from
above is 3

8 . This arc is fluid, and the other arc e′ entering p from the right is saturated with throughput
5
8 . Therefore e1, e2 and e3 are fluid in this steady-state.

More precisely, the throughput on e is t(e) = f1+f2+f3
8 , and the throughput on e′ is t(e′) = max{2332 , 1−

t(e)}, with e′ saturated when t(e) > 9
32 . The steady-state at the critical point, when f1 + f2 + f3 = 9

4 , is
illustrated in Figure 26.

Using the two gadgets, we prove that the throughput maximization problem is NP-hard.

Proof of Theorem 8. We reduce 3SAT, where each variable appears at most twice positively and twice
negatively. Let ϕ be a set of 3-clauses on variables x1, . . . , xn. We define a splitter network, with one
copy of the variable gadget for each variable in the formula, and one copy of the clause gadget for each
of its clauses. A leaving arc labeled x (respectively x) is identified with an entering arc of a clause
gadget containing the literal x (respectively x). Any superfluous leaving arc is redirected to a new distinct
output node. The priorities of every splitter are set to ⊥, except for the output priority of the splitter
x? from the variable gadget, for each variable x. The output priority of that splitter is free. Formally
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Figure 26: The clause gadget, for a clause x ∨ y ∨ z.

S′ = S \ {x? : x ∈ {x1, . . . , xn}}, p− is uniformly ⊥ on S, and p+0 is uniformly ⊥ on S′. The size of the
splitter network thus constructed is a polynomial in |ϕ| and n.

Suppose that ϕ is satisfiable, and consider a satisfying assignment of the variables. For each variable
x, set the output priority p+(x?) to the arc toward the right if x is assigned to true, and to the arc toward
the left if x is assigned to false. As a consequence, in the steady-state, by Proposition 9, the throughput
on the arcs labeled x is 1

2 if x is true, and 3
8 otherwise, and symmetrically for the arcs labeled x. Then,

because each clause is satisfied, at least one arc entering each clause has throughput 1
2 , and the two others

have throughput at most 7
8 . Hence each clause receives at most 9

4 , and by Proposition 10, the throughput
of its input s is 23

32 . Thus the total throughput is 11
4 n+ 23

32 |ϕ|.
Conversely, we claim that if their is a choice of priority with a steady-state whose global throughput is

at least 11
4 n+

23
32 |ϕ|, then ϕ is satisfiable. By Proposition 9, a variable gadget can produce at most 11

4 unit
of flow from its input, and a clause gadget at most 23

32 by Proposition 10. Therefore such a throughput
can only happen if every variable gadget produces 11

4 , which means that the priority p+(x?) is not set to
⊥. It is also necessary that each clause receives at most 9

4 unit of flows from the variable gadgets. The
priorities of the splitters x? induce an assignment of truth values to the variable (true if the priority is to
the arc to the right, and false to the left). The 9

4 -bound imposes that for each clause, there is a arc from
a variable gadget entering that clause’s gadget with throughput 1

2 . By construction, that arc corresponds
to a literal that is satisfied by the assignment. Therefore ϕ is satisfiable. The splitter network admits a
choice of priorities with a steady-state whose global throughput is at least 11

4 n+ 23
32 |ϕ| if and only if ϕ is

satisfiable, therefore the throughput maximization problem is NP-hard.

As the gadgets are planarly embedded, reducing from planar-3SAT is also possible, and thus the
maximization throughput problem stays NP-hard with the constraint that the splitter network is planar.

8 A balancer with saturated arcs

In Theorem 4, we proved that a (2k, 2k)-balancer must have at least k2k−2 fair splitters. We also define
the simple balancer of order k, a (2k, 2k)-balancer with S(k) = (k − 1)2k−1 splitters. In this section we
exhibit a balancer with priorities whose number of fair splitters is only (k+1)2k−2. Hence this balancer is
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much closer to the lower bound in regards to the number of fair splitters. Unfortunately, it also contains
many splitters with non-fair output priorities, making it asymptotically larger than the simple balancer.
The construction is nonetheless interesting, not only for its smaller number of fair splitters, but also in
demonstrating that saturation may also be used in an effective way to balance the outputs.

The saturating (2k, 2k)-balancer is composed of three parts, illustrated in Figure 27. The first part
contains the input and a half-grid of priority splitters, whose output priority are set to the same direc-
tion (vertical in the picture). This design ensures that the flow is pushed as much as possible to the
top of the grid. Therefore the throughputs on the arcs leaving the half-grid, from top to bottom, are
1, 1, . . . , 1, t, 0, . . . , 0, where t = c(I)−⌊c(I)⌋. In particular, if c(I) ≤ 2k−1, all the flow leaves the half grid
from the top 2k−1 arcs, else the 2k−1 receive 2k−1 units of flow.

The next part is made of a simple balancer of order 2k−1 from the 2k−1 highest rows to the 2k−1 lowest
rows. The last part is a column of 2k−1 fair splitters, whose out-neighbors consist in the network’s outputs.
From the outputs of the simple balancer to those fair splitters, 2k−1 arcs serves as the main bottleneck of
this network.

The saturating balancer works under two possible regimes. When c(I) ≤ 2k−1, all the flow is pushed
in the simple balancer, arrives balanced into the bottleneck arcs, and the is split evenly by the last column
of splitters toward the output. Then every arc is fluid. The other regime happens when c(I) > 2k−1. At
c(I) = 2k−1, all the arcs in the simple balancer and in the bottleneck reach throughput 1. Increasing the
input capacity above 2k−1, the arcs of the simple balancer saturates. The excess flow is pushed into the
2k−1 lowest rows, directly toward the bottleneck arcs. Because the bottleneck is already full, the incoming
flow is pull backed by the simple balancer. At this point, the simple balancer, which is fully saturated,
acts a balancer on the pulled back flow: the pulled back flow is sent back evenly to its input, from which
it proceeds on the horizontal arcs of the 2k−1 highest rows, to the last column of splitters. Thus, the
potential of each fair splitter in the simple balancer is fully used: as long as c(I) < 2k−1 it splits the
throughput fairly into its two outgoing fluid arcs. When c(I) > 2k−1, it splits the pulled-back throughput
evenly into its two incoming saturated arcs.

The saturating (2k, 2k)-splitter contains 2k−1 + S(2k−1) = (k + 1)2k−2 fair splitters, which is closer to
our lower bound of k2k−2 splitters from Theorem 4. The difference is explained by the last column of fair
splitters, which are only used with fluid outgoing arcs. The total number of splitters is Θ(22k), dominated
by the half-grid. However, this part can be replaced by a network with the following property: the total
throughput on the 2k−1 highest leaving arcs must be min{c(I), 2k−1}. Such a network can be defined with
o(22k) priority splitters, but we do not know whether one exists with only O(k2k) priority splitters.

9 Perspectives

We formalized splitter networks and their steady-states, and presented various load-balancing designs.
The ability to design universal balancers enables the simulation of networks with integral capacities:
each arc is replicated according to its capacity, and each splitter is replaced by a universal balancer. A
universal balancer is fair by the balancing property, and maximizing by the unlimited-throughput property,
effectively generalizing splitters. Our definition of splitter network can also be extended to support arc
capacities natively, with most of the proofs requiring only minor modifications.

Although our continuous model is convenient for modeling the expected throughput of splitter net-
works, Factorio’s belt systems operates discretely. Therefore, the observed throughputs in Factorio’s
splitter networks are only approximations of those theorized by our model. Further investigation into
the disparities between the discrete and continuous splitter networks is necessary to accurately apply our
findings to Factorio.

We have let several questions unanswered. The most fundamental remains regarding the uniqueness
of the steady-state throughput. While it is possible for a single splitter network to admit multiple steady-
states, we have yet to encounter a network with two steady-states that yield different throughputs on their
outputs.
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Figure 27: A (2k, 2k)-balancer utilizing priorities, which contains significantly less fair splitters than the
simple balancer. In this example, we set k = 4. Fair splitters are represented by full nodes. In each
priority splitter, a small arrows indicates which arcs are prioritized: the outgoing arc pointed to by the
arrow’s head, and the incoming arc aligned with the origin of the arrow. On the right, the half-grid pushes
up to 2k−1 units of flow to the top rows. In blue, a simple balancer of order 2k−1 proceeds to most of the
balancing. The red arcs form a bottleneck, when the total throughput exceeds 2k−1. On the right, a last
column of fair splitters distributes the flow to the outputs.
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Our lower bounds for the number of splitters in balancers have a constant multiplicative gap across
all designs, indicating they are not tight. For simple balancers of order k, this gap is closed when we
forbid saturated arcs in the steady-state of the balancer. Consequently, leveraging saturation is necessary
to further reduce the number of splitters in load-balancing networks. This is partially done in Section 8,
at the cost of introducing many priority splitters. Furthermore, it is worth investigating stronger lower
bounds in the context of universal balancers.

Factorio allows splitters to be configured to prioritize either an outgoing arc, or an incoming arc.
Utilizing this feature, the universal network described in [20] achieves a significantly smaller size compared
to our design. Our technique still establishes a lower bound on the number of fair splitters. In general,
what is the minimum size achievable for networks utilizing these more general splitters? We proved several
complexity results for the problem of global throughput maximization, when we can choose which arcs
to prioritize in each splitter or a subset of those splitters. However, the complexity of global throughput
maximization when the input and output capacities are arbitrary is not fully settled yet.

As a last series of questions, consider a network whose steady-state, when all inputs and outputs have
capacity 1, has no saturated arcs. If the augmenting flow from any single input is uniformly distributed
across the outputs, then the network is a balancer. This provides a polynomial-time procedure for deter-
mining whether a network is a balancer, subject to the absence of saturation. Is it feasible to devise a
general procedure to decide whether a splitter network is balancing, throughput unlimited or universal?
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