
ar
X

iv
:2

30
6.

08
80

0v
1

 [
cs

.D
M

]
 1

5
Ju

n
20

23

Modules and PQ-trees in Robinson Spaces

M. Carmona
a,b
, V. Chepoi

b
, G. Naves

b
, and P. Préa

a,b

a
LIS, École Centrale Marseille, Marseille, France

b
LIS, Aix-Marseille Université, CNRS, and Université de Toulon

Marseille, France

{mikhael.carmona, victor.chepoi, guyslain.naves, pascal.prea}@lis-lab.fr

June 16, 2023

Abstract. A Robinson space is a dissimilarity space (X, d) on n points for which there exists a compatible order,
i.e. a total order < on X such that x < y < z implies that d(x, y) ≤ d(x, z) and d(y, z) ≤ d(x, z). Recognizing if
a dissimilarity space is Robinson has numerous applications in seriation and classification. A PQ-tree is a classical
data structure introduced by Booth and Lueker to compactly represent a set of related permutations on a set X. In
particular, the set of all compatible orders of a Robinson space are encoded by a PQ-tree. An mmodule is a subset
M of X which is not distinguishable from the outside of M , i.e. the distances from any point of X \M to all points
of M are the same. Mmodules define the mmodule-tree of a dissimilarity space (X,d). Given p ∈ X, a p-copoint
is a maximal mmodule not containing p. The p-copoints form a partition of X \ {p}. There exist two algorithms

recognizing Robinson spaces in optimal O(n2) time. One uses PQ-trees and one uses a copoint partition of (X,d).
In this paper, we establish correspondences between the PQ-trees and the mmodule-trees of Robinson spaces.

More precisely, we show how to construct the mmodule-tree of a Robinson dissimilarity from its PQ-tree and how
to construct the PQ-tree from the mmodule-tree. To establish this translation, additionally to the previous notions,
we introduce the notions of δ-graph Gδ of a Robinson space and of δ-mmodules, the connected components of Gδ .

We also use the dendrogram of the subdominant ultrametric of d. All these results also lead to optimal O(n2) time
algorithms for constructing the PQ-tree and the mmodule tree of Robinson spaces.

Keywords: Robinson dissimilarity; Classification, Seriation; Mmodule; PQ-Tree.

1. Introduction

The classical seriation problem asks to find a simultaneous ordering (or permutation) of the
rows and the columns of the distance matrix D of a dissimilarity space (X, d) with the objective
that small values should be concentrated around the main diagonal as closely as possible, whereas
large values should fall as far from it as possible. This goal is best achieved by considering the
so-called Robinson property [14]: a distance matrix D is said to have the Robinson property if the
values of D increase monotonically in the rows and the columns when moving away from the main
diagonal in both directions. In case of (0, 1)-matrices, the Robinson property is best known as the
Consecutive One Property. A Robinson space is a dissimilarity space whose distance matrix can be
transformed by permuting its rows and columns to a distance matrix having the Robinson property.
The permutation which leads to a matrix with the Robinson property is called a compatible order.

A PQ-tree is a classical data structure introduced by Booth and Lueker [2] to efficiently encode a
set of related permutations on a finite set X. All compatible orders of a Robinson space (X, d) can
be encoded by a PQ-tree. This fact was used by several recognition algorithms for the Robinson
spaces [1, 13, 17]; the algorithm of [13] was the first algorithm which recognizes Robinson spaces

on n points in optimal O(n2) time. Even if optimal, the algorithm of [13] is far from being simple.
Recently, in [3] we designed a simple and practical divide-and-conquer algorithm for recognition of

Robinson spaces in optimal O(n2) time. This algorithm is based on the notions of mmodules and
copoint partitions of dissimilarity spaces. An mmodule of a dissimilarity space (X, d) (generalizing
the notion of a module in graph theory) is a subset M of X which is not distinguishable from
the outside of M , i.e., the distances from any point of X \ M to all points of M are the same.
Mmodules define the mmodule-tree of a dissimilarity space (X, d). If p is any point of X, then p

1

http://arxiv.org/abs/2306.08800v1

2

and the maximal by inclusion mmodules of (X, d) not containing p define a partition of X, which
is called the copoint partition.

In this paper, we establish correspondences between the PQ-trees and the mmodule-trees of
Robinson spaces (X, d). Namely, we show how to derive the mmodule-tree from the PQ-tree of(X, d) and, vice-versa, how to construct the PQ-tree from the mmodule-tree of (X, d). We also
show how to derive the branches of a PQ-tree from the copoint partitions of (X, d). We also describe

optimal O(n2) algorithms for constructing the PQ-tree and the mmodule-tree of a Robinson space(X, d). To establish the cryptomorphism between PQ-trees and mmodules-trees, additionally to the
previous notions, we introduce the notion of δ-graph Gδ of a Robinson space (X, d). We prove that
either Gδ is connected for all δ > 0 or there exists a unique value of δ for which Gδ is not connected.
In the later case, the connected components of Gδ are called δ-mmodules. The dichotomy between
the connectivity for all δ and the non-connectivity for some δ of Gδ and the δ-mmodules in the
second case are crucial in the construction of the PQ-tree and the translations between PQ-trees

and mmodule trees. The dendrogram Td̂ of the ultrametric subdominant d̂ of (X, d) is yet another
important ingredient, used in the algorithm for the construction of the mmodule tree. Notice also
that the algorithm for the construction of the PQ-tree from the mmodule tree uses the recognition
of flat Robinson spaces from [3] as a subroutine. On the other hand, we present an optimal

O(n2) algorithm for constructing the PQ-tree, using the p-copoints partition and the concept of
p-proximity order, also introduced in [3]. Since this paper is a follow-up of [3], we refer to the
paper [3] for a complete bibliography on Robinson spaces and on their recognition algorithms (in
this paper, we cite only the recognition algorithms using PQ-trees).

The rest of the paper is organized as follows. In Section 2, we present classical notions that we
use: Robinson dissimilarities, PQ-trees and mmodules. We end this section with an illustrative
example. In Section 3 we characterize the sets of total orders on X that are representable by a
PQ-tree and the subsets of X that correspond to nodes of the PQ-tree of a Robinson space (X, d).
These results are used in the following two sections. In Section 4 we introduce the notion of a
δ-graph Gδ of a Robinson space and investigate the properties of its δ-mmodules. Using them, we
show how to construct the PQ-tree of a Robinson space. In Section 5 we show how to construct for
a Robinson space its mmodule tree from its PQ-tree and, vice versa, its PQ-tree from its mmodule
tree. In Section 6 we show how to build the mmodule tree using partition refinement and the
subdominant ultrametric. In Section 7 we show how to build the PQ-tree from any point p and
the copoint partition of p and the p-proximity order introduced in [3].

2. Preliminaries

2.1. Robinson dissimilarities. Let X = {p1, . . . , pn} be a set of n elements, called points. A

dissimilarity on X is a symmetric function d from X
2
to the nonnegative real numbers such that

d(x, y) = 0 if x = y. Then d(x, y) is called the distance between x, y and (X, d) is called a
dissimilarity space. A partial order on X is called total if any two elements of X are comparable.
Since we will mainly deal with total orders, we abbreviately call them orders.

Definition 2.1 (Compatible order). Given a dissimilarity space (X, d), an order < on X is com-
patible if x < y < z implies that d(x, z) ≥ max{d(x, y), d(y, z)}. We denote by Π(X, d) the set of
compatible orders of (X, d). If < is a compatible order, then so is the order <

op
opposite to <.

Definition 2.2 (Robinson space). A dissimilarity space (X, d) is a Robinson space if it admits a
compatible order, i.e., if Π(X, d) ≠ ∅. Then (X, d) is said to be Robinson.

Equivalently, (X, d) is Robinson if its distance matrix D = (d(pi, pj)) can be symmetrically
permuted so that its elements do not decrease when moving away from the main diagonal along
any row or column. Such a dissimilarity matrix D is said to have the Robinson property [4, 5, 6, 14].

3

If Y ⊆ X, we denote by (Y, d) the dissimilarity space obtained by restricting d to Y ; we call(Y, d) a subspace of (X, d). If (X, d) is a Robinson space, then any subspace (Y, d) of (X, d) is also
Robinson and the restriction of any compatible order < of X to Y is compatible.

Definition 2.3 (Block). Let (X, d) be a Robinson space. A set Y ⊂ X is called a block if Y is an
interval in any compatible order of (X, d).

The ball of radius r ≥ 0 centered at x ∈ X is the set Br(x) = {y ∈ X ∶ d(x, y) ≤ r}. From the
definition of compatible orders it follows all balls of a Robinson space are blocks. The diameter of
a set Y ⊆ X is diam(Y) = max{d(x, y) ∶ x, y ∈ Y } and a pair x, y ∈ Y such that d(x, y) = diam(Y)
is called a diametral pair of Y .

Basic examples of Robinson dissimilarities are the ultrametrics and line-distances. A line-distance
is provided by the standard distance d(pi, pj) = ∣pi−pj∣ between n points p1 < . . . < pn of R. Notice
that any line-distance has exactly two compatible orders: the order p1 < . . . < pn defined by the
coordinates of the points and its opposite. This leads to the following notion:

Definition 2.4 (Flat Robinson space). A Robinson space is flat is it has exactly two compatible
orders, reverse of each other. All line-distances are flat but the converse is not true.

2.2. X-trees. Given a finite set X, an X-tree is an ordered rooted tree T in which the exists a
bijection between X and the set of leaves of T and any inner node of T has degree at least 2. We
will use Greek letters as variables over nodes of trees but for convenience we will give the same
name to the elements of X and the corresponding leaves of T . As usually, we say that a node α is
an ancestor of a node β if α belongs to a unique path of T between β and the root. For two nodes
α and β, we denote by lca(α, β) the lowest common ancestor of α and β. Given a node α of T , we

denote X(α) ⊆ X the set of leaves having α as an ancestor. We say that two X-trees T and T
′

are isomorphic if there exists an isomorphism f between the trees T and T
′
such that f(u) = u for

any u ∈ X and X(f(α)) = X(α) for any inner node α of T .

Definition 2.5 (Pertinent node). Given S ⊂ X and an X-tree T on X, we will say that a node α

is S-pertinent or the pertinent node of S if α is the lowest node such that S ⊆ X(α).
In this paper we consider three types of X-trees: mmodule trees for arbitrary dissimilarity spaces(X, d), PQ-trees for Robinson spaces (X, d), and dendrograms for ultrametric spaces (X, d).

2.3. Ultrametrics. Recall, that a dissimilarity space (X, d) is an ultrametric space if it satisfies
the three-point condition d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ X. Equivalently, the two
largest distances among d(x, y), d(x, z), and d(y, z) are equal. The ultrametrics are thoroughly used
in phylogeny and hierarchical clustering, because they can be represented by particular X-trees,
called dendrograms. A dendrogram for an ultrametric space (X, d) is an X-tree TD with weighted
edges such that each inner node α has the same distance to all leaves in the subtree rooted at α.
The sets X(α) for nodes α of TD are called clusters and the set system H consisting of all clusters
is called a hierarchy. Any two clusters of H are either disjoint or one is included in the another one.
H(X) is unique, and TD(X) is unique up to reordering children of each node. The dendrogram TD
and the weights of its edges are constructed by the well-known single-linkage clustering algorithm
[8, 10]. Then for any two points x, y ∈ X, d(x, y) equals the length of the unique path between
x and y in TD or, equivalently, to twice the height of x and y in the subtree of TD rooted at the
lowest common ancestor lca(x, y) of x and y.

We consider the dendrogram TD of an ultrametric space as unweighted, but we weight each inner
node α of TD by the distance d(x, y) between any two leaves x, y ∈ X(α) such that lca(x, y) = α;
we denote the weight of α by p(α). Notice then when moving from any leaf to the root of TD,
the weights of the nodes occurring on this path are strictly increasing. The representation of an
ultrametric by a dendrogram in which the edges are weighted is called an equidistant representation
and the representation in which the nodes are weighted is called a vertex representation [16]. The

4

two representations are equivalent: node weights correspond to potential, and the weight of an
edge is half the difference of potential between its two extremities. It is straightforward to compute
the potentials from the differences of potential (setting the potential of any leaf to be 0), and vice
versa. Notice that, in the vertex representation, the distance between two leaves x and y is equal
to p(lca(x, y)). In particular, for any inner node α and x, y ∈ X(α) such that x and y belong to
different children of α, we have d(x, y) = p(α) = diam(X(α)).

One fundamental property of ultrametrics is the existence for each dissimilarity space (X, d) of

the subdominant ultrametric d̂ on X: for any ultrametric d
′
on X such that d

′
≤ d (i.e., d

′(x, y) ≤
d(x, y) for all x, y ∈ X) we have d

′
≤ d̂ ≤ d. The subdominant ultrametric d̂ can be defined as

follows: for all x, y ∈ X, d̂(x, y) is the minimum over all paths P between x and y of the maximum
weight of an edge on that path P :

d̂(x, y) = min{max
uv∈P

d(u, v) ∶ P is a (x, y)-path}.
In combinatorial optimization, d̂(x, y) is called the bottleneck distance between x and y and a (x, y)-
path providing the minimum in the previous formula is called the bottleneck shortest path [15]. The

subdominant ultrametric d̂ can be constructed in the following elegant way. Let T be a minimum
spanning tree of the complete graph on X weighted by the values of the dissimilarity function d.

Then for any x, y ∈ X, d̂(x, y) is the weight of the heaviest edge of the unique path of T between x

and y [10]. We denote by Td̂ the dendrogram of the ultrametric space (X, d̂); sometimes we will say
that Td̂ is the dendrogram of the dissimilarity space (X, d). We can construct Td̂ in the following
iterative way (which seems us to be new): when using Prim’s algorithm to compute the minimum
spanning tree T of (X, d), one can build Td̂ by inserting each vertex in Td̂ at the moment when it is

visited, leading to Algorithm 7 presented in the Appendix. This algorithm has complexity O(n2).
In this paper, we use ultrametrics as an illustrative example. In fact, for ultrametrics their

dendrograms have the same shape as their PQ-trees and their mmodule trees. Additionally, we

use the dendrogram Td̂ of the ultrametric subdominant (X, d̂) of a Robinson space (X, d) in our
construction of the mmodule tree. The idea of constructing the subdominant ultrametric via the
minimum spanning tree also occurs in our techniques.

2.4. PQ-trees. A PQ-tree is a tree-based data structure introduced by Booth and Lueker [2] in
1976 to efficiently encode a family of permutations on a set X in which various subsets of X occur
consecutively.

Definition 2.6 (PQ-tree). A PQ-tree over a set X is an X-tree T whose internal nodes are
distinguished as either P-nodes or Q-nodes. Two PQ-trees are said to be equivalent if one can be
transformed into the other by applying a sequence of the following two equivalence transformations.

(1) Arbitrarily permute the children of a P-node.
(2) Reverse the children of a Q-node.

The nodes of arity 2 can be equally viewed as P-nodes and as Q-nodes; in our notations, they will
be considered as P-nodes.

We use the convention that P-nodes are represented by circles or ellipses and Q-nodes are rep-
resented by rectangles. For PQ-trees β1, . . . , βk, we denote P (β1, . . . , βk) and Q(β1, . . . , βk) the
PQ-trees whose root are a P-node, respectively a Q-node, with children β1, . . . , βk in that order.

For convenience, we will abusively identify permutations and (total) orders. The canonical order
of a PQ-tree T over X is the permutation on X obtained by a left-to-right traversal of T .

Definition 2.7 (Represented permutations of a PQ-tree). The set of represented permutations of
a PQ-tree T is the set of canonical orders of all PQ-trees equivalent to T , and is denoted Π(T). A
set of orders/permutations Π is called representable by a PQ-tree if there exists a PQ-tree T such
that Π(T) = Π.

5

Represented permutations may also be defined using composition of orders, as defined below.

Definition 2.8 (Composition of orders). Let X be a set, P a partition of X, <P an order on P,
and for each part S ∈ P, <S an order on S. Then the composition of <P and (<S)S∈P is the order
< defined by x < y when

(i) either there is S ∈ P with x, y ∈ S, and x <S y,

(ii) or there are S, S
′
∈ P distinct, with x ∈ S, y ∈ S

′
and S <P S

′
.

Then the permutations represented by a PQ-tree matches with orders obtained by composing an
order on the children of the root with a choice of orders on each children of the root node, where
the order on the children is

- in the case of a P-node: an arbitrary order,
- in the case of a Q-node: either the order of the children in the PQ-tree or its reverse.

Example 2.9. The PQ-tree T of Figure 1 has one Q-node (the root) and one P-node α withX(α) ={1, 2, 3}. The subtree rooted at α represents all the permutations of the elements 1, 2, 3. Conse-
quently, the PQ-tree T represents the 12 permutations of the form (π, 4, 5, 6, 7) and (7, 6, 5, 4, π),
where π is any permutation on {1, 2, 3}.

❢

�� ❅❅
1 2 3

4 5 6 7

Figure 1. A PQ-tree

Préa and Fortin [13] used PQ-trees to encode the compatible orderings of a Robinson dissimilarity
space (X, d), because this set of orders is represented by a PQ-tree. We recall this correspondence.
A (0, 1)-matrix A has the Consecutive Ones Property (C1P) if its columns can be permuted in
such a way that in all rows the 1s appear consecutively. Such an order is called compatible. If A
is a C1P-matrix, then the sets of all its compatible permutations can be represented by a PQ-tree;
Booth and Lueker designed an iterative algorithm, using PQ-trees, which determines if a matrix
M has the C1P [2]. Let B denote the set of all distinct balls of a dissimilarity space (X, d). Let
MB be the {0, 1}-matrix whose columns are indexed by the points of X and rows by the balls of
B: for x ∈ X and B ∈ B we define MB(B,x) = 1 if x ∈ B and MB(B,x) = 0 otherwise. The
following simple result of Mirkin and Rodin [12] links Robinson dissimilarities with C1P-matrices:

Proposition 2.10. [12] A dissimilarity space (X, d) is Robinson if and only if its matrix MB

satisfies the C1P. There exists a bijection between the set Π(X, d) of orders compatible with d and
the set of permutations compatible with MB.

Since the sets of all compatible permutations of a C1P-matrix can be represented by a PQ-tree [2],
from Proposition 2.10 we obtain:

Corollary 2.11. The set Π(X, d) of all compatible orders of a Robinson space (X, d) can be
represented by a PQ-tree.

For a Robinson space (X, d), we denote by TPQ(X, d), or TPQ for short, its PQ-tree (unique up
to equivalence).

2.5. Mmodules and copoints. In this subsection, we recall the basic facts about the mmodules
and copoints in dissimilarity spaces from our paper [3]. Let (X, d) be a dissimilarity space.

Definition 2.12 (Mmodule). A set M ⊆ X is called an mmodule (a metric module or a matrix
module) if M cannot be distinguished from outside, i.e., for any z ∈ X \M and all x, y ∈ M we
have d(z, x) = d(z, y).

6

In graph theory, the subgraphs indistinguishable from the outside are called modules, explaining
our choice of the term “mmodule”. Denote by M(X, d) (or M fo short) the set of all mmodules
of (X, d). Trivially, ∅,X, and {p}, p ∈ X are mmodules; we call them trivial mmodules. An
mmodule M is called maximal if M is a maximal by inclusion mmodule different from X. Denote
by Mmax(X, d) (or Mmax for short) the set of all maximal mmodules of (X, d). We continue with
the basic properties of mmodules.

Proposition 2.13. [3, Proposition 3.1] Let (X, d) be a dissimilarity space. The set M = M(X, d)
has the following properties:

(i) M1,M2 ∈ M implies that M1 ∩M2 ∈ M;

(ii) if M ∈ M and M
′
⊂ M , then M

′
∈ M if and only if M

′
is an mmodule of (M,d∣M);

(iii) if M1,M2 ∈ M, M1 ∩ M2 ≠ ∅, then M1 ∪ M2 ∈ M, and if additionally M1 \ M2 ≠

∅,M2 \M1 ≠ ∅, then M1 ∪M2,M1 \M2,M2 \M1, and M1∆M2 are mmodules;
(iv) the union M1 ∪M2 of two intersecting maximal mmodules M1,M2 ∈ M is X;
(v) if M1 and M2 are two disjoint maximal mmodules and M is a nontrivial mmodule contained

in M1 ∪M2, then either M ⊂ M1 or M ⊂ M2;

(vi) if M1,M2 ∈ M and M1∩M2 = ∅, then d(u, v) = d(u′, v′) for any (not necessarily distinct)

points u, u
′
∈ M1 and v, v

′
∈ M2.

The next results show that the mmodules of a dissimilarity can be organized within a tree-
structure. We say that a family of subsets {M1, . . . ,Mk} of X is a copartition of X if {X \
M1, . . . ,X \Mk} is a partition of X. For a set M ⊆ X, we denote its complement by M = X \M .

Lemma 2.14. [3, Lemma 3.7] Let (X, d) be a dissimilarity space. Then Mmax(X, d) is either a
partition or a copartition of X.

Proposition 2.15. [3, Proposition 3.9] Let (X, d) be a dissimilarity space. There is a unique
X-tree (up to children reorderings) with inner nodes labelled by ∪ or ∩, such that:

(i) if a node α is a ∪-node, then its arity is at least three and for any child β of α, X(β) is an
mmodule,

(ii) if a node α is a ∩-node, then its arity is at least two, and for any proper subset {β1, . . . , βi}
of children of α, X(β1) ∪ . . . X(βi) is an mmodule.

(iii) any proper mmodule appears exactly once as in (i) and (ii).

If Mmax is a partition but not a bipartition, then the root is a ∪-node, while if Mmax is a
copartition (possibly a bipartition), it is a ∩-node. For a dissimilarity space (X, d), we call the
X-tree defined in Proposition 2.15 the mmodule-tree of (X, d) and we denote it by TM(X, d) (or
TM for short). It would be tempting to believe that, for Robinson spaces, ∪-nodes correspond to
Q-nodes of TPQ and ∩-nodes to P -nodes. We will see later that this is not always the case, and we
will describe precisely the relationship between TPQ and TM .

Definition 2.16 (Copoint). A copoint at a point p (or a p-copoint) is any maximal by inclusion
mmodule C not containing p; the point p is the attaching point of C.

The copoints of M minimally generate M, in the sense that each mmodule M is the intersection
of all copoints containing M . Maximal by inclusion mmodules are copoints but the converse is not
true. Denote by Cp the set of all copoints at p plus the trivial mmodule {p}.
Lemma 2.17. [3, Lemma 3.4] For any point p of a dissimilarity space (X, d), the copoints of Cp
are pairwise disjoint and define a partition of the set X.

We call Cp = {C0 = {p}, C1, . . . , Ck} a copoint partition of (X, d) with attaching point p. The
copoint partition Cp is called trivial if Cp consists only of the points of X, i.e., Cp = {{x} ∶ x ∈ X},
and co-trivial if Cp = {{p},X \ {p}}, i.e., all points of X \ {p} have the same distance to p.

7

We conclude this subsection with the definition of a quotient space of a dissimilarity space (X, d).
In [3] we defined and used it in case of copoint partitions Cp. Now, we will define it for arbitrary
partitions of X into mmodules.

Definition 2.18 (Quotient space). Let M
′
= {M1, . . . ,Mk} be a partition of a dissimilarity space(X, d) into mmodules. The quotient space (M′

, d̂) of (X, d) has the mmodules of M
′
as points and

for Mi,Mj , i ≠ j of M
′
we set d̂(Mi,Mj) ∶= d(u, v) for an arbitrary pair u ∈ Mi, v ∈ Mj .

From the definition of mmodules and since M
′
is a partition, the notion of a quotient space is

well-defined because d(u, v) is the same for any choice of the points u ∈ Mi and v ∈ Mj .

2.6. Examples. In order to illustrate the notions introduced in this section, we give the following
example. In Figure 2 we present a Robinson space (X, d) on 12 points. In Figure 3 we provide its
PQ-tree and its mmodule-tree. In Figure 4 we list all its non-trivial copoints, together with the
point to which they are attached.

D

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

0 2 2 3 5 5 5 8 8 8 8 8

0 1 2 5 5 5 8 8 8 8 8

0 2 5 5 5 8 8 8 8 8

0 5 5 5 8 8 8 8 8

0 1 1 6 6 6 6 6

0 1 6 6 6 6 6

0 6 6 6 6 6

0 1 2 2 3

0 2 2 2

0 2 2

0 2

0

Figure 2. The distance matrix D of a Robinson space (X, d) with X = {1, . . . , 12}.

1 2 3

γ1

4

β1

5 6 7

β2

8 9 10 11

γ2

12

β3

α

(A)
1 4

η1 ∩

2 3

∩ η2

∩ξ1

5 6 7

∩ ξ2

10 11 8 9 12

∪ η3

∩ ξ3

∪ ζ

(B)

Figure 3. (A) The PQ-tree TPQ and (B) the mmodule-tree TM of the dissimilarity space
from Figure 2.

3. Represented orders and nodes of a PQ-tree

In this section, first we characterize the set of orders that are representable by a PQ-tree and
then we characterize the subsets of a Robinson space (X, d) that are the nodes of the PQ-tree of(X, d). These auxiliary results will be used in the next two sections.

8

non-trivial mmodule copoint for
{2, 3} 1, 4
{1, 4} 2, 3

{1, 2, 3, 4} 5 to 12
{5, 6} 7
{5, 7} 6
{6, 7} 5

non-trivial mmodule copoint for
{5, 6, 7} 1 to 4 and 8 to 12
{10, 11} 8, 9, 12

{8, 9, 10, 12} 11
{8, 9, 11, 12} 10

{8, 9, 10, 11, 12} 1 to 7

Figure 4. The non-trivial mmodules of the dissimilarity space from Figure 2 that are
copoints, together with the points to which they are attached.

3.1. Represented orders. In this subsection, we characterize the set Π of orders of X that are
represented by PQ-trees.

Definition 3.1 (Π-block). For a set Π of orders on X, a set Y ⊊ X is called a Π-block if Y is an
interval in each order of Π. Then the blocks from Definition 2.3 are precisely the Π(d)-blocks.
Lemma 3.2. Let TPQ be a PQ-tree over a set X and Π(TPQ) be the set of represented permutations
of TPQ. Then a set S ⊆ X is a Π(TPQ)-block if and only if

(i) either there is a node α in TPQ with X(α) = S,

(ii) or there is a Q-node α in TPQ with children β1, . . . , βk, and j, j
′
with 1 ≤ j < j

′
≤ k such

that {j, j′} ≠ {1, k} and ⋃i∈{j,...,j ′}X(βi) = S.

Proof. Let S ⊆ X be a Π(TPQ)-block, and α be the pertinent node of S. If S = X(α), case (i)
holds. Otherwise, S ⊊ X(α).

For the sake of contradiction, suppose that α is a P-node. If there is a child β of α and x ∈

S ∩ X(β), y ∈ X(β) \ S, then let z ∈ S ∩ (X(α) \ X(β) be in another child. As S is a block,
there is a compatible order < with x < z < y or y < x < z (say the former). By definition of the
compatible orders of a PQ-tree, reversing the order on X(β) provides another compatible order,
with z < x < y, in contradiction with the fact that S is a block. Otherwise, S is the union of the
sets induced by some children of α. Let x, y, z ∈ X(α) be in three distinct children of α, with
x, z ∈ S, y ∉ S. By property of P-nodes, there is a compatible order with x < y < z, contradicting
the fact that S is a block.

Hence α is a Q-node. Let β1, . . . , βk be its children. Then {i ∈ {1, . . . , k} ∶ βi ∩ S ≠ ∅} is an

interval {j, . . . , j′} because S is a Π(TPQ)-block and by property of Q-nodes, with j < j
′
as α is

S-pertinent. Finally, if there is z ∈ ⋃k∈{j,...,j ′} βk \ S, let x ∈ βj ∩ S and y ∈ βj ′ ∩ S, there is a

compatible order with x < z < y, contradicting of the fact that S is a Π(TPQ)-block. Hence (ii)
holds. The reverse direction is immediate. �

Consider a set Π of orders on X, and say that two points x, y ∈ X are equivalent if every maximal
Π-block contains either none or both of them. This is clearly an equivalence relation denoted ≈Π.
We can use it to characterize when a set of orders is represented by a PQ-tree. To this end, let BΠ

denote the set of equivalence classes of ≈Π.

Proposition 3.3. A set of orders Π on X is represented by a PQ-tree if and only if the restriction
of Π on each S ∈ BΠ is represented by a PQ-tree TS, and

(i) either Π is the set of orders obtained by composing any order on BΠ with orders from each
TS, S ∈ BΠ,

(ii) or there are at least three equivalence classes and there is an order <B on BΠ such that Π is
the set of orders obtained by composing <B or its reverse with orders from each TS , S ∈ BΠ.

9

In that case, the root of the PQ-tree is a P-node in case (i) and a Q-node in case (ii), and its
children are the PQ-trees TS of each equivalence class S of ≈Π, in arbitrary order in case (i) and
in order <B (or its reverse) in case (ii).

Proof. Suppose first that Π is represented by a PQ-tree T . Let β1, . . . , βk be the children of the
root. From Lemma 3.2, when the root is a P-node, the maximal blocks are the sets X(βi) and
thus are also the equivalence classes of ≈Π, whereas when the root is a Q-node, the maximal blocks

are induced by intervals ⋃{X(βi) ∶ i ∈ {j, . . . , j′}}, implying that the equivalence classes of ≈Π

are also the set X(βi). The result then follows, with (i) corresponding to a P-node root, and (ii)
corresponding to a Q-node root (<B being the order on the children of the root).

Conversely, suppose that each equivalence class of ≈Π is represented, and either (i) or (ii) holds.
Then it can be readily checked that the PQ-tree defined in the statement of the result does indeed
represent Π. �

3.2. Nodes of a PQ-tree. Sets that are simultaneously mmodules and blocks of a Robinson space(X, d) play a special role because in any compatible order their points can be ordered independently
of the rest of the points. We prove that they correspond exactly with the nodes of the PQ-tree TPQ

of (X, d).
Lemma 3.4. Let (X, d) be a Robinson space with a compatible order <

′
. Let S be an mmodule that

is an interval in <
′
and <S be any compatible order on S. Let < be the total order on X defined

by setting x < y when either {x, y} ⊂ S and x <S y, or {x, y} ⊄ S and x <
′
y (equivalently, < is

obtained from <
′
by reordering the elements of S according to <S). Then < is a compatible order

of (X, d).
Proof. Pick any x < y < z and we check that d(x, z) ≥ max{d(x, y), d(y, z)}. If x, y, z ∈ S,

then x <S y <S z and the result follows. If ∣{x, y, z} \ S∣ ∈ {2, 3}, then x <
′
y <

′
z and

we are done again. If x ∉ S, y, z ∈ S, then d(x, y) = d(x, z) because S is an mmodule,

and d(y, z) ≤ max{d(x, y), d(x, z)} because either x <
′
y <

′
z or x <

′
z <

′
y
′
holds. Thus

d(x, z) ≥ max{d(x, y), d(y, z)}. The case x, y ∈ S, z ∉ S is symmetric, while the case x, z ∈ S,

y ∉ S cannot happen as S is an interval in <
′
. �

Let < be a compatible order for (X, d) for which S is an interval. Let <←−
S
be the order defined

by setting x <←−
S
y if either x < y and {x, y} ⊈ S, or y < x and {x, y} ⊆ S, that is <←−

S
is the order

obtained from < by reversing the interval S. We can easily generalize <←−
S
to a subset S which is

not an interval and we have the following elementary result:

Lemma 3.5. Let (X, d) be a Robinson space and S ⊆ X an interval of a compatible order <. Then
<←−
S
is a compatible order if and only if S is an mmodule.

Proof. If S is an mmodule, then by Lemma 3.4 <←−
S
is compatible. Conversely, let <←−

S
be a compatible

order. Let y, z ∈ S with y < z, and let x ∉ S, and say (by symmetry) that x < y < z. Then d(x, y) ≤
d(x, z). Since x <←−

S
z <←−

S
y and <←−

S
is compatible, we obtain d(x, z) ≤ d(x, y). Consequently,

d(x, y) = d(x, z), yielding that S is an mmodule. �

More generally, one can reorder the elements of a block as long as the order of the block itself
remains compatible.

Lemma 3.6. For any node α of the PQ-tree TPQ of a Robinson space (X, d), the set X(α) is an
mmodule of (X, d).
Proof. By definition of PQ-trees, for any compatible order < of TPQ, S ∶= X(α) is an interval and
<←−
S
is compatible. By Lemma 3.5, X(α) is an mmodule. �

10

Using Proposition 2.13(vi), this justifies the notation d(α, β) for any two nodes α or β of TPQ or
TM with X(α) and X(β) disjoint, where d(α, β) = d(x, y) for any x ∈ X(α), y ∈ X(β). Combining
the last results, we get the following characterization of the subsets of X corresponding to the nodes
of the PQ-tree of (X, d):
Theorem 3.7. Let (X, d) be a Robinson space and M be a subset of X. Then X(α) = M for some
node α of TPQ if and only if M is a block and an mmodule of (X, d).
Proof. From Lemmas 3.2 and 3.6, for any node α of the PQ-tree, X(α) is an mmodule and a
block. Conversely, consider a set M ⊆ X that is both an mmodule and a block. By way of
contradiction, suppose that there is no node α such that M = X(α). By Lemma 3.2, there is a

Q-node α in TPQ with children β1, . . . , βk, and j, j
′
with 1 ≤ j < j

′
≤ k and {j, j′} ≠ {1, k} such

that M = X(βj)∪ . . . ∪X(βj ′). Let < be a compatible order with X(β1) < . . . < X(βk). Then by

Lemma 3.5, <←−
S
is also a compatible order, with X(β1) <←−

S
X(β′j) <←−

S
X(βj) <←−

S
X(βk). But that

order is not compatible with TPQ, a contradiction. �

This leads to the following result, which involves flat Robinson spaces.

Corollary 3.8. Let (X, d) be a Robinson space in which all mmodules are trivial and ∣X∣ ≥ 3.
Then the following holds:

(i) (X, d) is flat,
(ii) TPQ has a single non-leaf node, that is a Q-node.

Proof. Since each mmodule is trivial, by Lemma 3.6, TPQ has a single non-leaf node α. Suppose
for sake of contradiction that α is a P-node. Let x, y, z ∈ X be distinct points, that are children
of α. Then there exist compatible orders <1, <2, and <3 with x <1 y <1 z, y <2 z <2 x, and
z <3 x <3 y. Hence d(x, z) ≥ d(x, y) ≥ d(y, z) ≥ d(x, z), meaning that these three distances are
equals. Consequently, all pairwise distances between the points of X are equal, thus any subset of
points is an mmodule, a contraction. Thus α is a Q-node and (ii) is verified.

Clearly, (ii) implies (i). �

Remark 3.9. It is worth observing that the converse of Corollary 3.8 does not hold, and dealing
with this limitation is arguably one of the main technical difficulties that this paper addresses.
This is illustrated by the simple example given in Figure 5. Later we will show that this happens
when some maximal mmodule has larger diameter than its distance to other points; here {a, c} has
diameter 2, which is higher than the distance between the mmodules {a, c} and {b}.

D a b c

a 0 1 2
b 0 1
c 0

a b c

∩

∩

a c

b

Figure 5. A flat Robinson space, together with its PQ-tree TPQ and its mmodule
tree TM .

3.3. Distances and the PQ-tree. In this subsection, we present some results about the values
of the dissimilarity relative to the nodes of the PQ-tree (and the mmodule tree). The next two
lemmas motivate the notions and the results of the next section, and also relates to the properties
of clusters and of the weights of nodes in dendrograms of ultrametrics.

Lemma 3.10. Let (X, d) be a Robinson space with PQ-tree TPQ and α a P-node in TPQ. Let
β1, . . . , βk be some of the children of α, then S ∶= X(β1) ∪ . . . ∪X(βk) is an mmodule.

11

Proof. If k = 1 or S = X(α), this follows from Theorem 3.7. Otherwise, let x, y ∈ S be in two
distinct children of α, and z ∈ X(α) \ S. By property of the P-nodes, there are compatible orders

< and <
′
with x < y < z and y <

′
x <

′
z. Thus d(y, z) ≤ d(x, z) ≤ d(y, z), implying that

d(x, z) = d(y, z); so S is an mmodule. �

Lemma 3.11. Let (X, d) be a Robinson space with PQ-tree TPQ and mmodule tree TM . Let α be
a P-node of TPQ or a ∩-node of TM . Then there exists δ > 0 such that for any x, y appearing in
two distinct children of α, we have d(x, y) = δ.

Proof. Let β be a child of α. Then X(α) \X(β) is an mmodule, by Proposition 2.15 when α is a
∩-node and by Lemma 3.10 when α is a P-node. Hence by Proposition 2.13(vi) the distances are
uniform between X(β) and X(α) \X(β), and thus uniform between children of α. �

As a consequence, for any α P-node of TPQ or ∩-node of TM , we denote ρ(α) the value δ from
Lemma 3.11, that is the distance between children of α. Another observation is that, similarly to
dendrograms, the diameters of nodes are almost strictly monotone in the PQ-tree.

Lemma 3.12. Let (X, d) be a Robinson space with PQ-tree TPQ. Let α be an internal node of TPQ

and β a non-leaf child of α. Then

(i) if α is a P-node, diam(X(β)) ≤ ρ(α) = diam(X(α));
(ii) if α is a Q-node, diam(X(β)) ≤ min{d(β, β′) ∶ β′ child of α, β ≠ β

′} ≤ diam(X(α));
(iii) if diam(X(α)) = diam(X(β)), then α is a P-node, β is a Q-node, and for any non-leaf

child γ of β, diam(X(γ)) < diam(X(α)).
Proof. Let x, y ∈ X(β) and z ∈ X(α) \ X(β). By Theorem 3.7, X(β) is a block and mmodule,
hence for any compatible order < with x < y, either z < x or y < z. By symmetry we may assume
x < y < z. Then d(x, y) ≤ d(x, z) = d(y, z). If α is a P-node, then by Lemma 3.11 d(x, z) = ρ(α)
and thus (i) holds. If α is a Q-node, by choosing z ∈ β

′
, we get (ii).

Suppose that δ ∶= diam(X(α)) = diam(X(β)). We claim that α is a P-node. Assume that α has

arity at least three (as otherwise it is a P-node by definition). Then for any β
′
child of α distinct

from β, d(β, β′) = δ. Hence S
′
∶= X(α) \X(β) is an mmodule. As α has at least three children,

S
′
is not a set induced by a node of TPQ, thus by Theorem 3.7 is not a block. Because X(α) is

a block, it means that there is a compatible order <, x, z ∈ S
′
and y ∈ X(β) with x < y < z.

Let βx and βz be the children of α containing x and z respectively. Then, for each x
′
∈ S

′
with

x
′
< y and each z

′
∈ S

′
with y < z

′
, δ = d(x′, y) ≤ d(x′, z′) ≤ diam(X(α)) = δ, proving that

S ∶= X(β) ∪ {x ∈ S ∶ x < y} is an mmodule. Then, by Lemma 3.5, <←−
S

is a compatible order.
Hence βx, β, βz may be ordered in more than two ways, α is a P-node.

For the sake of contradiction, suppose furthermore that β is a P-node. Then ρ(α) = ρ(β) = δ.
Let γ be a child of β. Then by Proposition 2.15, X(β) \X(γ) is an mmodule and d(X(γ),X(β \
X(γ)) = δ. Thus S ∶= X(α) \ X(γ) is also an mmodule. Let < be a compatible order with
x < y < z for any x ∈ X(γ), y ∈ X(β) \ X(γ) and z ∈ X(α) \ X(β) (such an order exists by
the structure of TPQ). Then by Lemma 3.5, <←−

S
is also a compatible order, contradiction because

X(β) is a block by Theorem 3.7. Thus β is a Q-node. Consequently, for any non-leaf child γ of β,
diam(X(γ)) < diam(X(β)) = diam(X(α)). Thus (iii) is proved. �

3.4. Dendrograms and PQ-trees for ultrametrics. As an application of the results of this
section, we prove that for ultrametrics, the X-trees TPQ and TD are isomorphic. Furthermore,
we consider the following characterizations of ultrametric spaces by their PQ-trees (these results
probably can be considered as half-folkloric, however we give their full proofs):

Proposition 3.13. A Robinson space (X, d) is ultrametric if and only all internal nodes of TPQ

are P-nodes.

12

Proof. Suppose first that (X, d) is ultrametric and, by a way of contradiction, that its PQ-tree
TPQ has a Q-node α = Q(β1, β2, . . . , βk) with k ≥ 3. We set δ = diam(X(α)) = d(β1, βk). Let
i ∈ {1, . . . , k} be minimum such that d(β1, βi) = δ. If i = 2, then, for all j ∈ {2, . . . , k}, d(β1, βj) = δ,
implying that X(β2) ∪ . . . ∪X(βk) is an mmodule. By Lemma 3.2, it is also a block, and thus by
Theorem 3.7 k = 2, contradiction. If i > 2, since d(β1, βi−1) < δ and d(βi−1, βi) ≤ d(β1, βi) = δ,

by definition of ultrametric we have d(βi−1, βi) = δ. Consequently, for all 1 ≤ j < i ≤ j
′
≤ k,

we have d(βj , βj ′) = δ. Thus X(β1) ∪ . . . ∪ X(βi−1) and X(βi) ∪ . . . ∪ X(βk) are blocks and
mmodules, by Theorem 3.7 i = k = 2, contradiction. Conversely, suppose that all internal nodes
of TPQ of arity more than two are P-nodes and let x, y, z ∈ X. Let α be the lowest common
ancestor of x, y, z. If two of them, say x and y, have a child of α as common ancestor, then we have
d(x, y) ≤ d(x, z) = d(y, z). Otherwise, lca(x, y) = lca(x, z) = lca(y, z) = α. Since α is a P-node of
arity at least three, we have d(x, y) = d(y, z) = d(x, z). �

Proposition 3.14. Let (X, d) be an ultrametric space. Then the X-trees TPQ and TD are isomor-
phic.

Proof. Let β be an internal node of TD. Then for any x ∉ X(β), let α be the least common ancestor
of x and β in TD, we have d(x, β) = ρ(α). Thus X(β) is an mmodule. Also, by definition of TD,
X(β) is a ball of radius ρ(β) centered at any point in X(β). From the definition of Robinson space,

any ball is a block. By Theorem 3.7, as X(β) is a block and an mmodule, there is a node β
′
in

TPQ with β = β
′
.

Conversely, for any node β
′
in TPQ and any x ∉ X(β′), let α′ be the least common ancestor of

β
′
and x. By Proposition 3.13, α

′
and β

′
are P-nodes, and thus d(x, β′) = ρ(α′). By Lemma 3.12,

ρ(α′) > ρ(β′), hence d(x,X(β′)) > diam(X(β′)). Thus there is a node β in TD with X(β) =

X(β′). �

4. The graph Gδ and the construction of the PQ-tree

In this section we introduce the graph Gδ and the δ-mmodules, which are the most important
notions defined in this paper. We use them together with the maximal mmodules to construct the
PQ-tree of a Robinson space.

4.1. The graph Gδ and δ-mmodules. In this subsection, we define and give properties of the
graph Gδ and δ-modules. Some of the properties are valid for any dissimilarity space (first part of
Lemma 4.2, Lemmas 4.3 and 4.4), the others are only valid for Robinson spaces.

Definition 4.1 (Graphs Gδ, G<δ,G≤δ , and δ-mmodules). Let (X, d) be a dissimilarity space and
let δ > 0. Then Gδ is the graph with X as the set of vertices and edges {xy ∶ x, y ∈ X, d(x, y) ≠ δ}.
Let also G<δ ∶= (X, {xy ∶ x ≠ y, d(x, y) < δ}) and G≤δ ∶= (X, {xy ∶ x ≠ y, d(x, y) ≤ δ}). For S ⊆ X,
we denote by Gδ(S) the subgraph of Gδ induced by S. The connected components of the graph
Gδ are called the δ-mmodules of (X, d), and their number is denoted cδ.

Lemma 4.2. Let (X, d) be a dissimilarity space and δ > 0 such that the graph Gδ is not connected.
Then each δ-mmodule is an mmodule. Moreover, if (X, d) is Robinson, then at most one δ-mmodule
is not a block, and each δ-mmodule that is a block has diameter at most δ.

Proof. Let M be a δ-mmodule. Then for any x, y ∈ M , z ∉ M , by definition of Gδ we have
d(x, z) = δ = d(z, y), hence M is an mmodule.

Suppose now that (X, d) is Robinson and let < be any compatible order, with minimum x⋆ and
maximum x

⋆
. Suppose that M does not contain x⋆ (or symmetrically x

⋆
). Then for any y, z ∈ M

with y < z, we have d(y, z) ≤ d(x⋆, z) = δ, hence diam(M) ≤ δ. Since at most one connected
component of Gδ may contain both points x⋆, x

⋆
, we conclude that any other component has

diameter at most δ.

13

Let M be a connected component of Gδ with diam(M) ≤ δ. We assert that M is an interval of
<. Let x < y < z with x, z ∈ M , y ∉ M . Consider a path P from x to z in Gδ. Necessarily P

contains an edge x
′
z
′
with x

′
, z
′
∈ M and x

′
< y < z

′
. Then by definition of edges of Gδ and since

diam(M) ≤ δ, we have d(x′, z′) < δ. Consequently, d(x′, y) ≤ d(x′, z′) < δ, proving that y ∈ M ,
contrary to our choice of y. Thus M is an interval of <.

If there is a connected component M0 of Gδ with diam(M0) > δ, then all other connected

components have diameter at most δ, and x⋆, x
⋆

is a diametral pair of M0. Hence for every
compatible order, each other connected component M of Gδ is an interval, hence M is a block.

Otherwise, if a connected component of Gδ with diameter larger than δ does not exist, then

we prove that there is no component M with x⋆, x
⋆
∈ M for any compatible order <. By way

of contradiction assume there is one, and let y ∉ M . For any x, z ∈ M with x < y < z, we have
d(x, z) ≥ max{d(x, y), d(y, z)} = δ. Since diam(M) ≤ δ, this yields d(x, z) = δ. But then the points
x such that x < y and z such that y < z cannot belong to the same connected component of Gδ .

This contradicts the fact that x⋆ and x
⋆
belong to M . Consequently, in this case each connected

component is an interval in any compatible order, hence is a block. �

The following result shows that either the graph Gδ is connected for all values of δ > 0 or there
exists a unique positive value of δ such that Gδ is not connected. Furthermore, we characterize the
dissimilarity spaces for which the second option occurs.

Lemma 4.3. Let (X, d) be a dissimilarity space such that Mmax is a copartition of X. Then there
exists a unique δ > 0 such that for any maximal mmodule M , for any x ∈ M and y ∈ X \M , we
have d(x, y) = δ. Consequently, the graph Gδ is not connected and each connected component of
Gδ is the complement of a maximal mmodule. Conversely, if there exists δ > 0 such that Gδ is not
connected, then Mmax is the copartition of X consisting of the complements of the δ-mmodules.

Proof. First, let Mmax be a copartition. Let M,M
′
be two maximal mmodules, and let x ∈ M ,

x
′
∈ X \ M , y

′
∈ M

′
and y ∈ X \ M

′
. We assert that d(x, x′) = d(y, y′), allowing us to set

δ = d(x, x′). As Mmax is a copartition, X \ M
′
⊂ M and X \ M ⊂ M

′
, hence x

′
∈ M

′
and

y ∈ M . Since x, y ∈ M,x
′
∈ X \ M and M is an mmodule, we deduce that d(x, x′) = d(y, x′).

Analogously, since x
′
, y
′
∈ M

′
, y ∈ X \M ′

and M
′
is an mmodule, we get d(x′, y) = d(y′, y), and

thus d(x, x′) = d(y, y′). Then Gδ is not connected as each maximal mmodule and its complement
define a cut of Gδ. The connected components of Gδ are the subsets of the partition defined by the
complements of maximal mmodules.

Conversely, let δ > 0 be such that the graph Gδ is not connected. Then any arbitrary union of
connected components of Gδ is an mmodule. Thus, for each component C of Gδ , its complement

M = X \C is an mmodule. We assert that M belongs to Mmax. Let M
′
be an mmodule containing

M . Then C
′
∶= X\M ′

is a subset of C. Since M
′
is an mmodule, for any x ∈ C

′
, y ∈ M

′
, d(x, y) = δ

holds. This implies that M
′
and C

′
define a cut of Gδ , thus C

′
is a union of connected components

of Gδ. Since C
′
⊆ C and C is a connected component of Gδ , we conclude that C

′
= C and M

′
= M ,

establishing the maximality of M . �

We can actually give a simple characterization of the unique value of δ such that the graph Gδ

is not connected.

Lemma 4.4. Let (X, d) be a dissimilarity space such that Mmax is a copartition of X, and δ > 0 be
the unique value such that Gδ is not connected. Let T be a minimum spanning tree on the complete
graph on vertex set X, with weights given by d. Then

δ = max{d(x, y) ∶ xy ∈ T } = min{δ′ > 0 ∶ the graph (X, {xy ∶ x ≠ y, d(x, y) ≤ δ
′}) is connected}.

Proof. Let T ⊆ (X
2
) be a minimum-weight spanning tree on X. Since Gδ is not connected, T must

contain an edge with weight δ, hence max{d(x, y) ∶ xy ∈ T } ≥ δ.

14

Let e = xy be any edge of T . If e joins two components of Gδ , then its weight is δ. Else, let M
be the connected component of Gδ containing x and y. Pick any z ∉ M (such z exists since Gδ is
not connected). We may assume that y lies between x and z in the tree T . Then T \{e}∪{xz} is a
spanning tree. By minimality of T , d(x, y) ≤ d(x, z). Since x ∈ M,z ∉ M , we also have d(x, z) = δ.
Consequently, d(x, y) ≤ δ for any edge of T . This proves the first inequality.

As Gδ is not connected, the graph G<δ ∶= (X, {xy ∶ d(x, y) < δ}) is not connected. Moreover
G≤δ ∶= (X, {xy ∶ d(x, y) ≤ δ}) is a supergraph of the complement of Gδ. As the complement of a
not-connected graph is connected, G≤δ is connected, proving the last inequality. �

Definition 4.5 (Connected and non-connected dissimilarity spaces, large ρ-mmodules). Let ρ be
the minimum value such that the graph G≤ρ = (X, {xy ∶ x ≠ y, d(x, y) ≤ ρ}) is connected. If
the graph Gρ is not connected, then we say that the dissimilarity space (X, d) is non-connected.
Otherwise, all graphs Gδ are connected for δ > 0, and we say that the dissimilarity space (X, d) is
connected. If (X, d) is a non-connected Robinson space and Gρ contains a connected component
with diameter larger that ρ (see Lemma 4.2), then we call this component a large ρ-mmodule.

Using the relationship between the minimum spanning tree and the dendrogram Td̂ of the sub-

dominant ultrametric d̂ of d, we get that ρ is the weight of the root in the vertex representation of
Td̂. Observe also that ρ coincides with ρ(α) when α is a P-node root of TPQ or a ∩-node root of
TM . The next result establishes some properties of large ρ-mmodules.

Lemma 4.6. Let (X, d) be a non-connected Robinson space containing a large ρ-mmodule S0. Then
S0 has the following properties:

(i) there is a unique bipartition S0 = S⋆ ∪ S
⋆
of S0 into two blocks,

(ii) diam(S⋆) ≤ ρ and diam(S⋆) ≤ ρ,
(iii) d(x, y) ≥ ρ for any x ∈ S⋆, y ∈ S

⋆
,

(iv) if there exists δ > 0 such that Gδ(S0) is not connected, then δ > ρ and the connected

components of Gδ(S0) are S⋆ and S
⋆
.

Proof. Let y ∈ X \ S0, and < be any compatible order for (X, d). Since diam(S0) > ρ, S0 contains
at least two points. Let xz be any edge of Gρ(S0) and suppose that x < z. If d(x, z) < ρ, then, as
d(x, y) = d(y, z) = ρ, either x < z < y or y < x < z holds. Otherwise, by definition of the edges of

Gρ we have d(x, z) > ρ, and thus x < y < z holds. Setting E>ρ ∶= {x′z′ ∈ E(Gρ) ∶ d(x′, z′) > ρ}, it
implies that for any xz ∈ E(Gρ) and y ∈ X \ S0, y is between x and z in any compatible order if
and only if xz ∈ E>ρ.

We can extend the previous argument to any pair of vertices x, z of S0. Since S0 is connected
in Gρ, there exists at least one (x, z)-path and let P = (x = x0x1, x1x2, . . . , xℓ−1xℓ = z) be an
arbitrary (x, z)-path. Then the parity of the number of edges xixi+1 of P such that y is between xi
and xi+1 is odd if and only if y is between x = x0 and z = xℓ. In particular, this parity is the same
for all paths with extremities x and z. Fixing x ∈ S0, we can thus define the following bipartition
of S0:

S
⋆
∶= {z ∈ S0 ∶ for each (x, z)-path P of Gδ∗ , ∣P ∩ E>ρ∣ is even},

S⋆ ∶= {z ∈ S0 ∶ for each (x, z)-path P of Gδ∗ , ∣P ∩ E>ρ∣ is odd}.
Then for any y ∈ X \ S0, y is between any pair x ∈ S⋆, z ∈ S

⋆
, hence X \ S0, S⋆ and S

⋆
are

blocks, and this bipartition is unique, establishing (i).
By construction, the bipartition (S⋆, S⋆) has the properties (ii) and (iii). For (iv), suppose there

exists δ > 0 such that Gδ(S0) is not connected. Then δ ≠ ρ, as S0 is a connected component of

Gρ. The inequality δ < ρ is also impossible, since the complete bipartite graph on (S⋆, S⋆) would

be a subgraph of Gδ(S0). Hence δ > ρ. By (ii), each of the sets S⋆ and S
⋆
induces a connected

subgraph in Gδ(S0), hence S⋆ and S
⋆
are the connected components of Gδ(S0). �

15

The existence of large ρ-mmodules will induce some irregularities in both tree representations of
Robinson dissimilarities. The next definitions capture those irregularities, and will be useful when
comparing PQ-trees and mmodule trees.

Definition 4.7 (δ-special, large, δ-conical, apex, split and standard nodes). Let (X, d) be a Robin-
son space with mmodule tree TM and PQ-tree TPQ. Let δ > 0.

A ∩-node α = ∩(β1, . . . , βk) of TM is called δ-special if for all distinct j, j
′
∈ {1, . . . , k}, we have

d(X(βj),X(βj ′)) = δ and there is i ∈ {1, . . . , k} such that diam(X(βi)) > δ holds. Then βi is
unique and called the large child of α. A ∩-node is special if it is δ-special for some δ > 0.

A Q-node α = Q(β1, . . . , βk) of TPQ is called δ-conical if there is a child βi such that for all
j ∈ {1, . . . , k} \ {i}, we have d(X(βi),X(βj)) = δ. Then βi is unique and called the apex child of
α. A Q-node is conical if it is δ-conical for some δ > 0.

If α is the apex child of a δ-conical Q-node and Gδ(X(α)) is not connected, then α is called a
split node. If a node α of TPQ is not split, then it is standard.

The uniqueness of βi in both definitions can be readily checked:

• The uniqueness of the large child of a special ∩-node derives from Lemma 4.2.
• Suppose that a conical node α = Q(β1, . . . , βk) has two apex children βi and βj . First

notice that the distance between βi and the other children is the same that the distance
between βj and the other children (its value is d(X(βi),X(βj))). It would be possible to
exchange the nodes βi and βj in the list of the children of α, a contradiction.

4.2. Construction of the PQ-tree. The three next propositions describe how to build the nodes
of the PQ-tree of a Robinson dissimilarity through the analysis of its ρ-mmodules.

Proposition 4.8. Let (X, d) be a connected Robinson space. Then the following assertions hold:

(i) Mmax is a partition of X with ∣Mmax∣ ≥ 3,
(ii) each maximal mmodule is a block,

(iii) the quotient space (X/Mmax, d̂) is flat,
(iv) the compatible orders on X are exactly the composition of each of the two compatible orders

of (X/Mmax, d̂) with the compatible orders of each maximal mmodule,
(v) the root of TPQ is a Q-node, whose children are the PQ-trees of the maximal mmodules,

sorted by the compatible orders of (X/Mmax, d̂).
Proof. If Mmax = {M1, . . . ,Mk} is a copartition of X, then by Lemma 4.3, Gρ is not connected,
contradicting the hypothesis. Hence (i) holds.

Consider the quotient space (X/Mmax, d̂). By construction, its mmodules are all trivial. Hence

by Corollary 3.8, (X/Mmax, d̂) is flat and has a unique compatible order <Mmax
up to reversal,

that is, (iii) holds. We may assume that M1 <Mmax
. . . <Mmax

Mk. Then for each compatible order
< on X, for each choice of xi ∈ Mi for i ∈ {1, . . . , k} the restriction of < to {x1, . . . , xk} coincides
with <Mmax

or its reversal, that is either x1 < . . . < xk or xk < . . . < x1. This implies that each Mi

is an interval for <, hence (ii) holds.
By Theorem 3.7, each Mi is a node βi in TPQ. By Lemma 3.4, the relative order of elements

in Mi can be chosen independently from the order of the blocks. Thus (iv) holds. Finally by
Proposition 3.3, it implies (v). �

Proposition 4.9. Let (X, d) be a non-connected Robinson space and suppose that the diameter of
each ρ-mmodule is at most ρ. Then the root of TPQ is a P-node whose children are the PQ-trees of
each ρ-mmodule.

Proof. Let M be a ρ-mmodule. By Lemma 4.2, M is an mmodule and a block. By Theorem 3.7,
there exists a node βM in TPQ such that X(βM) = M . Moreover, by Lemma 3.4, in any compatible
order <, reordering the elements of M into an order compatible with βM gives a compatible order

16

on X. Furthermore, since for any x, y ∈ X that are not in the same mmodule, d(x, y) = ρ holds, any
order between the blocks corresponding to each ρ-mmodule is compatible. Hence each ρ-mmodule
is a maximal block, and the result follows by Proposition 3.3. �

Proposition 4.10. Let (X, d) be a non-connected Robinson containing a large ρ-mmodule S0.
Let S1, . . . , Sk be the other ρ-mmodules. Then the root of TPQ(S0) is a Q-node Q(β1, . . . , βℓ)
or a P-node P (β1, β2) (and ℓ = 2), and the root of the PQ-tree TPQ(X) is a special Q-node
Q(β1, . . . , βi−1, β, βi, . . . , βℓ), obtained by adding an apex child β to the root of TPQ(S0), where

β = { TPQ(S1) if k = 1,
P (TPQ(S1), . . . ,TPQ(Sk)) if k ≥ 2.

Proof. By Lemma 4.6, there is a bipartition S0 = S⋆∪S
⋆
of S0 into two blocks, with diam(S⋆) ≤ ρ,

diam(S⋆) ≤ ρ, and d(x, y) ≥ ρ for each x ∈ S⋆, y ∈ S
⋆
.

We claim that the root of TPQ(S0) is a Q-node or has arity two. If Gδ[S0] is connected for every
δ > 0, then by Proposition 4.8, the root of TPQ(S0) is a Q-node. Otherwise, let δ > 0 be such that
Gδ(S0) is not connected. By Lemma 4.6(iv), δ > ρ and Gδ(S0) has two connected components

S⋆ and S
⋆
, each of diameter less than δ. By Proposition 4.9, the root of TPQ(S0) is a P-node

P (TPQ(S⋆),TPQ(S⋆)).
Let β1, . . . , βl be the children of the root α of TPQ(S0), with k ≥ 2. By Lemma 3.2, S⋆ and S

⋆

are induced by consecutive children of α, that is, up to symmetry, there is i ∈ {2, . . . , ℓ} such that

S⋆ = ⋃i−1
j=1X(βi) and S

⋆
= ⋃ℓ

j=iX(βi). Let β be defined as in the statement of the result.

We claim that β = TPQ(X \ S0). If k = 1 this is immediate from the definition of β. If k ≥ 2,
then Gρ(X \ S0) is not connected and its components are precisely S1, . . . , Sk. Thus the claim
follow by Proposition 4.9.

Then we show that TPQ(X) = Q(β1, . . . , βi−1, β, βi, . . . , βℓ). Let < be a compatible order of(X, d). By Lemma 4.6, S⋆ and S
⋆
are blocks. Notice that the restriction of < to S0 is represented

by TPQ(S0). By Lemma 4.2, S1, . . . , Sk are blocks, implying that the restriction of < to X \ S0

is represented by β. Moreover as d(S⋆, Sj) = d(Sj , S
⋆) = ρ < max{d(x, y) ∶ x ∈ S⋆, y ∈ S

⋆} =

diam(S0), we have that Sj is between S⋆ and S
⋆
in any compatible order. Thus < is represented

by Q(β1, . . . , βi−1, β, βi, . . . , βℓ).
Conversely, let < be an order represented by Q(β1, . . . , βi−1, β, βi, . . . , βℓ) with S⋆ < S

⋆
. We show

that < is a compatible order of (X, d). Let x < y < z be a triplet of points in X. As the restriction
of < is represented by TPQ(S0), if x, y, z ∈ S0, then max{d(x, y), d(y, z)} ≤ d(x, z). If x, y ∈ S0,
z ∈ X \ S0, then as x, y ∈ S⋆, d(x, y) ≤ ρ = d(y, z) = d(x, z). The case y, z ∈ S0, x ∈ X \ S0 is
similar. If x, z ∈ S0 and y ∈ X \ S0, then x ∈ S⋆, z ∈ S

⋆
, hence d(x, z) ≥ ρ = d(x, y) = d(y, z).

If x, y ∈ X \ S0 and z ∈ S0, then d(x, y) ≤ ρ = d(y, z) = d(x, z). The case x ∈ S0, y, z ∈ X \ S0

is similar. Finally, if x, y, z ∈ X \ S0, as the restriction of < to X \ S0 is represented by β, again
max{d(x, y), d(y, z)} ≤ d(x, z). Hence < is compatible. �

Propositions 4.8 to 4.10 lead to Algorithm 1 that builds the PQ-tree of (X, d) using Gρ. It
requires an algorithm able to compute a compatible order of a flat Robinson space on Line 4,
otherwise it can only compute the structure of the PQ-tree, without the ordering of children of

Q-nodes. We gave such an algorithm in our paper [3, Proposition 6.16], that runs in time O(∣X∣2).
The value of ρ can be efficiently computed by Lemma 4.4, as fast as the computation of a minimum
spanning tree of a complete graph. Determining the maximal mmodules on Line 3 will be possible
using an algorithm presented in Section 6.

On line 12, the value of i in Proposition 4.10 is computed as the minimal value i
⋆
such that (∗)

d(βi⋆ , βℓ) ≤ ρ and d(βi⋆−1, βi⋆) ≥ ρ; we now prove that this computation is correct. We use the
notations of Proposition 4.10; the root of TPQ(X) is Q(β1, . . . , βi−1, β, βi, . . . , βℓ) and d(β, βj) = ρ

for each j ∈ {1, . . . , l}. First observe that d(βi, βℓ) ≤ d(β, βℓ) = ρ and d(βi−1, βi) ≥ d(β, βi) = ρ,

17

Algorithm 1. Computes the PQ-tree of (X, d) using the ρ-mmodules.

deltaPqTree(S)
Input: a Robinson space (X, d) (implicit), a set S ⊆ X.
Output: the PQ-tree TPQ(S).
1: if (S, d) is connected then ▷ Proposition 4.8
2: let M1, . . . ,Ml be the maximum mmodules of (S, d)
3: let x1 ∈ M1, . . . , xℓ ∈ Mℓ

4: let xσ(1) < . . . < xσ(ℓ) be a compatible order of the flat Robinson space {x1, . . . , xℓ}
5: return Q(deltaPqTree(Mσ(1)), . . . deltaPqTree(Mσ(ℓ)))
6: Compute ρ for (S, d) ▷ Lemma 4.4
7: let S0, S1, . . . , Sk be the connected components of the graph Gρ on vertex set S
8: let T0, . . . ,Tk = deltaPqTree(S0), . . . , deltaPqTree(Sk)
9: if there is j ∈ {0, . . . , k} with diam(Sj) > ρ then ▷ Proposition 4.10

10: Sj ↔ S0, T0 ↔ Tj ▷ ensures S0 is the large ρ-mmodule
11: let Q(β1, . . . , βℓ) ∶= T0, or P (β1, βℓ) ∶= T0 and ℓ = 2
12: let i ∈ {2, . . . , ℓ} be minimal such that d(βi, βℓ) ≤ ρ and d(βi−1, βi) ≥ ρ,
13: let β ∶= T1 if k = 1, β ∶= P (T1, . . . ,Tk) if k ≥ 2
14: return Q(β1, . . . , βi−1, β, βi, . . . , βℓ) ▷ conical node with apex child β

15: return P (T0, . . . ,Tk) ▷ Proposition 4.9

hence (∗) holds for i. Now suppose for the sake of contradiction that there exists i
′
∈ {1, . . . , i− 1}

for which (∗) holds. Then for all j ∈ {i′, . . . , i − 1} and j
′
∈ {i, . . . , ℓ},

ρ = d(β, βi) ≤ d(βi−1, βi) ≤ d(βj , βj ′) ≤ d(βi′ , βℓ) ≤ ρ,

and for all j ∈ {i′, . . . , i − 1} and j
′
∈ {1, . . . , i′ − 1}

ρ ≤ d(βi′−1, βi′) ≤ d(βj ′ , βj) ≤ d(β1, βi−1) ≤ d(β1, β) = ρ,

proving that all those quantities equal ρ. In particular, for all x ∈ X(βi′) ∪ . . . ∪ X(βi−1) and
y ∈ X(β1) ∪ . . . ∪ X(βi′−1) ∪ X(βi) ∪ . . . ∪ X(βℓ), d(x, y) = ρ, contradicting the fact that S0 is
connected in Gρ.

5. Translation between PQ-trees and mmodule trees

In this section, we show how to build the mmodule tree of a Robinson space (X, d) from its
PQ-tree, and vice-versa, how to build the PQ-tree from the mmodule tree. This cryptomorphism
is illustrated by Figure 6.

5.1. The translation between TPQ and TM . The cryptomorphism between the two trees relies
on the following remark: since Propositions 4.8 to 4.10 cover all possible cases, we can “invert”
their statements depending on the root of TPQ and of whether (X, d) is connected or not. More
precisely we have the following result:

Proposition 5.1. Let (X, d) be a Robinson space with PQ-tree TPQ, then the set of maximum
mmodules Mmax is described as follows:

(1) If TPQ = P (β1, . . . , βk), then (X, d) is non-connected and X(β1), . . . ,X(βk) are the ρ-
mmodules, all of diameter at most ρ, and Mmax = {X \X(β1), . . . ,X \X(βk)}.

(2) If TPQ = Q(β1, . . . , βk) and (X, d) is connected, then Mmax = {X(β1), . . . ,X(βk)}.
(3) If TPQ = Q(β1, . . . , βk) and (X, d) is non-connected, then there is a large ρ-mmodule S0,

and there exists i ∈ {2, . . . , k − 1} such that S0 = X \ X(βi). The root of TPQ is conical
with apex child βi. Moreover,

18

Leaf x
(a)

Leaf x

β1 βk. . .

∪

(b)

φ(βσ(1)) φ(βσ(k)). . .

β1 βk
. . .

∩

(c)

φ(β1) φ(βk). . .

∩ δ-special

β1 βk−1 βk

large

. . .

and φ(βk) =
γ1 γl. . .

(d)

δ-conical

γ1 . . . γj γj+1 . . . γlapex

φ(β1) . . . φ(βk−1)
∩ δ-special

γj ∪ large

γ1 γl. . .

γj is standard

or

∩ δ-special

β1 βk
. . . ∪ large

γ1 γl. . .

γj is split

(e)

δ-conical

φ(γ1) φ(γl)apex

j

φ(β1) . . . φ(βk)

Figure 6. The translations between mmodule trees and PQ-trees, as provided by
Algorithms 2 and 3; here φ denotes the bijection from mmodule trees to PQ-trees.
In cases (b), (c), none of the nodes is special or conical. In case (d), φ(bk) can also
be P (γ1, γ2) (then ℓ = 2), and if k = 2 the apex node is simply φ(β1). In case (f):
the large node is a ∩-node when l = 2, and it may happen that the apex node is
reduced to a leaf (in which case γj is standard).

(3.1) if cρ = 2, then Mmax = {X(βi),X \X(βi)},
(3.2) if cρ ≥ 3, then βi = P (γ1, . . . , γcρ−1) is a split node and Mmax = {X \ X(γi) ∶ i ∈{1, . . . , cρ − 1}} ∪ {X(βi)}.

Proof. For (1), as the root of TPQ is a P-node, Proposition 4.9 is the sole proposition allowing this
conclusion, hence there is ρ > 0 with cρ ≥ 3. Then by Lemma 4.3, Mmax = {X \ X(β1), . . . X \
X(βk)}.

Otherwise the root of TPQ is a Q-node. For (2), the only proposition whereGδ is always connected
is Proposition 4.8, from which we get that case.

For (3), Proposition 4.10 is the only applicable proposition, hence there is ρ > 0 such that Gρ is
not connected, and has a large ρ-mmodule S0. It remains to prove what is Mmax in that case, but
it actually easily follows from Lemma 4.3. �

5.2. From TPQ to TM . This leads to Algorithm 2 to compute the mmodule tree from the PQ-tree
of a Robinson space. Given the PQ-tree TPQ of a Robinson space (X, d), we denote by ρ(TPQ) the
unique value δ for which Gδ is not connected, if it exists, otherwise ρ(TPQ) is undefined. We can
compute ρ = ρ(TPQ) efficiently in the following way:

19

- if the root of TPQ is a P-node, then ρ ∶= d(α, β), where α and β are two distinct children
of the root. This follows from Proposition 5.1 (1),

- otherwise, the root of TPQ is a Q-node with children β1, . . . , βk, with k ≥ 3. Then there is
at most one i ∈ {2, . . . , k − 1} such that for all j ∈ {1, . . . , k} \ {i}, and ρ = d(βi, βj). This
follows from Proposition 5.1 (3). Checking all possibilities for i allows to find ρ (and i) in
time O(k), as it is sufficient to check that d(β1, βi), d(βi−1, βi), d(βi, βi+1) and d(βi, βk)
are all equal (then that value is ρ). Then the root of TPQ is a conical node with apex child
βi. If no such i exists, then the situation is that of Proposition 5.1 (2), the root of TPQ is
not conical and ρ is undefined.

Algorithm 2. Computes the mmodule tree of a Robinson space (X, d) from its PQ-tree.

mmodTree(TPQ(S))
Input: a Robinson space (X, d) (implicit), a PQ-tree TPQ(S) for a subspace S of (X, d).
Output: the mmodule tree TM(S) of S.
1: match TPQ(S) with

2: case Leaf x:
3: return Leaf x
4: case P (β1, . . . , βk):
5: return ∩(mmodTree(β1), . . . ,mmodTree(βk)) ▷ Proposition 5.1(1)
6: case Q(β1, . . . , βk):
7: if TPQ(S) is not conical then
8: return ∪(mmodTree(β1), . . . ,mmodTree(βk)) ▷ Proposition 5.1(2)
9: let ρ ∶= ρ(TPQ(S)) and βi the apex child of TPQ(S)

10: let T0 ∶= ∪(mmodTree(β1), . . . ,mmodTree(βi−1),mmodTree(βi+1), . . . ,mmodTree(βk))
11: if ρ(βi) is undefined or ρ(βi) < ρ then

12: return ∩(T0,mmodTree(βi)) special ▷ Proposition 5.1(3.1)
13: let γ1, . . . , γℓ be the children of βi
14: return ∩(T0,mmodTree(γ1), . . . ,mmodTree(γℓ)) special ▷ Proposition 5.1(3.2)

Theorem 5.2. Let (X, d) be a Robinson space and TPQ be its PQ-tree. Then mmodTree(TPQ)
correctly computes the mmodule tree of (X, d) in time O(∣X∣).
Proof. The correctness mostly follows by induction from Proposition 5.1, we only explain the dif-
ferences between the conditions in Proposition 5.1 and Algorithm 2.

On line 7, testing whether TPQ(S) is conical is equivalent to checking whether there is apex child,
in which case (S, d) is not connected and Proposition 5.1(3) applies. Otherwise (S, d) is connected
and Proposition 5.1(2) applies.

Consider the case when the execution runs through line 9. The conical child βi is X \ S0. We
must determine cρ to decide between Proposition 5.1(3.1) and (3.2). As X(βi) is the union of
the ρ-mmodules other than S0 we may use ρ(βi). Indeed, cρ > 2 if and only if Gρ(X(βi)) is not
connected. Hence if cρ = 2, then S0,X(βi) are the ρ-mmodules of S and the return at line 12 is
correct. Otherwise, by Proposition 4.9, the ρ-mmodules other than S0 are the sets induced by the
children of βi, proving that the return at line 14 is also correct.

The complexity follows from the previous remark that ρ(α) can be computed in time O(k) where
k is the number of children of the node α. Then we use the fact he the sum of arities of the nodes
in TPQ is no more than 2∣X∣ because each inner node has arity at least 2 and the number of leaves
is ∣X∣, thus the total cost for computing all the ρ(α) is O(∣X∣). The rest of the algorithm can be
computed in time proportional to the size of the PQ-tree, that is in Θ(∣X∣). �

20

5.3. From TM to TPQ. Propositions 4.8 to 4.10 also allow to derive the PQ-tree of a Robinson
space from its mmodule tree, except for the ordering of children of Q-nodes. This is done in
Algorithm 3. We analyse this algorithm.

Algorithm 3. Computes the PQ-tree of a Robinson space (X, d) from its mmodule tree.

pqTree(TM(S))
Input: a Robinson space (X, d) (implicit), an mmodule tree TM(S) for a subspace S of (X, d).
Output: the PQ-tree TPQ(S) of S.
1: match TM(S) with

2: case Leaf x:
3: return Leaf x
4: case ∪(β1, . . . , βk):
5: let βσ(1) < . . . < βσ(k) be a compatible order of the flat Robinson space X/Mmax

6: return Q(pqTree(βσ(1)), . . . , pqTree(βσ(k))) ▷ Proposition 4.8
7: case ∩(β1, . . . , βk):
8: let ρ = d(β1, βk)
9: if TM(S) is special with large child βi then

10: βi ↔ βk ▷ ensures i = k

11: let Q(γ1, . . . , γℓ) ∶= pqTree(βk) ▷ Proposition 4.10
12: let j ∶= findBipartition(ρ, γ1, . . . , γℓ)
13: let β ∶= pqTree(β1) if k = 2, β ∶= P (pqTree(β1), . . . , pqTree(βk−1)) if k ≥ 3
14: return Q(γ1, . . . , γj , β, γj+1, . . . , γℓ) conical with apex β ▷ Proposition 4.10
15: return P (pqTree(β1), . . . , pqTree(βk)) ▷ Proposition 4.9

findBipartition(ρ, γ1, . . . , γk)
Input: a non-connected Robinson space (X, d) (implicit) with a large ρ-mmodule S0 of Gδ∗

and bipartition (S⋆, S⋆), and the children γ1, . . . γℓ of the Q-node root of TPQ(S0) (by
Proposition 4.10).

Output: The unique j ∈ {1, . . . , l − 1} such that for S⋆ ∶= X(γ1) ∪ . . . ∪X(γj) and S
⋆
∶=

X(γj+1) ∪ . . . ∪X(γℓ).
1: let i0 ∶= max{i ∈ {1, . . . , ℓ − 1} ∶ d(γi, γℓ) > ρ} ▷ exists as diam(S0) > ρ

2: return min{i ∈ {i0, . . . , ℓ − 1} ∶ d(γi, γi+1) ≥ ρ}
Lemma 5.3. Under the hypothesis of Proposition 4.10, findBipartition(ρ, γ1, . . . , γk) from Algorithm 3
correctly computes the bipartition (S⋆, S⋆) of S0 in time O(l).
Proof. We know that j exists by Proposition 4.10. Let j

′
be the value returned by findBipartition

from Algorithm 3, and let S ∶= X \ S0. Denote Si = X(γi) for any i ∈ {1, . . . , ℓ}. Let < be a
compatible order with S1 < . . . < Sj < S < Sj+1 < . . . < Sℓ. As d(Si0 , Sℓ) > ρ = d(S, Sℓ) ≥

d(Sj+1, Sℓ), we have that i0 < j+1. This implies that j
′
is well defined as d(Sj, Sj+1) ≥ d(Sj , S) = ρ,

and j
′
≤ j.

By way of contradiction suppose that j
′
< j. We prove that T ∶= Sj ′+1∪. . .∪Sj∪S is a union of ρ-

mmodules, a contradiction to the fact that S0 is a maximal mmodule. Notice that Sj ′+1 < . . . < Sj <

S, hence it is sufficient to show that d(S1, Sj ′+1) = d(Sj ′+1, Sl) = ρ and d(S1, S) = d(S, Sj+1) = ρ.

The latter inequalities follow from the definition of S, we prove the former. By definition of j
′
,

d(Sj ′ , Sj ′+1) ≥ ρ, but S1 < Sj ′ < Sj ′+1 ≤ Sj < S implies that d(Sj ′, Sj ′+1) ≤ d(S1, S) = ρ, hence

d(Sj ′ , Sj ′+1) = ρ. By the maximality of i0 and since j
′
≥ i0, d(Sj ′+1, Sℓ) ≤ ρ. Then because

Sj ′+1 ≤ Sj < S < Sl, we get d(Sj ′+1, Sℓ) ≥ d(S, Sℓ) = ρ, hence the last equality follows. �

21

Theorem 5.4. Let (X, d) be a Robinson space and TM be its mmodule tree. Then pqTree(TM)
correctly computes the PQ-tree TPQ of (X, d) in time O(∣X∣) without counting the cost of ordering
the children of each Q-node.

Proof. If TM = ∪(β1, . . . , βk), then by Proposition 2.15, Mmax is a partition with maximal mmod-
ules X(β1), . . . ,X(βk). By Lemma 4.3, Gδ is connected for any δ > 0. By Proposition 4.8,
TPQ = Q(T1, . . . , Tk) where T1, . . . , Tk are the PQ-tree of X(β1), . . . ,X(βk) given in a compat-
ible order. This proves that the return at line 6 is correct.

If TM = ∩(β1, . . . , βk), then by Proposition 2.15, Mmax is a copartition, the ρ-mmodules are
X(β1), . . . ,X(βk) and their complements are the maximal mmodules of (X, d). By Lemma 4.3,
d(X(βi),X(βj)) = ρ. If (X, d) does not contain large ρ-mmodules, then by Proposition 4.9, the
returns at line 15 is correct.

If some ρ-mmodule has diameter greater than ρ, say diam(X(βk)) > ρ, then by Proposition 4.10,
the root of the PQ-tree of S0 ∶= X(βk) is a Q-node. By Lemma 4.6, S0 has a bipartition into two
blocks S⋆, S

⋆
, which must match with consecutive children of the root of TPQ(S0). By Lemma 5.3,

findBipartition correctly computes that bipartition, and then by Proposition 4.10, the return at
line 14 is correct.

The diameter of the sets induced by nodes of the PQ-tree can be computed simultaneaously: for
a P-node the diameter is the distance between any two children, while for a Q-node, the diameter
is the distance between the two extremal children. To compute the diameter of a set induced by
an mmodule tree, we first compute its PQ-tree (as the algorithm will compute it eventually, this
does not add any cost), then compute its diameter in constant time.

Then the complexity of the algorithm, without counting the ordering at line 5 and the recursive
calls, is proportional to the arity k of the root node of TM , and ℓ in case it returns at line 14.
Notice that the last case happens when transforming a Q-node whose subset induces a connected
Robinson subspace into a Q-node whose subset induces a non-connected Robinson subspace. Hence
it happens at most once for any Q-node in the final PQ-tree TPQ(X). Thus, counting the recursive
calls (but still not line 5), the complexity of the algorithm is proportional to the sum of arities in
TM and TPQ, which is O(∣X∣) as each inner node has arity at least 2. �

Another consequence of these translations between PQ-tree and mmodule tree is that a node-
to-node correspondence for most of the nodes of those trees:

Proposition 5.5. Let (X, d) be a Robinson space, with PQ-tree TPQ and mmodule tree TM . For

any node α in TM , either there exists a node α
′
in TPQ with X(α) = X(α′) or α is the large child

of a special node. For any node β
′
in TPQ, either there exists a node β in TM with X(β) = X(β′),

or β
′
is the split child of a conical node α

′
. Moreover, if α is a node of TM and α

′
a node of TPQ

with X(α) = X(α′), then:
(i) α is a non-special ∩-node if and only if α

′
is a P-node,

(ii) α is a ∪-node if and only if α
′
is a non-conical Q-node,

(iii) α is a special ∩-node if and only if α
′
is a conical Q-node.

5.4. Mmodules trees of ultrametrics. As an application of the results of this section, we show
that for ultrametrics TM is isomorphic to TD and TPQ. We characterize the ultrametric spaces via
their mmodule trees in the following way:

Proposition 5.6. If (X, d) is an ultrametric space, then the X-trees TD, TPQ, and TM are iso-
morphic. Furthermore, a dissimilarity space (X, d) is ultrametric if and only if its mmodule-tree
TM satisfies the following conditions:

(i) the internal nodes of TM are all ∩-nodes,
(ii) for every node α of TM and child β of α, we have diam(X(β)) < diam(X(α)).

22

Proof. Suppose first that (X, d) is an ultrametric space. Then, by Proposition 3.13, TPQ contains
only P-nodes. By Proposition 5.1(1), all internal nodes of TM are non-special ∩-nodes with no
large component and are in one-to-one correspondance to those of TPQ, proving (i) and (ii), and
that TPQ and TM are isomorphic. By Proposition 3.14, they are also isomorphic to TD.

Conversely, suppose that TM satisfies (i) and (ii). Let x, y, z ∈ X and α be the common least
ancestor of x, y, z in TM . If x, y, z are in distinct children, then d(x, y) = d(y, z) = d(x, z) = ρ(α)
by (i). Otherwise, two of them are in a common child, say x and y. Then d(x, y) < ρ(α) by (ii),
and d(x, z) = d(y, z) = ρ(α) by (i). Thus (X, d) is an ultrametric. �

6. Construction of the mmodule tree using partition refinement

In Section 5 we established a correspondence between the PQ-tree TPQ and the mmodule tree TM
of a Robinson space (X, d), allowing to derive one such tree from another. In Section 4 we showed
how to construct TPQ from the maximal mmodules Mmax of (X, d). In this section, we show how to
build the mmodule tree TM recursively from top-to-bottom, using a partition refinement algorithm
and the dendrogram Td̂ of the ultrametric subdominant (X, d̂). This also allows to construct Mmax

and thus to get full algorithmic translations between the trees TPQ and TM .

6.1. Stable partitions and partition refinement. A partition of a set X is a family of sets

P = {B1, . . . , Bm} such that Bi ∩Bj = ∅ for any i ≠ j and ⋃k
i=1 Bi = X. The sets B1, . . . , Bm are

called the classes of P.

Definition 6.1 (Stable partition). A partition P = {B1, . . . , Bm} of a dissimilarity space (X, d) is
a stable partition if for any i ∈ {1, . . . ,m}, Bi is an mmodule.

A non-stable partition P can be transformed into a stable partition by applying the classical
operation of partition refinement, which proceeds as follows. Algorithm 8 (see the Appendix)
maintains the current partition P and for each class B of P maintains the set Z(B) of all points
outside B which still have to be processed to refine B. While P contains a class B with nonempty
Z(B), the algorithm pick any point z of Z(B) and partition B into maximal classes that are

not distinguishable from z, i.e. for any such new class B
′
⊆ B and any x, x

′
∈ B

′
we have

d(x, z) = d(x′, z). Finally, the algorithm removes B from P and insert each new class B
′
in P and

sets Z(B ′) ∶= (B \ B ′) ∪ (Z(B) \ {z}). Notice that each class B is partitioned into subclasses by
comparing the distances of points of B to the point z ∉ B and such distance items never occur

in later comparisons. Also, if the final stable partition has classes B
′

1, . . . , B
′

t, then the distances

between points in the same class B
′

i are never compared to other distances. This algorithm is
formalized in Algorithm 8, where one would call stablePartition(P) to get a stable partition from P.

The complexity of refinePart in Algorithm 8 is O(∑k
i=1 ∣Bi∣ × ∣B \ Bi∣), the complexity of refining

P into P
′
with Algorithm 8 is O(∑P∈P ′ ∣P ∣ × ∣X \ P ∣). The copoint partition Cp of (X, d) can be

constructed by applying Algorithm 8 to the partition {{p},X \ {p}).
The effect of Algorithm 8 applied to a partition of a subset S ⊆ X of a dissimilarity space (X, d)

is described in Lemma 9.7, which asserts that stablePartition(P) is the less refined refinement of P
into mmodules of (S, d).

We now present Algorithm 4, a variant of the stable partition algorithm, that uses S-trees to
represent sets. This will allow us to use the dendrogram Td̂ of the ultrametric subdominant to
representX, providing us with extra information that will be needed to obtain an efficient algorithm
to build the mmodule tree.

Lemma 6.2. Let (X, d) be a dissimilarity space and let T (S) be an S-tree for some subset S ⊆ X.
Let q ∈ X \ S and T (S1), . . . ,T (Sn) ∶= pivotTree(q,T (S)). Then for all i ∈ {1, . . . , n}, T (Si) is
either a subtree of T (S) or the join of some children of a node in T (S).

23

Algorithm 4. A refinement algorithm where sets are represented by X-trees

stableTrees(T (S1), . . . ,T (Sk))
Input: a dissimilarity space (X, d) (implicit), T (Si) an Si-tree for i ∈ {1, . . . , k}, where{S1, . . . , Sk} is a partition of a subset S ⊆ X.
Output: T (Mi) anMi-tree for i ∈ {1, . . . , ℓ}, where {M1, . . . ,Mℓ} is a partition of S into mmodules

of (S, d).
1: for i ∈ {1, . . . , k} do

2: yield from refineTree(T (Si), S1 ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sk)
refineTree(T (S), Z(S))
2: if Z(S) = ∅ then

3: return T (S)
4: let q ∈ Z(S)
5: let T (S1), . . . ,T (Sk) ∶= pivotTree(q,T (S))
6: for i ∈ {1, . . . , k} do

7: yield from refineTree(T (Si), S1 ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sk ∪ Z(S) \ {q})
pivotTree(q,T (S))
Input: a dissimilarity space (X, d) (implicit), an S-tree T (S) for some subset S ⊆ X, and q ∈ X\S.
Output: T (Si) an Si-tree for i ∈ {1, . . . , n}, where S1, . . . , Sn is a partition of S.
9: if d(q, x) is constant for x ∈ T (S) then

10: return T (S)
11: let Node(β1, . . . , βk) ∶= T (S)
12: let I ∶= {i ∈ {1, . . . , k} ∶ d(q, x) is constant for x ∈ X(βi)} and J ∶= {1, . . . , k} \ I
13: for j ∈ J do

14: yield from pivotTree(q, βj)
15: let {d1, . . . , dℓ} ∶= {d(q, βi) ∶ i ∈ I}
16: for j ∈ {1, . . . , ℓ} do

17: yield join({βi ∶ i ∈ I, d(q, βi) = dj})
join({α1, . . . , αk})
20: return { α1 if k = 1,

Node(α1, . . . , αk) otherwise.

Proof. We proceed by induction on the size of T (S). If d(q, x) is constant for x ∈ S, then n = 1
and T (S1) = T (S) (line 9). Let i ∈ {1, . . . , n}. If T (Si) is yielded at line 14, then the result holds
by induction. Otherwise, it is yielded at line 17, hence T (Si) is the join of some children of the
root. �

Lemma 6.3. Let (X, d) be a dissimilarity space and let T (S) be an S-tree for some subset S ⊆ X.
Let q ∈ X \ S and T (S1), . . . ,T (Sn) ∶= pivotTree(q,T (S)). Then for all i ∈ {1, . . . , n}, d(q, x) is
constant for x ∈ T (Si).
Proof. This easily follows by induction on the size of T (S). �

The fundamental property of the stable partition algorithm is that it outputs the maximal
mmodules included in some parts of the initial partition. This property will only be preserved
when working with S-trees whose structure respects the mmodules of the dissimilarity space.

24

Definition 6.4. Let (X, d) be a dissimilarity space and S ⊆ X. An S-tree T is coherent if for each
mmodule M of X with M ⊆ S, for each child β of the M -pertinent node in T , either X(β) ⊂ M

or X(β) ∩M = ∅.

Notice that any subtree of a coherent tree is itself coherent.

Lemma 6.5. Let (X, d) be a dissimilarity space and let T (S) be a coherent S-tree for some S ⊆ X.
Let q ∈ X \ S and T (S1), . . . ,T (Sn) ∶= pivotTree(q,T (S)). Then T (S1), . . . ,T (Sn) are coherent.
Moreover, let M ⊊ S be an mmodule of S, then there is i ∈ {1, . . . , n} such that M ⊆ Si.

Proof. Let M be a proper mmodule of S. By induction on the size of T (S), first we prove the claim
that there exist i ∈ {1, . . . , n} and a node α of T (Si) such thatM = X(α) orM = X(β1)∪. . . X(βk)
for some children β1, . . . , βk of α. Then we obtain the assertion of the lemma by applying this claim
to all proper mmodules of S.

If d(q, x) is constant for x ∈ S, then n = 1, T (S1) = T (S) and the claim follows from the
coherence of T (S). If the root of T (S) is not M -pertinent, then as T (S) is coherent, M ⊆ X(βi)
for some child βi of the root. If i ∈ I, βi is in the join of some T (Sj) yielded at line 17 and the
claim holds as βi is coherent, else the claim holds by induction, from line 14 because βi is coherent.

Otherwise the root is M -pertinent. Since M is an mmodule and T (S) is coherent, there is a

subset I
′
⊆ I such that M = ⋃i∈I ′ X(βi), and there is j ∈ {1, . . . , ℓ} such that dj = d(q,M). Then

M is a subset of leaves of the join yielded on line 17 at iteration j, establishing the claim. �

The next proposition establishes that stableTrees is semantically equivalent to stablePartition.

Proposition 6.6. Let (X, d) be a dissimilarity space and T (S1), . . . ,T (Sk) be coherent trees,
where S1, . . . , Sk is a partition of X. Let T (R1), . . . ,T (Rℓ) ∶= stableTrees(T (S1), . . . ,T (Sk)).
Then R1, . . . , Rℓ are the maximal by inclusion mmodules of X contained in S1, . . . , Sk.

Proof. By Lemma 6.5, for each such maximal mmoduleM , there is i ∈ {1, . . . , ℓ} such that M ⊆ Ri.
It remains to prove that, for i ∈ {1, . . . , ℓ}, Ri is an mmodule.

We check the following invariant: for each call refineTree(T (S), Z(S)), for each u ∉ S ∪ Z(S),
d(x, u) is constant for x ∈ S. This is trivial in line 2. Then consider a call refineTree(T (S), Z(S))
for which the invariant holds, and let us prove it for the recursive calls happening at line 7. For
iteration i, let u ∈ X \ (Z(Si) ∪ Si) = {q} ∪ (X \ Z(S) \ S). If u ∈ X \ Z(S) \ S, then d(x, u) is
constant for x ∈ S hence for x ∈ Si. Otherwise for u = q, Si is a set yielded by pivotTree(q,T (S)),
and the invariant follows by Lemma 6.3.

Consequently, for any i ∈ {1, . . . , ℓ}, T (Ri) is returned at line 3, for some call refineTree(T (Ri),∅).
Thus by the invariant, T (Ri) is an mmodule. �

The complexity of Algorithms 4 and 8 are asymptotically equivalent:

Lemma 6.7. Let (X, d) be a dissimilarity space and T (S1), . . . ,T (Sk) be coherent trees, where
S1, . . . , Sk is a partition of X. Then T (R1), . . . ,T (Rℓ) ∶= stableTrees(T (S1), . . . ,T (Sk)) takes

O(∑ℓ
i=1 ∣Ri∣∣X \Ri∣) time.

Proof. Notice that refineTree(Td̂(S), Z(S)) is called at most ∣X \ S∣ times, because at each call,
some element q is chosen and removed from Z(S). For a given q ∈ X \S, we must evaluate whether

d(q, x) is constant for x ∈ S
′
. In time O(∣S∣), we can decide that property for each node in Td̂(S).

We charge a cost of O(1) on each pair (q, x) with x ∈ S. This allows to solve lines 9 and 12 in all
calls to pivotTree(q,Td̂(S)) for all S with q ∉ S in total time O(∣X \Ri∣), where q ∈ Ri. Summing
over all q ∈ X, we get O(∑n

i=1 ∣Ri∣∣X \Ri∣).
It remains to evaluate the cost of line 15. Using a binary search tree, associating to each distance

the children at that distance, this has cost O(∣I∣ log ℓ), which we can amortized by charging a cost
of log ℓ to an element of each child βi, for i ∈ I. Notice that this element is, from this step, split

25

from each of the other ℓ − 1 parts, hence from at least log ℓ elements. This implies that the total
charge accumulated by an element during the main call to stableTrees is less than the number of
trees returned. Thus the total cost of line 15 is at most O(∑n

i=1 ∣Ri∣∣X \Ri∣). �

6.2. ρ-Components and the maximal mmodules. In this subsection, we study the relation-
ships between the maximal mmodules and the ρ-components. They will lead us to an efficient
algorithm to find the maximal mmodules of a Robinson dissimilarity and to build its mmodule
tree. First, we define the ρ-components of a dissimilarity space (recall that ρ is the minimum value
for which the graph G≤ρ is connected):

Definition 6.8 (ρ-components). The ρ-components of a dissimilarity space (X, d) are the con-
nected components of the graph G<ρ.

Lemma 6.9. Let (X, d) be a connected Robinson space with TM(X) = ∪(β1, . . . , βk). Let C be a
ρ-component of (X, d). Then

(i) either there exists I ⊆ {1, . . . , k} such that C = ⋃i∈I X(βi),
(ii) or there exists i ∈ {1, . . . , k} such that diam(X(βi)) = ρ, βi = ∩(γ1, . . . , γℓ), and there is

j ∈ {1, . . . , ℓ} such that C = X(γj).
Proof. Suppose that (i) does not happen, i.e., there is some i ∈ {1, . . . , k} such that C ∩X(βi) ≠ ∅
and X(βi) \ C ≠ ∅. By Lemma 3.12 and Proposition 5.5, diam(X(βi)) ≤ min{d(βi, βj) ∶ j ∈{1, . . . , k} \ {i}} ≤ ρ, and thus for all x ∈ C ∩X(βi) and y ∈ X(βi) \ C, we have d(x, y) = ρ. This
implies that the Robinson space (X(βi), d) is non-connected, with ρ(X(βi)) = ρ = diam(X(βi)),
hence βi = ∩(γ1, . . . , γℓ) is non-special. Then for all x ∈ X(βi) and z ∈ X \ X(βi), we have
d(x, z) ≥ ρ. Thus each X(γj) is a ρ-component, establishing (ii). �

In case (i), the ρ-component C is said to be giant, while in case (ii), it is said to be dwarf. Making
that distinction, the next theorem gives a way to find most of maximal mmodules of a connected
Robinson space using the stable partition algorithm.

Proposition 6.10. Let (X, d) be a connected Robinson space with TM = ∪(β1, . . . , βk). Let i ∈{1 . . . , k} and Y be a ρ-component intersecting X(βi). Let P be the stable partition obtained by
calling stablePartition({Y,X \ Y }).

(1) If Y is a giant ρ-component, then P = Mmax.
(2) If Y is a dwarf ρ-component with Y = X(γ) for some child γ of βi, then P = Mmax \{X(βi)} ∪ {Y,X(βi) \ Y }.

Proof. By Proposition 2.15, the maximal mmodules Mmax of (X, d) are {X(β1), . . . ,X(βk)}.
In case (1), by Lemma 6.9, Y = ⋃i∈I X(βi) for some I ⊂ {1, . . . , k}, hence Y and X \ Y are

unions of maximal mmodules. Therefore the maximal mmodules contained in Y and X \ Y are
exactly the maximal mmodules of X, thus by Lemma 9.7, P = Mmax holds.

In case (2), for each βj with j ∈ {1, . . . , k} \ {i}, X(βj) ⊆ X \ Y holds, hence X(βj) ∈ P.
Moreover, since (X(βi), d) is not connected, the children of βi are its ρ-mmodules, thus Y and
X(βi) \ Y are mmodules in X(βi). By Proposition 2.13(ii), Y and X(βi) \ Y are also mmodules
in (X, d). Hence by Lemma 9.7, P ∶= Mmax \ {X(βi)} ∪ {Y,X(βj) \ Y }. �

In the case of dwarf ρ-components, we still need to retrieve the maximal mmodule X(βi):
Lemma 6.11. Let (X, d) be a connected Robinson space and {X1, . . . ,Xk} ∶= stablePartition({Y,X\
Y }). Then a ρ-component Y of (X, d) is dwarf if and only if there are distinct and uniquely defined
indices i, j ∈ {1, . . . , k} such that Y = Xi, d(Y,Xj) = ρ and for all h ∈ {1, . . . , k} \ {j}, we have
d(Y,Xh) = d(Xj ,Xh). In that case, Y ∪Xj is a maximal mmodule of (X, d).

26

Proof. Let Y be a dwarf ρ-component. From Proposition 6.10, and using the same notations,
Y = X(γ) and Xj = X(γ) \ Y for some j. Then j has the required properties, since X(γ) is an
mmodule. Conversely, for any index j with those properties, Y ∪Xj is an mmodule. As X(γ) is

the maximum mmodule containing Y , for any j
′
≠ j, Y ∪Xj ′ is not an mmodule, proving that j is

unique. If Y is a giant ρ-component, then either Y is the union of at least 2 maximal mmodules,
in which case i does not exist, or Y is a maximal mmodule, and if j exists, then Y ∪ Xj is an
mmodule, a contradiction. �

Now, we consider the case of non-connected spaces.

Lemma 6.12. Let (X, d) be a non-connected Robinson space. Then any ρ-mmodule S of diameter
at most ρ is also a ρ-component.

Proof. Clearly S is the union of ρ-components, because for any x ∈ S and y ∈ X \ S, d(x, y) = ρ

by definition of ρ-mmodules. Suppose there is a ρ-component C with C ⊊ S. By definition of ρ-
components, for each x ∈ C, y ∈ S \C, we have d(x, y) ≥ ρ. Since diam(S) ≤ ρ, we get d(x, y) = ρ,
whence C is a ρ-component, a contradiction. �

Proposition 6.13. Let (X, d) be a non-connected Robinson space and let C1, . . . , Ck be its ρ-
components. Let I ∶= {i ∈ {1, . . . , k} ∶ Ci is not a ρ-mmodule}. Then exactly one of the following
assertions holds:

(1) ∣I∣ = 0; in this case, Mmax = {C1, . . . , Ck} and there are no large ρ-mmodules.

(2) ∣I∣ ≥ 2; in this case, S0 ∶= ⋃i∈I Ci is a large ρ-mmodule, and Mmax = {Cj ∶ j ∈ {1, . . . , k}\
I} ∪ {S0}. Moreover, the graph H ∶= (I, {ii′ ∶ there are x ∈ Ci, y ∈ Ci′ such that d(x, y) >
ρ}) is connected and bipartite, with bipartition I = I⋆ ∪ I

⋆
, and the maximal mmodules of

S0 are given by stablePartition({S⋆, S⋆}), where S⋆ ∶= ⋃i∈I⋆
Ci and S

⋆
∶= ⋃i∈I⋆ Ci.

Proof. Since (X, d) is non-connected, by Lemma 4.2, each ρ-mmodule is an mmodule, and at most
one ρ-mmodule S0 has diameter greater than ρ. All the ρ-mmodules except S0 are ρ-components
by Lemma 6.12. If there is no such S0, then this immediately leads to case (1).

We may now assume that S0 exists. Then by Lemma 4.6, there is a bipartition S0 = S⋆ ∪ S
⋆
.

By Lemma 4.6(iii), S⋆ and S
⋆
are unions of ρ-components, and S0 = ⋃i∈I Ci. By Lemma 4.3,

Mmax = {Cj ∶ j ∈ {1, . . . , k} \ I} ∪ {S0}. Furthermore, the graph H is connected, because any
connected component is an ρ-mmodule by definition and S0 does not contain a proper ρ-mmodule.
By Lemma 4.6(ii), I⋆ ∪ I

⋆
with I⋆ ∶= {i ∈ I ∶ Ci ⊆ S⋆} and I

⋆
∶= {i ∈ I ∶ Ci ⊆ S

⋆} is the (unique)
bipartition of H.

Suppose that there is a non-trivial mmodule M of S0 with x ∈ M ∩S⋆ ≠ ∅ and y ∈ M ∩S
⋆
≠ ∅.

Let z ∈ S0 \ M , say z ∈ S⋆ \ M . Then ρ ≤ d(z, y) = d(z, x) ≤ ρ by Lemma 4.6(ii) and (iii)
and the fact that M is an mmodule. Also for w ∈ X \ S0, we have d(w, x) = d(w, y) = ρ.
Hence M is a ρ-mmodule of X, a contradiction. Thus, for any maximal mmodule M of S0,
either M ⊆ S⋆ or M ⊆ S

⋆
, hence by Lemma 9.7, the maximum mmodules of S0 are provided by

stablePartition({S⋆, S⋆})). �

Propositions 6.10 and 6.13 can be used to compute the mmodule tree of a Robinson dissimilarity

in optimal O(∣X∣2) time in a top-down way, that is root first then recursively on each child. The
alternative way to compute the mmodule tree of an arbitrary dissimilarity space is to compute the
copoints of a point and to sort them, leading to a root-to-leaf path. Then recurse on all subtrees

attached to that path. This gives an optimal O(∣X∣2)-time algorithm [7]. Our Algorithm 5 is more
complicated, nevertheless, we think that it shed complimentary light on the links between mmodule
trees and the dendrogram of the ultrametric subdominant.

Proposition 6.14. Let (X, d) be a Robinson space, mmoduleTree(X) correctly computes the mmod-
ule tree of X.

27

Algorithm 5. Computes the mmodule tree of (X, d)
mmoduleTree(S)
Input: a Robinson space (X, d), an mmodule S ⊆ X.
Output: The mmodule tree of S

1: if ∣S∣ = 1 then

2: return Leaf x, where {x} = S

3: let C1, . . . , Ck be the ρ-component of S ▷ assume ∣C1∣ ≤ ∣Ci∣ for any i ∈ {1, . . . , k}
4: let J ∶= {i ∈ {1, . . . , k} ∶ Ci is a ρ-mmodule} and I ∶= {1, . . . , k} \ I
5: if I = ∅ then ▷ Proposition 6.13(1)
6: return ∩(mmoduleTree(C1), . . . ,mmoduleTree(Ck))
7: if J = ∅ then

8: let S1, . . . , Sℓ ∶= stablePartition({C1, S \C1}) with S1 ⊆ C1

9: for i ∈ {1, . . . , ℓ} do

10: if for all j ∈ {2, . . . , ℓ} \ {i}, d(S1, Sj) = d(Si, Sj) then

11: let {M1, . . . ,Mℓ−2} = {mmoduleTree(Sj) ∶ j ∈ {2, . . . , ℓ} \ {i}}
12: return ∪(mmoduleTree(S1 ∪ Si),M1, . . . ,Mℓ−2) ▷ Proposition 6.10(2)
13: return ∪(mmoduleTree(S1), . . . ,mmoduleTree(Sℓ)) ▷ Proposition 6.10(1)
14: let {β1, . . . , βk′} ∶= {mmoduleTree(Cj) ∶ j ∈ J}
15: let H = (I, {ij ∶ there is x ∈ Ci, y ∈ Cj , with d(x, y) > ρ})
16: let I = I⋆ ∪ I

⋆
be the unique bipartition of H, S⋆ ∶= ⋃i∈I⋆

Ci and S
⋆
∶= ⋃i∈I⋆ Ci

17: let S1, . . . , Sℓ ∶= stablePartition({S⋆, S⋆})
18: if ℓ = 2 then ▷ Proposition 6.13(2), with ∣I∣ = 2 and d(x, y) constant for x ∈ S⋆, y ∈ S

⋆

19: return ∩(β1, . . . , βk′ ,∩(mmoduleTree(S⋆),mmoduleTree(S⋆))
20: return ∩(β1, . . . , βk′ ,∪(mmoduleTree(S1), . . . ,mmoduleTree(Sℓ))) ▷ Proposition 6.13(2)

Proof. Obviously the return at line 2 is correct. The space (S, d) is not connected precisely when
there is no ρ-mmodule, that is when J = ∅. Thus, the return at line 6 is a direct consequence of
Proposition 6.13(1) as J is non-empty.

If J = ∅, then (S, d) is connected and Proposition 6.10 applies. Deciding whether the ρ-
component C1 is dwarf or giant is done in lines 9 to 12, following Lemma 6.11. Consequently,
the returns at line 12 and 13 are correct by Proposition 6.10.

Otherwise, J ≠ ∅ implies that (S, d) is not connected and Proposition 6.13 applies. As I ≠ ∅

we are in case (1) of Proposition 6.13. If ℓ = 2, notice that we must have {S1, S2} = {S⋆, S⋆}:
S0 = S⋆ ∪ S

⋆
has only two maximal mmodules and thus the root of its mmodule tree is a ∩-node.

This justifies the return at line 19. If ℓ > 2, we follow Proposition 6.13(2), proving that line 20 is
also correct. �

6.3. From the dendrogram Td̂ to the mmodule tree TM . To make Algorithm 5 efficient,
one need to efficiently compute the ρ-components at each recursive step. To this end, we use the

dendrogram Td̂ of the ultrametric subdominant (X, d̂). This is possible since the maximal clusters
of Td̂ correspond to ρ-components.

Lemma 6.15. Let (X, d) be a dissimilarity space, α be an internal node in the dendrogram Td̂,
and β be a child of α. Then X(β) is a p(α)-component of X(α).
Proof. By the definition and construction of Td̂, for any x ∈ X(β) and y ∈ X(α) \X(β) we have

d(x, y) ≥ d̂(x, y) = p(α). Hence X(β) is an union of components C1, . . . , Cℓ of G<p(α)(X(α)). If
X(β) is not a p(α)-component, then ℓ > 1. Let x ∈ C1 and y ∈ X(β) \ C1. Then there is a path

from x to y in X(β) with maximum weight at most p(β) < p(α). This path contains an edge x
′
y
′

28

with x ∈ C1, y ∈ X(β) \ C1. But then d(x′, y′) < p(α), which is impossible. Hence X(β) is a
p(α)-component. �

In order to apply stableTrees (Algorithm 4) to the dendrogram Td̂, we need:

Lemma 6.16. For any dissimilarity space (X, d), the dendrogram Td̂ is coherent.

Proof. Let M be an mmodule, and α be the M -pertinent node in Td̂, and suppose X(α) ≠ M .
Let β1, . . . , βk be the children of α intersecting M (k ≥ 2). By way of contradiction, suppose that
there is i ∈ {1, . . . , k} with X(βi)∩M ≠ ∅ and X(βi) \M ≠ ∅. Since X(βi) is a p(α)-component,
there exists x, y ∈ X(βi) with x ∈ M , y ∉ M and d(x, y) < p(α). Let z ∈ X(βj) for some j ≠ i.
Then d(y, z) ≥ p(α) > d(y, x), hence z ∉ M and M ⊆ X(βi). This contradicts the fact that α is
M -pertinent. �

Theorem 6.17. Using stableTrees as a stable partition algorithm, one can implement mmoduleTree

to run in time O(∣X∣2).
Proof. To prove the theorem, we need to establish that (1) at each recursive call, we can build the
dendrogram of the ultrametric subdominant for that subset; (2) all these computations can be per-
formed efficiently. Consider a call to mmoduleTree(Td̂(S)). Suppose that Td̂(S) = Node(β1, . . . , βk),
and notice that Ci = X(βi) and Td̂(Ci) = βi for all i ∈ {1, . . . , k} by Lemma 6.15.

We start by proving (1). First, we justify the call stablePartition({C1, S \ C1}) in line 8. Td̂(C1)
is available as a child in Td̂(S). Then removing that child, we get a coherent tree T (S \ C1)
(notice that it may not be a dendrogram). Next we prove, through several claims, that all calls to
stablePartition return dendrograms of the ultrametric subdominants of their respective subsets.

Claim 6.18. Let T (Si) be an Si-tree obtained at lines 8 or 17. If diam(Si) ≤ ρ, then Td̂(Si) =

T (Si).
Proof. If T (Si) is a subtree of Td̂(S), then Td̂(Si) = T (Si). Otherwise let T (Si) = Node(β1, . . . , βn)
where β1, . . . , βn define a proper subset of children of a node α in Td̂(S). By the properties of
dendrograms, there exist x ∈ Si and y ∈ X(α) \ Si with d(x, y) = p(α). As Si is a ρ-component,
we deduce p(α) ≥ ρ. Thus α is the root of Td̂(S). Now let x, y ∈ Si be in distinct children of α.
Then d(x, y) ≥ ρ, but also d(x, y) ≤ ρ since diam(Si) ≤ ρ. Consequently, d(x, y) = ρ. Hence any
two children of T (Si) are at the same distance ρ, proving that Td̂(Si) = T (Si). �

Claim 6.19. For j ∈ {1, . . . , ℓ}, let T (Sj) be an Sj-tree obtained at line 8. Then Td̂(Sj) = T (Sj).
Proof. If there is a child γ of the root of TM(S) with X(γ) = Sj, then diam(Sj) ≤ minγ ′ d(Sj, γ

′)
where γ

′
ranges over the other children of the root of TM . Hence diam(Sj) ≤ ρ and the claim

follows by Claim 6.18.
Otherwise, S1 is a dwarf component and Sj is either S1 or Si in line 12. In either case, diam(Sj) ≤

ρ and again Claim 6.18 applies. �

Claim 6.20. For j ∈ {1, . . . , ℓ}, let T (Sj) be an Sj-tree obtained at line 17. Then Td̂(Sj) = T (Sj).
Proof. By Lemma 4.6, diam(S⋆) ≤ ρ and diam(S⋆) ≤ ρ. Hence diam(Sj) ≤ ρ and the claim follows
by Claim 6.18. �

Claims 6.19 and 6.20 imply that almost all recursive calls to mmoduleTree are valid since we
know the dendrogram for each set. It remains to consider the case of S1 ∪ Si in line 12, which
happens when C1 is a dwarf component. Then S1 = C1. If Si is a single ρ-component, then T (Si)
is a single child of the root of Td̂(S) and Td̂(S1 ∪ Si) = Node(T (S1),T (Si)). Otherwise, Si is a
union of ρ-components and T (Si) is a join of several children of the root of Td̂(S), and Td̂(S1∪Si)
is obtained by adding T (S1) as a child to T (Si). Thus, the recursive call mmoduleTree(S1 ∪ Si)
is also valid. We also have to justify the call stablePartition({S⋆, S⋆}) in line 17. Consider S⋆. If

29

∣I⋆∣ = 1, then S⋆ is a ρ-component and thus Td̂(S⋆) = T (Ci) for i ∈ I⋆. Otherwise, by definition of

H, for each i, i
′
∈ I⋆, x ∈ Ci and y ∈ Ci′ , we have d(x, y) ≥ ρ (since Ci and Ci′ are ρ-components)

and d(x, y) ≤ ρ (as, in H, I⋆ is an independent set of vertices). This implies that Td̂(S⋆) is the join
of the T (Ci) for i ∈ I⋆. Similarly, Td̂(S⋆) is the join of T (Ci) for i ∈ I

⋆
. This concludes the proof

of assertion (1).

We now prove the assertion (2) that mmoduleTree(X) can be implemented in O(∣X∣2). First by
Proposition 9.6 the dendrogram Td̂(X) can be computed in O(∣X∣2). Then we analyse the cost of
mmoduleTree(Td̂(S)) without counting the recursive calls, depending on the line of return. Observe

that the cost of lines 3 and 4 is O(∑k
i=1 ∣Ci∣∣S \ Ci∣). We will relate in each case the cost to the

number N of pairs of elements in distinct children of the root of TM(S).
If mmoduleTree(Td̂(S)) returns on line 6 (the case of a non-special ∩-node), then the total cost

is O(∑k
i=1 ∣Ci∣∣S \Ci∣), which is proportional to N . As we will see in the next two cases, this case

can be charged with an additional cost, still proportional to N .
If mmoduleTree(Td̂(S)) returns on line 13 (the case of a ∪-node discovered through a giant

component C1), then the total cost is

O (k

∑
i=1

∣Ci∣∣S \ Ci∣ + ℓ

∑
i=1

∣Si∣∣S \ Si∣)
(counting line 8). The left-hand term is the number of pairs of elements in distinct children of the
root of TM(S). By Lemma 6.9, each component Ci is either dwarf or giant. If Ci is giant, x ∈ Ci

and y ∈ S \ Ci, then x and y are not in the same ρ-component, hence those pairs x, y are counted

in ∑ℓ
i=1 ∣Si∣∣S \ Si∣. Thus, without counting the additional contribution from dwarf components,

we get a cost proportional to N . It remains to count the pairs x, y where x and y are in two
distinct dwarf components that are part of the same Si. In that case TM(Si) = ∪(γ1, . . . , γm)
where X(γ1), . . . ,X(γm) are the dwarf components from that Si. We thus charge the uncounted
cost induced by those dwarf components to the call mmoduleTree(Td̂(Si)) (the charged cost is
proportional to its N value).

If mmoduleTree(Td̂(S)) returns on line 12 (the case of a ∪-node discovered from a dwarf com-
ponent), the analysis is similar to the previous case. Notice that there is an additional cost of
O(∣S1∣∣Si∣) induced in line 8 by the fact that S1 and Si are not mmodules. We charge it to
mmoduleTree(S1 ∪ Si) as S1 is a dwarf component of the mmodule S1 ∪ Si.

If mmoduleTree(Td̂(S)) returns on lines 19 or 20 (the case of a special ∩-node), then the total
cost is

O (k

∑
i=1

∣Ci∣∣S \ Ci∣ +∑
i∈I

∣Ci∣∣(S⋆ ∪ S
⋆) \ Ci∣ + l

∑
i=1

∣Si∣∣(S⋆ ∪ S
⋆) \ Si∣) .

Let i ∈ {1, . . . , k}. If i ∈ J , then Ci = X(βj) for some j ∈ {1, . . . , k′}, that is Ci is the set
induced by some child of TM(S). Otherwise, i ∈ I. If Ci = ⋃i∈L Si for some L ⊂ {1, . . . , ℓ}, then∣Ci∣∣(S⋆ ∪ S

⋆) \Ci∣ ≤ ∑j∈L ∣Sj∣∣(S⋆ ∪ S
⋆) \ Sj∣. Otherwise there is some j ∈ {1, . . . , ℓ} such that

Ci ∩ Sj ≠ ∅ and Sj \ Ci ≠ ∅. We may assume that Sj ⊆ S⋆ (the case Sj ⊆ S
⋆
is similar). Since

diam(S⋆) ≤ ρ, we obtain diam(Sj) ≤ ρ. Thus for any x ∈ Sj ∩ Ci and y ∈ Sj \ Ci, d(x, y) = ρ.
Thus TM(Sj) = ∩(γ1, . . . , γm) with ρ(Sj) = ρ and X(γ1), . . . ,X(γm) are ρ-components of S, one

of them being Ci. That is, Ci is a dwarf component of S⋆ ∪ S
⋆
. Similarly to the two previous

case, we may charge the cost related to the dwarf components to the corresponding recursive call
mmoduleTree(Sj). To conclude that case, we get that the total cost is composed of one term that
is proportional to the number of pairs of elements separated by the current call:

∑
j∈J

∣Cj∣∣S \ Cj∣ + l

∑
i=1

∣Si∣∣S \ Si∣,

30

and another term corresponding to dwarfs components in S⋆ ∪ S
⋆
, that is charged one their re-

spective recursive calls.
Finally, each call incurs a cost proportional to the number of pairs of distinct elements of S that

are not together in a deeper recursive call. Hence each pair of (X
2
) is counted exactly once, thus

the total complexity is O(∣X2∣). �

6.4. Nodes of Td̂ and nodes of TM and TPQ. We conclude this section with a characterization
of nodes of TM and TPQ that correspond to nodes of Td̂.

Lemma 6.21. Let (X, d) be a Robinson space with PQ-tree TPQ and let β be an internal node of
TPQ. Then one of the following assertions holds:

(i) X(β) is a cluster of Td̂,
(ii) β is P-node, β is the child of a Q-node α, and for each child γ of β, X(γ) is a cluster of

Td̂.

Proof. Suppose that X(β) is not a cluster, in particular β is not the root of TPQ, and let α be
its parent node. Let ρ ∶= ρ(X(β)) be the minimum value such that the graph G≤ρ(X(β)) is

connected. Let also C be the minimal cluster containing X(β), and let ρ
′
be the weight of the node

corresponding to C in the vertex representation of Td̂. In particular, min{d(x, z) ∶ x ∈ X(β), z ∈

C \X(β)} ≤ ρ
′
. By Lemma 3.12 this implies ρ ≤ diam(X(β)) ≤ ρ

′
.

If ρ < ρ
′
, then there would be a cluster with value at most ρ containing X(β), contradicting

the minimality of C. Thus ρ = diam(X(β)) = ρ
′
, which implies that Gρ(X(β)) is not connected,

and each of its ρ-components has diameter at most ρ. By Proposition 4.9, β is a P-node, and any
children γ is a ρ-component of X(β).

By way of contradiction, suppose that α is a P-node. By Lemma 3.12(iii), ρ(α) > ρ. As X(α)
is a block, for all x ∈ X(α) and y ∈ X \ X(α), d(x, y) ≥ ρ(α) > ρ. Also, as α is a P-node, for
each x ∈ X(β) and y ∈ X(α) \X(β), d(x, y) = ρ(α) > ρ. But then, X(β) is a cluster of value ρ,
contradiction. Thus α is a Q-node.

Since we proved that any node of the PQ-tree TPQ that does not induce a cluster of Td̂ has a
Q-node parent, we deduce that each child of the P-node β induces a cluster. Thus (ii) is proved. �

Leveraging the translation between PQ-trees and mmodule trees, we get:

Lemma 6.22. Let (X, d) be a Robinson space with mmodule tree TM and β be an internal node of
TM . Then one of the following assertions holds:

(i) X(β) is a cluster of Td̂,
(ii) β is the large child of a ∩-node,
(iii) β is a ∩-node and is the child of a ∪-node, and for each child γ of β, X(γ) is a cluster of

Td̂.

Proof. By Proposition 5.5, either β is the large child of a special node α (that is (ii) holds), or

there is a node β
′
in the PQ-tree TPQ with X(β′) = X(β). In the later case, by Lemma 6.21, either

X(β′) is a cluster (and so is X(β), thus (i) holds), or β′ is a P-node child of a Q-node α
′
. Again,

we assume the later. Then there is a node α in TM with X(α) = X(α′) by Proposition 5.5.

Since X(α) = X(α′), X(β) = X(β′), β′ is a P-node and α
′
a Q-node, by applying Proposition 5.1

to α
′
, we conclude that β is a ∩-node and one of three possibilities happens:

Case 1: α
′
is non-conical, then α is a ∪-node, β is a child of α. Then, as X(β) is not a cluster,

there is another child β
′
of α with d(β, β′) = ρ(β), hence by Lemma 3.12, diam(X(β)) = ρ(β).

This implies that β has no large child, and each of its child is a cluster, thus (iii) holds.

31

Case 2: α
′
is conical, but its apex is not β

′
, then α has a large child γ, γ is a ∪-node or have

arity two, and β is a child of γ. As in the previous case, as X(β) is not a cluster, its diameter is
ρ(β) and each of its child is a cluster, whence (iii) holds.

Case 3: α
′
is conical with apex β

′
, then α is a special ∩-node. Also β

′
cannot be split (otherwise

there would not be a node with leaf set X(β′) in TM), hence β is a child of α. Then for each
x ∈ X(β), y ∉ X(β), d(x, y) ≥ ρ(α) > ρ(β) by Lemma 3.12. Thus X(β) is a cluster, whence
(i) holds. �

7. Translation between copoint partitions and PQ-trees and mmodule trees

In our previous paper [3], the copoints of a point p were at the heart of our divide-and-conquer
recognition algorithm. This is due to the fact that the copoints of p together with {p} define a
partition Cp of X \ {p}. In this section, we provide a correspondence between the copoint partition
Cp and the trees TM and TPQ of a Robinson space (X, d). First, for any dissimilarity space (X, d)
we characterize the copoints of Cp in terms of subtrees of the mmodule tree TM rooted at the nodes
of the unique path Ψ(p) between {p} and the root of TM . This allows us to establish that the total
number of copoints of (X, d) is at most 2∣X∣− 1. Second, we characterize the nodes on the unique
path Υ(p) of the PQ-tree TPQ of a Robinson space (X, d) between the leaf {p} and the root of TPQ.
We also locate the copoints of Cp with respect to the nodes of this path Υ(p) and the p-proximity
order, introduced in [3].

7.1. Translation between Cp and Ψ(p). The next result characterizes the copoints attached at
p in terms of subtrees of TM .

Proposition 7.1. Let (X, d) be a dissimilarity space with mmodule tree TM . For any p ∈ X, the
p-copoints of X are:

(i) X(α) \X(β) for each ∩-node α ∈ Ψ(p) with β be the child of α in Ψ(p),
(ii) X(β) for each ∪-node α ∈ Ψ(p) and each child β of α such that β ∉ Ψ(p)).

Proof. Pick any α ∈ Ψ(p). Let S ∶= X(α)\X(β) if α is a ∩-node with child β ∈ Ψ(p) or S ∶= X(β)
for a child β ∉ Ψ(p) of α if α is a ∪-node. By Proposition 2.15, S is an mmodule. Moreover, also by
Proposition 2.15, any mmodule properly containing S contains X(α) and p, hence S is a p-copoint.

Conversely, let S be a p-copoint, in particular S is an mmodule. By Proposition 2.15, the
following holds:

- either S is the leaf-set of the union of some children of a ∩-node α. Then by maximality of

S, as X(α) is an mmodule, p ∈ X(α). Let S ′ be ⋃{X(β) ∶ β child of α, p ∉ X(β)}. Again
by Proposition 2.15, S

′
is an mmodule, and S ⊆ S

′
, p ∉ S

′
. By maximality of S, S = S

′
.

- or S is the leaf-set of a child β of a ∪-node α. Then by maximality of S, as X(α) is an
mmodule, p ∈ X(α).

This concludes the proof. �

From Lemma 2.17 it follows that any dissimilarity space (X, d) contains at most ∣X∣(∣X∣ − 1)
copoints. In fact, by Proposition 7.1 the number of copoints is always linear in the size of X:

Corollary 7.2. The number of copoints of a dissimilarity space (X, d) is at most 2∣X∣ − 1.

Proof. By Proposition 7.1, each node of the mmodule tree induces at most as many copoints as its
arity. As the sum of arities equals the number of nodes minus one, and each inner node as arity at
least 2, we get the result. �

Since by Proposition 5.6 all inner nodes of the mmodule tree of an ultrametric space are ∩-nodes,
from Proposition 7.1 we obtain the following observation:

Corollary 7.3. The p-copoints of an ultrametric space (X, d) are the sets of the form X(α)\X(β),
where α ∈ Ψ(p) and β is the child of α in Ψ(p).

32

7.2. Translation between Cp and Υ(p). We already know by Theorem 3.7 that for each node α
of the PQ-tree, X(α) is an mmodule. Next we determine which mmodules do not correspond to
nodes of TPQ.

Lemma 7.4. Let (X, d) be a Robinson space and TPQ its PQ-tree. Let M ⊆ X. Then M is an
mmodule of (X, d) if and only if

(i) either there is a node α ∈ TPQ such that M = X(α),
(ii) or there is a P-node P (β1, . . . , βk) ∈ TPQ and I ⊂ {1, . . . , k} non-empty such that M =

⋃i∈I X(βi),
(iii) or there is a δ-conical Q-node α = Q(γ1, . . . , γl) ∈ TPQ, with apex child γj, and M =

X(α) \X(γj),
(iv) or there is a δ-conical Q-node α = Q(γ1, . . . , γl) ∈ TPQ, with split child γj, and a subset B

of children of γj , such that M = X(α) \⋃β∈B X(β).
Proof. By Proposition 2.15, either (a) there is a node β in TM with M = X(β), or (b) there is a
∩-node α = ∩(β1, . . . , βk) and I ⊊ {1, . . . , k}, ∣I∣ ≥ 2 such that M = ⋃i∈I X(βi).

In case (a), suppose (i) does not hold, then by Proposition 5.5 β is a large child of a special

Q-node α. By Lemma 3.12, α is not a large child itself, hence there is a P-node α
′
in TPQ with

X(α) = X(α′). By Proposition 4.10, α
′
= Q(γ1, . . . , γi−1, β′, γi, . . . , γℓ), with X(α)\X(β′) = X(β),

hence (iii) holds.

In case (b), α is not a large child because k = 2, hence by Proposition 5.5 there is a P-node α
′

in TPQ with X(α) = X(α′). If α has no split child, then by Proposition 4.9, for each βi, there is

a child β
′

i of α with X(βi) = X(β′i), and (ii) follows. Thus we may assume that there is a split

child, say βk. By Proposition 4.10, α
′
= Q(γ1, . . . , γj−1, β′, γj , . . . , γℓ) with X(α′) \X(β′) = X(βk)

and β
′
= P (γ1, . . . , γk−1) such that for each i ∈ {1, . . . , k − 1}, X(γi) = X(βi). If k ∈ I, (iv) holds,

while if k ∉ I, (iii) holds on β
′
. �

Our next result establishes a correspondence between the copoints of Cp and the nodes of Υ(p).
Theorem 7.5. Let (X, d) be a Robinson space. For any p ∈ X, the copoints of Cp are:

(1) X(α) \X(β) for each P-node α ∈ Υ(p) with child β ∈ Υ(p),
(2) X(β) for each Q-node α ∈ Υ(P) and each child β ∉ Υ(p), when, if α is conical, p is not

in the apex child of α,
(3) X(α) \X(β) for each δ-conical Q-node α ∈ Υ(p) with standard apex child β ∈ Υ(p), and

Gδ(X(β)) is connected,
(4) X(α) \X(γ) for each δ-conical Q-node α ∈ Υ(p) with split child β ∈ Υ(p), and γ ∈ Υ(p)

child of β.

Proof. Let M be a p-copoint. Then M is an mmodule and by Lemma 7.4 one of the four following
cases occurs.

(i) There is a node α in TPQ such that M = X(α). As p ∉ X(α), α is not the root of TPQ, and
let γ be its parent. By maximality of M , p ∈ X(γ). By Lemma 7.4(ii) γ is not a P-node,

hence is a Q-node. Suppose that it is conical and p is in an apex child α
′
of γ. Then

X(γ) \X(α′) is an mmodule containing X(α) and not p, contradicting the maximality of
M . Thus case (2) applies.

(ii) There is a node α = P (β1, . . . , βk) in TPQ and I ⊊ {1, . . . , k} such that M = ⋃i∈I X(βi).
By maximality of M , p ∈ X(α) and ∣I∣ = k − 1, hence M = X(α) \X(βi) for the unique
i ∈ {1, . . . , k} \ I, p ∈ X(βi) and case (1) applies.

(iii) There is a δ-conical Q-node α = Q(β1, . . . , βk), with βi apex, and M = X(α) \X(β). Then
as X(α) is an mmodule, by maximality of M , p ∈ X(α) and thus p ∈ X(βi). Suppose that

33

Gδ(X(βi)) is not connected, let S be one of its δ-mmodule not containing p. Then M ∪ S

is an mmodule not containing p, contradicting the maximality of p. Thus case (3) applies.
(iv) There is a δ-conical Q-node α = Q(β1, . . . , βk) with an apex child βi such that the graph

Gδ(X(βi)) is not connected, and there is a subset Γ of children of βi such that M =

X(α) \ ⋃γ∈ΓX(γ). As X(α) is an mmodule, by maximality of M , p ∈ X(α) hence

p ∈ X(γ⋆) for some γ
⋆
∈ Γ. Then by maximality of M , Γ = {γ⋆}, and case (4) applies.

Conversely, let M be a set as in one of the cases (1) to (4). Then by Lemma 7.4, M is an
mmodule. Moreover, any mmodule properly containing M must contain X(α), hence contains p,
proving that M is a p-copoint. �

7.3. Υ(p) and the p-proximity order. We recall the definition of p-proximity orders of Robinson
spaces, which was one of the ingredients of our recognition algorithm in [3]:

Definition 7.6 (p-Proximity order [3]). Let (X, d) be a Robinson space with a compatible order
< and let p be a point of X. A p-proximity order (relatively to <) is a total order ≺ on Cp such

that if C,C
′
∈ Cp and C ≺ C

′
, then:

(PO1) d(C, p) ≤ d(C ′
, p);

(PO2) if X is sorted according to <, then no point of C
′
is located between p and a point of C.

A p-proximity order exists for every compatible order and can be efficiently computed, even
without the knowledge of the compatible order < [3]. Actually, in [3, Algorithm 6.1] we constructed
a universal compatible order: an order ≺ on Cp which is a p-proximity order relatively to any
compatible order <∈ Π(X, d); in what follows we will consider only universal p-proximity orders.
Given a universal p-proximity order ≺, suppose that the copoints of Cp are ordered in the following
way: {p} ∶= C0 ≺ C1 ≺ . . . ≺ Ck.

For any Ci we denote by [C0, Ci] the points in the copoints between C0 and Ci in the ordered set(Cp,≺): [C0, Ci] ∶= C0∪ . . .∪Ci. We call [C0, Ci] an initial interval of ≺. Since ≺ is a p-proximity
order for all compatible orders, any initial interval [C0, Ci] is a block.

Next, we will characterize the copoints C ∈ Cp for which the initial interval [C0, C] is also
an mmodule. Since the nodes of Υ(p) are exactly the subsets of X which are simultaneously
mmodules and blocks and also contain p, these intervals will correspond to nodes of Υ(p). Let
Υ(p) = (α0, α1, . . . , αm), where α0 correspond to p and αm corresponds to the root of TPQ. Then{p} = X(α0) ⊊ X(α1) ⊊ . . . ⊊ X(αm) = X is a chain of subsets ofX which are mmodules and blocks
containing p. However, in view of Theorem 7.5, only those X(αi) where αi is standard correspond
to initial intervals of ≺. We now formalize these ideas, starting with a definition motivated by the
previous discussion.

Definition 7.7 (frontier). A copoint C is a frontier if [C0, C] is an mmodule.

We establish the correspondence between frontiers and standard nodes of Υ(p).
Theorem 7.8. Let (X, d) be a Robinson space, p a point of X, and S ⊆ X with p ∈ S. Let ≺ be a
universal p-proximity order. Then there is a standard node α ∈ Υ(p) with X(α) = S if and only if
there exists a frontier C ∈ Cp with [C0, C] = S.

Proof. Let α ∈ Υ(p) be a standard node. By Theorem 7.5, each copoint intersecting X(α) is

contained in X(α). Let Cp(α) be the set of copoints contained in X(α). Let C
′
∈ Cp(α) and

C
′′
∈ Cp \ Cp(α), and suppose by way of contradiction that C

′′
≺ C

′
. Consider a compatible order

<. Let x
′
∈ C

′
and x

′′
∈ C

′′
. We may assume (up to reversal of <) that p < x

′′
.

As X(α) is a block by Theorem 3.7, x
′′
is not between p and x

′
in <, hence x

′
< x

′′
. Moreover,

≺ being a p-proximity order, by (PO2) and C
′′
≺ C

′
, x

′
is not between p and x

′′
in <, hence

34

x
′
< p < x

′′
. Then because X(α) is a block, by Lemma 3.5, <←−−−−

X(α) is a compatible order, with

p <←−−−−
X(α) x′ <←−−−−

X(α) x′′, in contradiction with the fact that ≺ is a universal p-proximity order. Thus,

if C is the maximum element in Cp(α) for ≺, then X(α) = [C0, C] holds.
Conversely, let C ∈ Cp be a frontier, meaning by definition that [C,Cp] is an mmodule and a

block. By Theorem 3.7, there is a node α in TPQ with X(α) = [C0, C]. Clearly α ∈ Υ(p). Suppose
by contradiction that α is not standard, i.e. α is a split node, child of a δ-conical node β. Let γ

be the child of α with p ∈ X(γ). Then by Theorem 7.5, X(β) \ X(γ) is a p-copoint intersecting
C, but the p-copoints are disjoint, hence this is a contradiction. �

The algorithm from [7] can be rephrased and applied to build the mmodule tree over a dissimi-
larity space. Recall that it is based on the partition into p-copoints and then building the path of
the mmodule tree from p to the root. Our understanding of mmodules and of PQ-trees together
with the algorithm from [3] lead to an alternative approach to the construction of the PQ-tree,
which also provides the orders of the children of Q-nodes. Toward this goal, we first characterize
the frontiers corresponding to each kind of nodes of the PQ-tree: P-node, non-conical Q-node, or
conical Q-node with or without a split child.

Let (X, d) be a Robinson space, p ∈ X, and C1, . . . , Ck be the p-copoints, and let ≺ be a p-
proximity order on Cp. We assume that {p} = C0 ≺ C1 ≺ . . . ≺ Ck. Let i ∈ {1, . . . , k}. By

definition, Ci is a frontier if and only if for each j ∈ {1, . . . , i} and each j
′
∈ {i + 1, . . . , n},

we have d(p,Cj ′) = d(Cj , Cj ′). This allows to determine all the frontiers in time O(k2): for

each j
′
∈ {1, . . . , k}, let j ∈ {0, . . . , j′} be maximum such that d(p,Cj ′) = d(Cj , Cj ′) and mark

Cj+1, . . . , Cj ′−1 as non-frontier. Then all non-marked copoints are frontiers.
Once we know that Ci is a frontier, let αi ∈ Υ(p) be the node with X(αi) = [C0, Ci], and we

can determine the root of αi, using Theorem 7.5.

(1) If i > 2 and Ci−1 is not a frontier, then αi is a Q-node. Let j ∈ {1, . . . , i − 1} be maximum
with Cj a frontier (or j = 0 if Ci is the first frontier). Then αj,TPQ(Cj+1), . . . ,TPQ(Ci) are the
children of αi. Indeed those non-frontier copoints correspond to the case (2) in Theorem 7.5. If αi

is conical, then p is not in its apex child.
(2) Else, αi is either a P-node, a conical Q-node with αi−1 apex and not split, or a conical Q-node
with split child β and αi−1 a child of β. Let δ = d(p,Ci), in any of these cases Gδ([C0, Ci]) is not
connected, let K1, . . . ,Km be its connected component, with K1 having the largest diameter.

(2.1) If diam(K1) ≤ δ, there is no large component, hence αi is a P-node P (β1, . . . , βl), and each
component corresponds to a child of αi by Proposition 4.9. In that case, αi−1 is the child βj
of αi containing p, hence exactly one of the following cases hold:
(2.1.1) either l > 2 and TPQ(Ck) = P (β1, . . . , βj−1, βj+1, . . . , βl);
(2.1.2) or l = 2 and TPQ(Ck) = β3−j .
In both cases, diam(Ck) ≤ δ.

(2.2) Else if m = 2, then, αi is a δ-conical Q-node whose apex child αi−1 is not split by
Proposition 4.10. In this case, Ck = X(αi) \X(αi−1), and one of the following cases occurs:
(2.2.1) either TPQ(Ck) = P (β1, β2) and then αi = Q(β1, αi−1, β2);
(2.2.2) or TPQ(Ck) = Q(β1, . . . , βl), and there is j ∈ {2, . . . , l} with

αi = Q(β1, . . . , βj−1, αi−1, βj , . . . , βk);
In both cases, diam(Ck) > δ.

(2.3) Else, also by Proposition 4.10, m > 2 and αi is a δ-conical Q-node with a split child β. The
children of β are in one-to-one correspondence with the components K2, . . . ,Km, one of them
being αi−1. In that case, TPQ(Ck) = Q(β1, . . . , βl) with apex child βj , diam(Ck) > δ, and one
of the following cases hold:
(2.3.1) either βj is a split child, that is βj = P (γ1, . . . , γn) with d(X(γ1),X(γn)) = δ, then

αi = Q(β1, . . . , βj−1, Q(γ1, . . . , γn, αi−1), βj+1, . . . , βk);

35

Algorithm 6. Computes the PQ-tree of a Robinson space (X, d) using the copoints
attached at some point p.

pqTree2(S)
Input: A Robinson space (X, d) (implicit), a set S ⊆ X.
Output: TPQ(S) the PQ-tree of (S, d).
1: let p ∈ S

2: if ∣S∣ = 1 then

3: return Leaf p
4: let C0 = {p}, C1, . . . , Ck = stablePartition({p}, S \ {p}) ▷ with C0 ≺ C1 ≺ . . . ≺ Ck

5: return copointsToPqTree(p,C1, . . . , Ck)
copointsToPqTree(p,C1, . . . , Ck)
6: let (L, i,R) ∶= nextFrontier(p,C1, . . . , Ck)
7: let Tp ∶= copointsToPqTree(p,C1, . . . , Ci) if i > 0, Tp = Leaf p if i = 0
8: if i < k − 1 then

9: let [β1, . . . , βl] = map(pqTree2, L) ++ [Tp] ++map(pqTree2, R)
10: return Q(β1, . . . , βl) ▷ Case (1)
11: let α ∶= pqTree2(Ck), δ ∶= d(p,Ck), and D = diam(Ck) ▷ Ck−1 is a frontier
12: match α with

13: case P (β1, . . . , βl) with D = δ: ▷ Case (2.1.1)
14: return P (β1, . . . , βl, Tp)
15: case P (β1, . . . , βl) with D < δ or Q(β1, . . . , βl) with D ≤ δ: ▷ Case (2.1.2)
16: return P (α, Tp)
17: case P (β1, β2) with D > δ: ▷ Case (2.2.1)
18: return Q(β1, Tp, β2)
19: case Q(β1, . . . , βl) with D > δ:

20: if α is δ-conical with split child βj = P (γ1, . . . , γn) then ▷ Case (2.3.1)
21: return Q(β1, . . . , βj−1, P (γ1, . . . , γn, Tp), βj+1, . . . , βl)
22: else if α is δ-conical with standard apex child βj then ▷ Case (2.3.2)
23: return Q(β1, . . . , βj−1, P (βj , Tp), βj+1, . . . , βl) ▷ New split child
24: else ▷ Case (2.2.2)
25: let (j, j + 1) be an admissible hole in α

26: return Q(β1, . . . , βj , Tp, βj+1, . . . , βl) ▷ New apex child

nextFrontier(p,C1, . . . , Ck)
Input: A Robinson space (X, d) (implicit), p ∈ X and C1 ≺ C2 ≺ . . . ≺ Ck the p-copoints with ≺

a universal p-proximity order.
Output: (L, i,R) where i < k is maximum such that Ci is a frontier (or i = 0 if there is no

such frontier), L ++R contains Ci+1, . . . , Ck and there is a compatible order such that
L ++ [{p}]++R is increasing.

27: let L ∶= [], R ∶= [Ck], i ∶= k and l ∶= k

28: while l ≥ i do

29: for j ∶= i − 1 to 1 do

30: if (d(Cj , Cl) < d(p,Cl) and Cl ∈ L) or (d(Cj , Cl) > d(p,Cl) and Cl ∈ R) then
31: L ← Cj ⋅ L, R ← [Cj+1, . . . , Ci−1]++R, and i ← j

32: if (d(Cj , Cl) < d(p,Cl) and Cl ∈ R) or (d(Cj , Cl) > d(p,Cl) and Cl ∈ L) then
33: R ← Cj ⋅R, L ← [Cj+1, . . . , Ci−1]++ L, and i ← j

34: l ← l − 1
35: return (reverse(L), i − 1, R)

36

(2.3.2) or βj is standard, then αi = Q(β1, . . . , βj−1, P (βj , αi−1), βj+1, . . . , βl).
This leads to Algorithm 6, that builds the PQ-tree from the p-copoints. We use the notation[e1, . . . , en] for a list or sequence of n elements; [] denotes the empty list. The append operation

on list is denoted ++, while ⋅ is the insert first operation; thus [e1, . . . , en] ++ [f1, . . . , fp] = e1 ⋅([e2, . . . , en] ++ [f1, . . . , fp]). We also use the map operation, defined by map(f, [e1, . . . , en]) =[f(e1), . . . , f(en)]. Applying the operation ⋅ takes constant-time on single-linked list, and we
assume that ++ and map are implemented as linear-time operations.

Algorithm 6 builds the p-copoints using the stable partition algorithm from [3, Algorithm 6.1],
which returns the copoints in a universal p-proximity order. Then it builds recursively the PQ-
tree TPQ(Ck), and deduce TPQ(X) from the previous analysis. The case analysis presented above
justifies procedure copointsToPqTree. Algorithm 6 also relies on the procedure nextFrontier which
finds the last frontier Ci before Ck and sorts the children of the root when this root is a Q-
node. Those children are given by a permutation of the sequence provided by the p-proximity
order [C0, Ci], Ci+1, . . . , Ck. The procedure nextFrontier builds a compatible pre-order from this p-
proximity order, by using the inner instructions of the main loop of [3, Algorithm 6.2]. Consequently
the correctness of nextFrontier can be derived from the correctness of the construction in [3] of the
compatible order from the p-proximity order.

Algorithm 6 can be implemented in O(∣X∣2) using [3, Algorithm 6.1] to compute the stable
partition, and [3, Algorithm 4.1] to find the admissible hole at line 25. The analysis follows the
same arguments as in [3, Theorem 7.2]. Therefore we can state:

Theorem 7.9. Given a Robinson space (X, d), Algorithm 6 computes TPQ(X) in time O(∣X∣2).
7.4. Copoints and frontiers in ultrametrics. We end this section with a characterization of
ultrametric spaces in terms of copoints and frontiers:

Proposition 7.10. A dissimilarity space (X, d) is ultrametric if and only if for any p ∈ X and
any p-copoint C, C is a frontier and diam(C) ≤ d(p,C).
Proof. Let p ∈ X and Co ∶= {p} ≺ C1 ≺ . . . ≺ Ck be the p-copoints in increasing universal
p-proximity order. Let Υ(p) = {α0, α1, . . . , αk′}, sorted by decreasing depth; α0 = Leaf p and
αk′ = TPQ(X).

Suppose that (X, d) is ultrametric. By Proposition 3.13, TPQ(X) contains only P-nodes; thus

by Theorem 7.5, k = k
′
and Ci = X(αi) \X(αi−1) for all i ∈ {1, . . . , k}. As [C0, Ci] = X(αi), by

Theorem 3.7 it is an mmodule, hence Ci is a frontier. Moreover, for each child β of αi distinct
from αi−1, X(β) is a block and d(p, β) = d(p,Ci) = ρ(αi), hence diam(β) ≤ ρ(αi) and thus
diam(Ci) ≤ d(p,Ci).

Conversely, suppose that for each i ∈ {1, . . . , k}, Ci is a frontier with diam(Ci) ≤ d(p,Ci). By

Theorem 7.8, k = k
′
and X(αi) = [C0, Ci] for each i ∈ {1, . . . , k}. Moreover, as Ci−1 is a frontier

and diam(Ci) ≤ d(p,Ci), one of Cases (2.1.1) and (2.1.2) applies. In any case, this implies that αi

is a P-node. Therefore all nodes in the path from p to the root are P-nodes. As this is true for any
p ∈ X, all internal nodes of TPQ(X) are P-nodes, thus by Proposition 3.13 (X, d) is ultrametric. �

8. Conclusion

Our paper establishes a cryptomorphism between the PQ-tree TPQ and the mmodule-tree TM of
a Robinson space (X, d). We show how to derive TM from TPQ and, vice-versa, how to construct

TPQ from TM . We also present optimal O(∣X∣2) time algorithms for constructing the TPQ (without
ordering the children of Q-nodes) and TM . Our proofs and algorithms use two technical ingredients:
the δ-graph Gδ of (X, d) with the properties of its connected components and the dendrogram Td̂ of

the ultrametric subdominant d̂ of (X, d). We also show how to construct in O(∣X∣2) the PQ-tree
TPQ with the correct ordering of the children of Q-nodes from the copoint partitions and frontiers

37

of (X, d); this algorithm is based on the concept of universal p-proximity order and the construction
from this order of a compatibility order presented in our previous paper [3].

Our O(∣X∣2) time algorithm for constructing the PQ-tree TPQ of a Robinson space (X, d) is

simpler than the algorithm of [13] which also constructs TPQ in O(∣X∣2) time in order to enumerate
all compatible orders of (X, d). At the difference of [13], our algorithm does not use the quite
complex algorithm of Booth and Lueker [2] as a subroutine. On the other hand, our top-to-bottom

O(∣X∣2) time algorithm for constructing the mmodule tree TM is more involved than the algorithm
of [7]. Nevertheless, it uses some surprising links between the trees TPQ and TM on the one hand
and the dendrogram Td̂ on the other hand.

Acknowledgements

This research was supported in part by ANR project DISTANCIA (ANR-17-CE40-0015) and
has received funding from Excellence Initiative of Aix-Marseille - A*MIDEX (Archimedes Institute
AMX-19-IET-009), a French “Investissements d’Avenir” Programme.

References

[1] J. E. Atkins, E. G. Boman, and B. Hendrickson, A spectral algorithm for seriation and the consecutive ones

problem, SIAM J. Comput., 28 (1998), pp. 297–310.
[2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity

using PQ-tree algorithms, J. Comput. Syst. Sci., 13 (1976), pp. 335–379.
[3] M. Carmona, V. Chepoi, G. Naves, and P. Préa, Modules in robinson spaces, 2023. submitted.
[4] F. Critchley and B. Fichet, The partial order by inclusion of the principal classes of dissimilarity on a finite

set, and some of their basic properties, in Classification and Dissimilarity Analysis, Springer, 1994, pp. 5–65.
[5] E. Diday, Orders and overlapping clusters in pyramids., in Multidimensional Data Analysis, J. e. a. de Leeuw,

ed., DSWO Press, Leiden, 1986.
[6] C. Durand and B. Fichet, One-to-one correspondences in pyramidal representation: A unified approach., in

Conf. of IFCS, 1987, pp. 85–90.

[7] A. Ehrenfeucht, H. N. Gabow, R. M. McConnell, and S. Sullivan, An O(n2) divide-and-conquer algo-

rithm for the prime tree decomposition of two-structures and modular decomposition of graphs, J. Algorithms, 16
(1994), pp. 283–294.

[8] B. Everitt, Cluster analysis, Wiley, 2011.
[9] D. R. Fulkerson, Flow networks and combinatorial operations research, The American Mathematical Monthly,

73 (1966), pp. 115–138.
[10] J. Gower and G. Ross, Minimum spanning trees and single linkage cluster analysis, Journal of the Royal

Statistical Society, Series C, 18 (1969), pp. 54–64.
[11] G. P. Huet, The zipper, J. Funct. Program., 7 (1997), pp. 549–554.
[12] B. Mirkin and S. Rodin, Graphs and Genes, Springer, 1984.
[13] P. Préa and D. Fortin, An optimal algorithm to recognize Robinsonian dissimilarities, J. Classif., 31 (2014),

pp. 351–385.
[14] W. S. Robinson, A method for chronologically ordering archaeological deposits, Amer. Antiq., 16 (1951), pp. 293–

301.
[15] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, vol. 24, Springer, 2003.
[16] C. Semple and M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.
[17] M. Seston, Dissimilarités de Robinson: algorithmes de reconnaissance et d’approximation, PhD thesis, Univer-

sité de la Méditerranée, Aix-Marseille 2, 2008.

9. Appendices

9.1. Construction of the subdominant ultrametrics. In this subsection we show how to con-
struct the dendrogram Td̂ of the ultrametric space (X, d̂); recall that d̂ is the subdominant ultra-

metric, i.e., the largest ultrametric such that d̂(x, y) ≤ d(x, y) for any x, y ∈ X. We can construct
Td̂ in the following iterative way (which seems us to be new): when using Prim’s algorithm to
compute the minimum spanning tree T of (X, d), one can build Td̂ by inserting each vertex in Td̂
at the moment when it is visited, leading to Algorithm 7.

38

Algorithm 7. Computes the dendrogram Td̂ of the subdominant ultrametric of a
dissimilarity space (X, d).

dendrogram(X, d)
Input: A dissimilarity space (X, d)
Output: The dendrogram Td̂ of the subdominant ultrametric d̂ of (X, d)
1: let s ∈ X

2: let Td̂ ∶= Leaf s
3: let p(u) ∶= +∞ for all u ∈ X \ {s}
4: propagate(p, s)
5: while there is an unvisited vertex do

6: let u be an unvisited vertex with p(u) minimum
7: u is now visited
8: Td̂ ← insert(u, p(u),Td̂)
9: propagate(p, u)

10: return Td̂

propagate(p, u)
11: for v ∈ X do

12: if v is unvisited then

13: p(v) ← min{p(v), d(u, v)}
insert(u, ρ, T)
Input: A dissimilarity space (X, d) (implicit), a dendrogram T on S ⊆ X obtained at some step

of dendrogram(X, d), u ∈ X \ S minimizing minx∈S d(u, x), and ρ ∶= min{d(u, x) ∶ x ∈ S}
Output: A dendrogram on S ∪ {u}
14: match T with

15: case Leaf x:
16: return Node(ρ, [Leaf u,Leaf x])
17: case Node(ρ′, children) when ρ

′
< ρ:

18: return Node(ρ, [Leaf u, T])
19: case Node(ρ′, children) when ρ

′
= ρ:

20: return Node(ρ,Leaf u ∶ children)
21: case Node(ρ′, child ∶ children) when ρ

′
> ρ:

22: return Node(ρ′, insert(u, ρ, child) ∶ children)
This algorithm has a pretty visualization that we explain before giving a formal proof. It builds

a diagram where each point is a column, sorted left-to-right in visiting order (in the diagram, the
order of the leaves is mirrored from that of the tree). Each point u casts a vertical line upward,
that bends by a right angle at height p(u) to join the rest of the diagram (the vertical line from the
source s does not bend). This is illustrated in Figure 7, where the diagram for the dissimilarity from
Figure 2 is given. This diagram is topologically equivalent to the dendrogram, given in Figure 8.
The insert procedure traverses down the leftmost branch of the tree, until finding the correct height
at which the new leaf is added.

In order to analyse the algorithm, recall that d̂(x, y) is the minimum over all (x, y)-paths of the
maximum weight of the edges of that path. This is known as the bottleneck shortest path, for which
a good characterization is well-known (see [15, Theorem 8.17] for instance). In our context, that
good characterization is:

39

D 10 8 6 3 7 1 9 4 12 2 11 5

10 0 2 6 8 6 8 2 8 2 8 2 6
8 0 6 8 6 8 1 8 3 8 2 6
6 0 5 1 5 6 5 6 5 6 1
3 0 5 2 8 2 8 1 8 5
7 0 5 6 5 6 5 6 1
1 0 8 3 8 2 8 5
9 0 8 2 8 2 6
4 0 8 2 8 5
12 0 8 2 6
2 0 8 5
11 0 6
5 0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

5

6

Figure 7. The dissimilarity matrix from Figure 2 on the left, the diagram built to
illustrate Algorithm 7 on the right. The rows and columns of the matrix are shuffled
to avoid masking some of the work of the algorithm.

Theorem 9.1 ([9]). Let (X, d) be a dissimilarity space and d̂ be its ultrametric subdominant. Then
for all distinct x, y ∈ X,

d̂(x, y) = min{max
uv∈P

d(u, v) ∶ P is an (x, y)-path} = max{ min
u∈S,v∈X\S d(u, v) ∶ S ⊂ X,x ∈ S, y ∉ S}.

Let the points be sorted in visiting order, x < y means that x is visited before y. We let
p
⋆
∶ X → R≥0 denote the final values of p, taking p

⋆(s) = +∞. We prove by induction that at the

end of each iteration, for all visited x, y, d̂(x, y) is the weight of the lowest common ancestor of x
and y in Td̂. Also let Sv ∶= {x ∈ X ∶ v < x} be the set of points unvisited after the iteration in
which u = v.

Claim 9.2. Let v ∈ X. For each x ∈ Sv and y ∈ X \ Sv, d(x, y) ≥ p
⋆(v).

Proof. Consider the iteration for which u = v. Then by choice of v, p(v) is minimum, in particular
p(v) ≤ p(y) ≤ d(x, y). As v is now visited, p(v) = p

⋆(v), and the claim follows. �

We consider an iteration of the main loop in dendrogram, when vertex u is visited; let u ∈ X \{s}.
Let w be the maximum vertex (in visiting order) with w < u and p(w) > p

⋆(u) (the column for w
is the one to which u is attached).

Claim 9.3. There exists v ∈ X with w ≤ v < u and d(u, v) = p
⋆(u).

Proof. There exists v ∈ X such that d(u, v) = p
⋆(u) by definition of p and v < u. Suppose by

contradiction that v ≤ w, then during the iteration when w is visited, p(u) = p
⋆(u) < p

⋆(w),
contradicting the choice of w during that iteration. �

Claim 9.4. For all x ∈ X with w ≤ x < u, d̂(x, u) = p
⋆(u).

Proof. By Claim 9.2 and Theorem 9.1, d̂(u, x) ≥ p
⋆(u). Let v be the vertex from Claim 9.3. Then

d̂(u, x) ≤ max{d̂(u, v), d̂(v, x)} = max{p⋆(u), d̂(v, x)}. By induction, d̂(v, x) is the height of the
lowest common ancestor of v and x, that cannot be more than p

⋆(u) as by construction the part
of the diagram between w and u is below p

⋆(u). The claim follows. �

Claim 9.5. If w ≠ s, then for all x ∈ X with x < w, we have d̂(x, u) = d̂(x,w).
Proof. There exists z ≤ w with p

⋆(z) = d̂(x,w) by construction of p. Then by Claim 9.2,

mint<z≤y d(t, y) = p
⋆(z), thus by Theorem 9.1, d̂(x, u) ≥ p

⋆(z) = d̂(x,w). On the other hand,

d̂(x, u) ≤ max{d̂(x,w), d̂(w, u)} = d̂(x,w), proving the claim. �

40

Together, Claims 9.4 and 9.5 proves that Td̂ is correctly computed. As for the complexity,
observe that dendrogram, when removing the lines about Td̂, is exactly Prim’s algorithm to compute
a minimum spanning tree (except that we compute neither the tree nor the predecessor of each

vertex in the tree). Moreover the time spent to build Td̂ is O(∣X∣2), as each of the ∣X∣ insertions
requires at most O(∣X∣) operations (that part could be optimized to O(∣X∣) by using a zipper [11],
thus avoiding going back to the root at each insertion). Therefore we have proved:

Proposition 9.6. Let (X, d) be a dissimilarity space. Then dendrogram(X, d) computes Td̂(X) in

time O(∣X∣2).

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1

2 2

5

6

1 2 3 4 5 6 7 8 9 10 11 12

1

2

5

6

Figure 8. The dendrogram associated to Figure 7, with the tree representation on
the left (actually the mirror of the tree returned by Algorithm 7), and the more
traditional dendrogram representation on the right.

9.2. Stable partition algorithm. In this subsection, we present the algorithm which refines any
partition to a stable partition.

Lemma 9.7. Let (X, d) be a dissimilarity space, S ⊆ X, and P a partition of S. Then the partition
stablePartition(P) consists of maximal by inclusion mmodules of S contained in a class of P.

Proof. Let M ∈ stablePartition(P). By correction of Algorithm 8, M is an mmodule, and since
stablePartition(P) is a refinement of P, there is P ∈ P such that M ⊆ P . Conversely, let M be a
maximal mmodule of S contained in some class of P. Since for any z ∈ S \M and any x, y ∈ M ,
we have d(x, z) = d(y, z), one can check that Algorithm 8 cannot separate x from y, that is there
is a set P ∈ stablePartition(P) such that M ⊆ P . By maximality of M , we get M = P , concluding
the proof of the lemma. �

41

Algorithm 8. Computes the refinement of a partition of (X, d) into a stable partition.

stablePartition(P)
Input: a dissimilarity space (X, d) (implicit), a partition P ∶= {S1, . . . , Sk} of X.

Output: a partition P
′
of X that refines P and such that each part M ∈ P

′
is an mmodule.

1: for i ∈ {1, . . . , k} do

2: yield from refinePart(Si,X \ Si)
refinePart(B,Z(B))
Input: a dissimilarity space (X, d) (implicit), a class B ⊆ X and a set Z(B) ⊆ X \B.
Output: a partition {B1, B2, . . . , Bk} of B.
2: if Z(B) = ∅ then

3: return {B}
4: let q ∈ Z(B), ▷ choose q to be the first element of Z(B)
5: let {B1, . . . , Bm} = refine(q, S) ▷ ignore the order of the Bis
6: for i ∈ {1, . . . ,m} do

7: yield from refinePart(Bi, concatenate(B1, . . . , Bi−1, Bi+1, . . . , Bm, Z(B) \ {q}))
refine(q, S)
Input: a dissimilarity space (X, d) (implicit), a point q ∈ X, a subset S ⊆ X.
Output: an ordered partition of S, by increasing distances from q.
9: let T be an empty balanced binary tree, with keys in N

10: for x ∈ S do

11: if ¬containsKey(T, d(q, x)) then

12: insert(T, d(q, x), [])
13: insert(T, d(q, x), x ⋅ get(T, d(q, x)))
14: return values(T)

	1. Introduction
	2. Preliminaries
	2.1. Robinson dissimilarities
	2.2. X-trees
	2.3. Ultrametrics
	2.4. PQ-trees
	2.5. Mmodules and copoints
	2.6. Examples

	3. Represented orders and nodes of a PQ-tree
	3.1. Represented orders
	3.2. Nodes of a PQ-tree
	3.3. Distances and the PQ-tree
	3.4. Dendrograms and PQ-trees for ultrametrics

	4. The graph Gd and the construction of the PQ-tree
	4.1. The graph Gd and d-mmodules
	4.2. Construction of the PQ-tree

	5. Translation between PQ-trees and mmodule trees
	5.1. The translation between TPQ and TM
	5.2. From TPQ to TM
	5.3. From TM to TPQ
	5.4. Mmodules trees of ultrametrics

	6. Construction of the mmodule tree using partition refinement
	6.1. Stable partitions and partition refinement
	6.2. rho-Components and the maximal mmodules
	6.3. From the dendrogram Td to the mmodule tree TM
	6.4. Nodes of Td and nodes of TM and TPQ

	7. Translation between copoint partitions and PQ-trees and mmodule trees
	7.1. Translation between Cp and Psi(p)
	7.2. Translation between Cp and Upsilon(p)
	7.3. Upsilon(p) and the p-proximity order
	7.4. Copoints and frontiers in ultrametrics

	8. Conclusion
	Acknowledgements
	References
	9. Appendices
	9.1. Construction of the subdominant ultrametrics
	9.2. Stable partition algorithm

