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A SIMPLE AND OPTIMAL ALGORITHM FOR STRICT CIRCULAR SERIATION

MIKHAEL CARMONA∗† , VICTOR CHEPOI∗, GUYSLAIN NAVES∗, AND PASCAL PRÉA∗†

Abstract. Recently, Armstrong, Guzmán, and Sing Long (2021), presented an optimal O(n2) time algorithm for
strict circular seriation (called also the recognition of strict quasi-circular Robinson spaces). In this paper, we give a
very simple O(n logn) time algorithm for computing a compatible circular order for strict circular seriation. When
the input space is not known to be strict quasi-circular Robinson, our algorithm is complemented by an O(n2) time
verification of compatibility of the returned order. This algorithm also works for recognition of other types of strict
circular Robinson spaces known in the literature. We also prove that the circular Robinson dissimilarities (which are
defined by the existence of compatible orders on one of the two arcs between each pair of points) are exactly the
pre-circular Robinson dissimilarities (which are defined by a four-point condition).
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1. Introduction. A major issue in classification and data analysis is to visualize simple geo-
metrical and relational structures between objects based on their pairwise distances. The classical
(linear) seriation problem (called also the matrix reordering problem), introduced by Robinson [27],
asks to find a simultaneous ordering (or permutation) of the rows and the columns of the dissim-
ilarity matrix so that its values increase monotonically in the rows and the columns when moving
away from the main diagonal in both directions. The permutation which leads to a matrix with
such a property is called a compatible order and dissimilarity matrices admitting a compatible order
are called Robinson matrices. The Robinson matrices can be thus characterized by the existence of
a compatible order < and the 3-point condition d(x, z) ≥ max{d(x, y),d(y, z)} for any three points
x, y, z such that x < y < z. If this inequality is strict, then such a matrix is called strict Robinson.
A natural generalization of Robinson dissimilarities and compatible orders is to consider a circular
order instead of a linear one. This is often referred to as the circular seriation problem. Seriation
(linear or circular) has numerous applications in data science, originating from various research areas:
archeological dating, hypertext orderings, overlapping clustering, gene expression, DNA sequencing,
DNA replication and 3D conformation, planar tomographic reconstruction, quadratic assignment
problem, numerical ecology, sparse matrix ordering, musicology, matrix visualization methods, etc.

Due to its importance, the algorithmic problem of recognizing Robinson dissimilarities/matrices
attracted the interest of many authors. The existing recognition algorithms can be classified into
combinatorial and spectral. All combinatorial algorithms use the correspondence between Robinson
dissimilarities and interval hypergraphs. The main difficulty arising in recognition algorithms is
the existence of several compatible orders. The first recognition algorithm by Mirkin and Rodin
[23] consists in testing if the hypergraph of balls is an interval hypergraph and runs in O(n4) time.
Chepoi and Fichet [7] gave a simple divide-and-conquer algorithm running in O(n3) time. Seston
[29] presented another O(n3) time algorithm, by using threshold graphs. In [28], he improved the
complexity of his algorithm to O(n2 logn) by using a sorting of the data and PQ-trees. Finally, in
2014, Préa and Fortin [24] presented an algorithm running in optimal O(n2) time. The efficiency of
the algorithm of [24] is due to the use of the PQ-trees of Booth and Lueker [4] as a data structure
for encoding all compatible orders. Even if optimal, the algorithm of [24] is far from being simple.
Subsequently, two new recognition algorithms were proposed by Laurent and Seminaroti: in [19] they
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presented an algorithm of complexity O(α · n) based on classical LexBFS traversal and divide-and-
conquer (where α is the depth of the recursion tree, which is at most the number of distinct elements
of the input matrix), and in [20] they presented an O(n2 logn) algorithm, which extends LexBFS
to weighted matrices and is used as a multisweep traversal. More recently, in [6] we gave a simple
and practical O(n2) divide-and-conquer algorithm based on decompositions of dissimilarity spaces
into mmodules (subsets of points not distinguishable from the outside). The spectral approach was
introduced by Atkins et al. [2] and was subsequently used in numerous papers. The method is
based on the computation of the second smallest eigenvalue and its eigenvector of the Laplacian of
a similarity matrix and also uses PQ-trees to represent the compatible orders. The case when the
eigenvector is not simple was considered in the recent paper by Concas et al. [11].

The circular seriation problem takes its origins in the papers by Hubert, Arabie, and Meulman
[15, 17, 16]. More recently, circular seriation found interesting applications in planar tomographic re-
construction, gene expression, DNA replication and 3D conformation, see the papers [10, 22, 21]. At
the difference of the classical seriation, where the notion of Robinson dissimilarity is a well-established
standard, in circular seriation there are several non-equivalent notions of circular Robinson dissim-
ilarities. Hubert et al. [15, 17, 16] defined a class of circular Robinson dissimilarities via a certain
4-point condition. Brucker and Osswald [5] undertaken a systematic study of various definitions
of circular Robinson dissimilarities from the point of view of classification and combinatorics. In
Robinson dissimilarity spaces, the sets of balls, of 2-balls (intersections of two balls), and of clusters
(maximal cliques in the threshold graphs) are all interval hypergraphs. Hypercycles, introduced and
investigated by Quillot [25], are the circular analogs of interval hypergraphs and are the hypergraphs
whose hyperedges can be represented as circular intervals (arcs). In the case of circular Robinson
dissimilarities, requiring that the ball, the 2-ball, or the cluster hypergraphs are hypercycles lead
to three different classes of dissimilarity spaces. Their structural properties have been thoroughly
studied by Brucker and Osswald [5]. The dissimilarities whose ball hypergraph is a hypercycle is
the most general one and was characterized in [5] via a simple 4-point condition. We call such
dissimilarities quasi-circular Robinson. To characterize the dissimilarities for which the 2-ball or the
cluster hypergraphs are hypercycles, Brucker and Osswald [5] introduced the notion of pre-circular
Robinson dissimilarities.

The algorithmic problem of recognizing circular Robinson dissimilarities was less studied and
optimal or even subcubic time algorithms for different versions of this problem are not known. A
spectral approach to circular seriation was developed in the papers [12, 13, 26]. Hsu and McConnell
[14] showed how to efficiently recognize the hypercycles, by using a data structure, which they
call PC-tree, and which is a generalization of well-known PQ-trees. Using this result, Brucker and
Osswald [5] designed cubic time algorithms for recognizing quasi-circular Robinson dissimilarities. It
comes to some surprise when recently Armstrong, Guzmán, and Sing Long [1] presented an optimal
O(n2) time algorithm for the recognition of strict quasi-circular Robinson dissimilarities. Among
other tools, their algorithm uses PQ-trees.

In this paper, we give a very simple O(n log n) time algorithm which builds a compatible circular
order for all versions of strict circular Robinson dissimilarities, introduced and investigated in the
papers [1, 5, 17]. Then the adjunction of a verification step gives an optimal O(n2) time algorithm
to recognize these dissimilarities. Our second main result is proving that the pre-circular Robinson
dissimilarities are exactly the dissimilarities for which there exists a circular order ⋖ such that for
each pair (x, y), the restriction of d to one of the two arcs between x and y is a Robinson dissimilarity
(in the usual sense) and ⋖ is its compatible order. To our knowledge, prior to our work no results
of this kind for circular seriation were known. Our result shows that in fact pre-circular Robinson
spaces should be called circular Robinson spaces. Finally, the simplicity of our algorithm led us
to other structural properties of strict circular Robinson spaces, in particular we show that they
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admit only one or two compatible circular orders and their opposites. The results of [1] and of this
paper can be viewed as the first step toward designing efficient algorithms for circular seriation.
Designing algorithms which solve the circular seriation problem in subcubic time (say, in O(n2 logn)
or in optimal time O(n2)) is an interesting open question. While a random circular Robinson
space is almost surely a strict circular Robinson space, circular Robinson dissimilarities are an ideal
case and the dissimilarity matrices, which are measured only approximatively, fail to satisfy the
circular Robinson property. Therefore, the second open algorithmic problem is the approximation
of a dissimilarity space by a circular Robinson space. In the linear case, these fitting problems are
NP-hard for ℓ1-norm [3] and ℓ∞-norm [8] (no polynomial time algorithm is known for the ℓp-norms
with 1 < p < ∞) and a constant factor approximation algorithm for ℓ∞-fitting problem was designed
in [9].

The remaining part of the paper is organized as follows. In Section 2 we define the various notions
of circular Robinson spaces. In Section 3 we prove our first main result about the characterization
of pre-circular Robinson spaces. In Section 4 we present the main properties of quasi-circular and
strict circular Robinson spaces. We also show how to efficiently verify if a dissimilarity space is
(strictly) quasi-circular Robinson or (strictly) circular Robinson with respect to a fixed circular
order. Section 4 can be viewed as the preparatory work for the recognition algorithm, which is
described in Section 5. Using the algorithm, we prove that a strict quasi-circular Robinson space
has one or two compatible orders and their opposites and that a strict circular Robinson space has
one compatible order and its opposite. Section 6 provides a brief conclusion.

2. Preliminaries. In this section, first we introduce the notions related to the dissimilarity
spaces and linear Robinson spaces. Then, we define the circular orders and the different types of
circular Robinson spaces.

2.1. Dissimilarity spaces. Let X = {x1, . . . , xn} be a set of n elements, called points. A
dissimilarity on X is a symmetric function d from X2 to the nonnegative real numbers such that
d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 if and only if x = y. Then d(x, y) is called the distance
between x, y and (X,d) is called a dissimilarity space. The ball (respectively, the sphere) of radius
r ≥ 0 centered at x ∈ X is the set Br(x) := {y ∈ X : d(x, y) ≤ r} (respectively, Sr(x) := {y ∈
X : d(x, y) = r}). The eccentricity of a point x is rx := max{d(x, y) : y ∈ X}. Given a point
x ∈ X , a point y ∈ X is called a farthest neighbor of x if d(x, y) = rx. Denote by Fx the set of all
farthest neighbors of x and note that Fx = Srx(x). The distance between two subsets A,B of X is
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}.

2.2. Compatible orders and Robinson spaces. A partial order on X is called linear if
any two elements of X are comparable. A dissimilarity d and a linear order < on X are called
compatible if x < y < z implies d(x, z) ≥ max{d(x, y),d(y, z)}. If d and < are compatible, then d

is also compatible with the linear order <op opposite to <. If a dissimilarity space (X,d) admits a
compatible order, then d is said to be Robinson and (X,d) is called a Robinson space. Equivalently,
(X,d) is Robinson if its distance matrix D can be symmetrically permuted so that its elements
do not decrease when moving away from the main diagonal along any row or column. Such a
dissimilarity matrix D is said to have the Robinson property. From the definition of a Robinson
dissimilarity follows that d is Robinson if and only if there exists an order < on X such that all balls
Br(x) of (X,d) are intervals of <. Moreover, this property holds for all compatible orders. Basic
examples of Robinson dissimilarities are the ultrametrics, thoroughly used in phylogeny. Recall,
that d is an ultrametric if d(x, y) ≤ max{d(x, z),d(y, z)} for all x, y, z ∈ X . Another example of a
Robinson space is provided by the standard line-distance between n points p1, . . . , pn of R such that
p1 < . . . < pn. Any line-distance has exactly two compatible orders: the order p1 < . . . < pn and its
opposite.
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A dissimilarity d on a set X is strictly Robinson if there exits a linear order, said compatible, on
X such that x < y < z implies d(x, z) > max{d(x, y),d(y, z)}. (X,d) is then called a strict circular
Robinson space.

2.3. Compatible circular orders and circular Robinson spaces. Informally speaking, a
circular order on a finite set X is obtained by arranging the points of X on a circle C. Formally, a
circular order is a ternary relation β on X where β(u, v, w) expresses that the directed path from u
to w passes through v. This relation is total, asymmetric, and transitive, which can be formulated
in terms of Huntington’s axioms [18]: for any four points u, v, w, x of X,
(CO1) if u, v, w are distinct, then β(u, v, w) or β(w, v, u),
(CO2) β(u, v, w) and β(w, v, u) is impossible,
(CO3) β(u, v, w) implies β(v, w, u),
(CO4) β(u, v, w) and β(u,w, x) imply β(u, v, x).

From the definition it follows that only triplets of distinct points can be in the relation β. It
also follows that the reverse relation βop, defined by setting βop(u, v, w) exactly when β(w, v, u), is
also a circular order. Since X is finite, the circular orders on X are just the orientations of the circle
C with points of X located on C. We will suppose that β corresponds to the counterclockwise order
of C and βop to the clockwise order of C. Given a circular order β and three distinct points u, v, w,
we will write u⋖ v ⋖ w if β(u, v, w) holds.

For a sequence of points x1, x2, . . . , xℓ containing at least three distinct points, we will write
x1⋖β x2⋖β . . .⋖β xℓ (or simply x1⋖x2⋖ . . .⋖xℓ, if no ambiguity occurs) if for any 1 ≤ i < j < k ≤ ℓ
with xi, xj , xk distinct, β(xi, xj , xk) holds. We will use the following properties of circular orders:

Proposition 2.1. Let β be a circular order on X and x1, x2, . . . , xℓ ∈ X such that x1 ⋖β x2 ⋖β

. . .⋖β xℓ. Then:
(i) x2 ⋖ x3 ⋖ . . .⋖ xℓ ⋖ x1,
(ii) if 1 ≤ i < j < k ≤ ℓ and xi = xj 6= xk hold, then for any m ∈ {i, . . . , j} we have xm = xi.

Proof. (i): We must prove that for any 1 < i < j with xi, xj , x1 distinct, β(xi, xj , x1) holds.
This follows from (CO3) and x1 ⋖β x2 ⋖β . . .⋖β xℓ.

(ii): Assume that xm 6= xi = xj . If xm 6= xk, then xi = xj , xm and xk are distinct,
with β(xi, xm, xk) and β(xm, xj , xk) (because x1 ⋖β x2 ⋖β . . . ⋖β xk), by (CO3) β(xm, xk, xi) and
β(xj , xk, xm), contradicting (CO2) as xi = xj . If xm = xk, by assumption there must be a point
xp distinct from xi = xj and xm = xk. By (i), we may assume that p = 1. Then β(x1, xi, xk)
and β(x1, xm, xj) hold. By (CO3), we get β(xi, xk, x1), that is β(xj , xm, x1) holds, contradicting
(CO2).

We say that a nonempty proper subset A of X is an arc of a circular order β on X if there are no
four distinct points u, v ∈ A and x, y ∈ X \A such that u⋖x⋖ v⋖ y. From the definition, if A is an
arc, then so is X \ A. For two points x, y ∈ X , consider the arcs Xβ

xy = {t ∈ X : β(x, t, y)} ∪ {x, y}

and Xβ
yx = {t ∈ X : β(y, t, x)} ∪ {x, y}. Notice that Xβ

xy ∪ Xβ
yx = X and Xβ

xy ∩ Xβ
yx = {x, y}.

Moreover, if x ⋖ y ⋖ z, then Xβ
xy ⊂ Xβ

xz and Xβ
yz ⊂ Xβ

xz. This implies that if Notice also that if

x1 ⋖β x2 ⋖β . . .⋖β xm, then Xβ
x1xm

is the union of the arcs Xβ
x1x2

, . . . , Xβ
xm−1xm

and thus X is the

union of the arcs Xβ
x1x2

, . . . , Xβ
xm−1xm

, Xβ
xmx1

. For x, y ∈ X and Z ⊂ X , we write x ⋖ y ⋖ Z if for
all z ∈ Z we have x⋖ y ⋖ z.

Arcs are for circular orders what intervals are for linear orders. Thus the arcs can be viewed as
arcs of a circle ordered counterclockwise: the arc Xβ

xy is obtained by traversing the cycle counter-
clockwise from x to y. The intersection of two arcs is not necessarily an arc. However, we can use
this geometric interpretation of arcs to prove the following elementary observation:

Lemma 2.2. Let A and B be two arcs of a circular ordered set (X, β). If there exists x ∈
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t

qcR(x, y, z, t)

Fig. 2.1. Illustration of the constraints defined by one-side Robinson and quasi one-side Robinson.

X \ (A ∪B), then A ∩B is an arc or is empty. If there exists x ∈ B \A, then A \B is an arc or is
empty.

Proof. Let A = Xβ
a′a′′ and B = Xβ

b′,b′′ . Both assertions trivially holds when a′ = a′′ or b′ = b′′.
So, let a′ 6= a′′ and b′ 6= b′′. First let x /∈ A ∪ B. Since x /∈ A ∪ B, we cannot have β(a′, x, a′′)
or β(b′, x, b′′). Thus, by (CO1), we can suppose that β(x, a′, a′′) and β(x, b′, b′′). Suppose also,
without loss of generality, that β(x, a′, b′). If β(a′, a′′, b′) holds, then A and B are disjoint. Thus,

let β(a′, b′, a′′) holds. Then B ⊂ A if β(b′, b′′, a′′) and A ∩B is the arc Xβ
b′,a′′ if β(b′, a′′, b′′).

Now suppose that x ∈ B \A. Since x /∈ A, we can suppose that β(x, a′, a′′) holds. Furthermore,
we can suppose that (1) either β(x, b′′, a′) or β(x, a′, b′′) holds and (2) either β(a′′, b′, x) or β(b′, a′′, x)

holds. Combining the subcases, we conclude that A \B is (a) the arc A = Xβ
a′a′′ if β(x, b′′, a′) and

β(a′′, b′, x), (b) the arc Xβ
b′′,a′′ if β(x, a′, b′′) and β(a′′, b′, x), (c) the arc Xβ

a′,b′ if β(x, b′′, a′) and

β(b′, a′′, x), and (d) the arc Xβ
b′′,b′ if β(x, a

′, b′′) and β(b′, a′′, x). This concludes the proof.

We continue with several metric relations on four points, which will be used to define various
types of circular Robinson spaces. Let (X,d) be a dissimilarity space, β be a circular order on X
and x, y, z, t ∈ X such that x⋖ y ⋖ z ⋖ t.

• The points x, y, z, t are one-side Robinson, and we denote it by cR(x, y, z, t), if d(x, z) ≥
min{max{d(x, y),d(y, z)},max{d(x, t),d(t, z)}}. See Figure 2.1, left.

• The points x, y, z, t are strictly one-side Robinson, and we denote it by scR(x, y, z, t), if
d(x, z) > min{max{d(x, y),d(y, z)},max{d(x, t),d(t, z)}}.

• The points x, y, z, t are quasi one-side Robinson, and we denote it by qcR(x, y, z, t), if
d(x, z) ≥ min{d(y, z),d(t, z)}. See Figure 2.1, right.

• The points x, y, z, t are strictly quasi one-side Robinson, and we denote it by sqcR(x, y, z, t),
if d(x, z) > min{d(y, z),d(t, z)}.

Notice that the conditions cR(x, y, z, t) and qcR(x, y, z, t) trivially hold if x = y ⋖ z ⋖ t or
x⋖ y ⋖ z = t. For x, y, z, t ∈ X such that x⋖ y ⋖ z ⋖ t, the following implications hold:

scR(x, y, z, t) cR(x, y, z, t)

sqcR(x, y, z, t) qcR(x, y, z, t)

Now, we define the three types of circular dissimilarities investigated in this paper and their
strict versions. A dissimilarity space (X,d) is called pre-circular Robinson if there exists a circular
order β, which is said to be a compatible order, such that for all x, y, z, t ∈ X , if x⋖ y ⋖ z ⋖ t then
cR(x, y, z, t) holds. The strictly pre-circular Robinson, quasi-circular Robinson, and strictly quasi-
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circular Robinson spaces are defined in a similar way by using conditions scR(x, y, z, t), qcR(x, y, z, t),
and sqcR(x, y, z, t), respectively. Finally, a dissimilarity space (X,d) is called circular Robinson
(respectively strictly circular Robinson) if there exists a circular order β, called a compatible order
such that for all x, y ∈ X , either (Xβ

xy,d) or (Xβ
yx,d) is a Robinson space (respectively a strict

Robinson space) and the restriction of ⋖ to the arc Xβ
xy or respectively Xβ

yx is a (linear) compatible
order. Notice also that for all definitions, if a circular order β is compatible, then βop is also
compatible. A set X of n points on a circle C in R2 endowed with the arc distance or with the chord
(i.e., Euclidean) distance is a basic example of a strict circular Robinson space.

Hubert et al. [17] were the first to define circular Robinson spaces. We do not provide their
definition here because they are particular pre-circular Robinson spaces (for their definition, see
[5, 17]). That Robinson spaces are circular Robinson can be seen by arranging the points of X on a
circle C according to a compatible order of (X,d). Then for all x, y ∈ X , if x < y in the compatible
order, then d is Robinson on the arc Xβ

xy. As noted above, (strictly) circular Robinson spaces are
(strictly) quasi-circular Robinson spaces. However not any circular order β satisfying sqcR(x, y, z, t)
for all quadruplets x⋖y⋖z⋖t also satisfies scR(x, y, z, t). Such an example is provided in Figure 2.2.

x

z

ty

3

3 1

1

2

2

x
y
z
t

x y z t
0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Fig. 2.2. A strict quasi-circular Robinson space (X = {x, y, z, t},d) with a compatible circular order β. The
quadruplet x ⋖ y ⋖ z ⋖ t satisfies sqcR(x, y, z, t) but not scR(x, y, z, t). Notice that the circular order obtained by
reversing z and t, i.e., such that x ⋖ y ⋖ t ⋖ z, satisfies the condition scR for all quadruplets.

3. Pre-circular Robinson spaces are circular Robinson. In this section, we characterize
pre-circular Robinson spaces. Instead of relying directly on the condition cR(x, y, z, w), some proofs
will use the following consequence of the definition of pre-circular Robinson spaces, stating intuitively
that for any pair u,w, one of the arcs Xβ

u,w, X
β
w,u has only chords shorter than d(u,w).

Lemma 3.1. Let (X,d) be a pre-circular Robinson space with a compatible circular order β and
points u ⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′, where u and w are distinct. Then d(u,w) ≥ min{d(y, y′),d(z, z′)}.
Moreover, if (X,d) is strictly pre-circular Robinson, then this inequality is strict.

Proof. We present the proof for the non-strict case, the strict case being slightly simpler (for
an illustration, see Figure 3.1). For sake of contradiction, assume u ⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′ is a
counterexample with a minimum number of distinct points, implying that d(u,w) < d(y, y′) and
d(u,w) < d(z, z′). Then for u⋖ y ⋖ y′ ⋖ w we obtain the following inequalities:

d(u, y′) ≥ min{max{d(u, y),d(y, y′)},max{d(y′, w),d(w, u)}}

≥ min{d(y, y′),d(w, u)}

= d(w, u).

The first inequality follows from cR(u, y, y′, w), the second inequality follows from the (easily verifi-
able) fact that for any four reals a1, a2, b1, b2 and for any i, j ∈ {1, 2} we have

min{max{a1, a2},max{b1, b2}} ≥ min{ai, bj}
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u

y

y′

w

z

z′

Fig. 3.1. Illustration of Lemma 3.1. The solid blue line is longer than at least one of the dashed lines.

z

x

y

linear

R
ob
in
son

Fig. 3.2. Illustration of Lemma 3.2. When d(x, z) is not the maximum of the three dissimilarities, then the arc

X
β
zx is a linear Robinson space.

and, finally, the third inequality is implied by the initial condition d(u,w) ≥ min{d(y, y′),d(z, z′)}.
Consequently, d(u, y′) ≥ d(w, u). If d(u, y′) = d(w, u), then u⋖y⋖w⋖w⋖z⋖z′ is a counterexample.
If d(u, y′) > d(w, u), then u⋖u⋖y′⋖w⋖z⋖z′ is a counterexample. Consequently, by the minimality
of the counterexample u ⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′, we conclude that either u = y or w = y′ holds.
Symmetrically, applying for w ⋖ z ⋖ z′ ⋖ u the same reasoning as for u⋖ y ⋖ y′ ⋖w with condition
cR(w, z, z′, u) instead of cR(u, y, y′, w), we deduce that either z = w or z′ = u holds. We also have
that {y, y′} 6= {u,w}. Hence, let y′′ ∈ {y, y′} \ {u,w} and z′′ ∈ {z, z′} \ {u,w}. By cR(u, y′′, w, z′′),

d(u,w) ≥ min{max{d(u, y′′),d(y′′, w)},max{d(w, z′′),d(z′′, u)}}

≥ min{d(y, y′),d(z, z′)},

since {y, y′} is either {u, y′′} or {y′′, w}, and {z, z′} is either {w, z′′} or {z′′, u}. This is in contra-
diction with the assumption that u⋖ y ⋖ y′ ⋖ w ⋖ z ⋖ z′ is a counterexample.

As a consequence we have:

Lemma 3.2. Let (X,d) be a pre-circular Robinson space with a compatible circular order β and
x, y, z be three arbitrary points of X such that x ⋖ y ⋖ z. If d(x, z) < max{d(x, y),d(y, z)}, then
(Xβ

zx,d) is a Robinson space.

Proof. Let y′, y′′ ∈ {x, y, z} be such that d(x, z) < d(y′, y′′) and x⋖y′⋖y′′⋖z (for an illustration,
see Figure 3.2). Pick any points u, v, w ∈ Xβ

zx such that z⋖u⋖v⋖w⋖x (we may have u = z or w = x)
and suppose by way of contradiction that d(u,w) < max{d(u, v),d(v, w)}, let v′, v′′ ∈ {u, v, w} be
such that u ⋖ v′ ⋖ v′′ ⋖ w and d(u,w) < d(v′, v′′). If d(u,w) ≤ d(x, z), then d(u,w) < d(y′, y′′),
and by Lemma 3.1 on w ⋖ y′ ⋖ y′′ ⋖ u ⋖ v′ ⋖ v′′, this is a contradiction. If d(u,w) > d(x, z), then
d(x, z) < d(v′, v′′), and by Lemma 3.1 on x⋖ y′ ⋖ y′′ ⋖ z⋖ v′ ⋖ v′′ we obtain again a contradiction.

Now, we can prove our first main result:

Theorem 3.3. A dissimilarity space (X,d) is pre-circular Robinson if and only if (X,d) is
circular Robinson.
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Proof. To prove the theorem, first suppose that (X,d) is a circular Robinson space and β is a
compatible circular order on X . Pick any x, y, z, t ∈ X such that x⋖y⋖z⋖t. By definition of β, ⋖ is
a compatible linear order on the arc Xβ

xz or Xβ
zx. In the first case, since y ∈ Xβ

xz, we have d(x, z) ≥
max{d(x, y),d(y, z)}. In the second case, since t ∈ Xβ

zx, we have d(x, z) ≥ max{d(x, t),d(t, z)}.
Consequently, d(x, z) ≥ min{max{d(x, y),d(y, z)},max{d(x, t),d(t, z)}}, establishing that (X,d) is
a pre-circular Robinson space.

Conversely, let (X,d) be a pre-circular Robinson space and β be a compatible circular order.

Pick any pair of points a, b of X . If (Xβ
ab,d) is not a Robinson space, then there exists three points

x, y, z ∈ Xβ
ab such that x⋖ y ⋖ z and d(x, z) < max{d(x, y),d(y, z)}. By Lemma 3.2, (Xβ

zx,d) is a

Robinson space. Since Xβ
ba ⊂ Xβ

zx, this proves that (X
β
ba,d) is Robinson, establishing that (X,d) is

a circular Robinson space and β is a compatible circular order.

As a consequence, (X,d) is a strictly circular Robinson space if and only if it is a strictly
pre-circular Robinson space.

4. Properties of quasi-circular and strict circular Robinson spaces. In this section, we
present several properties of (strict) quasi-circular and circular Robinson spaces. We also show how
to verify if a dissimilarity space is (strictly) quasi-circular Robinson or (strictly) circular Robinson
with respect to a given circular order.

4.1. Properties of (strictly) quasi-circular Robinson spaces. In this subsection, we recall
or present some properties of (strictly) quasi-circular Robinson spaces. Notice that these properties
are also true for (strictly) circular Robinson spaces. We start with the following characterization of
quasi-circular Robinson spaces of [5]:

Proposition 4.1. [5] A dissimilarity space (X,d) is quasi-circular Robinson if and only if there
exists a circular order β such that for any x ∈ X and r ∈ R+, the ball Br(x) and its complement
X \Br(x) = {t ∈ X : d(x, t) > r} are arcs of β.

Proof. First suppose that (X,d) is a quasi-circular Robinson space and β is a compatible circular
order. Let Br(x) be any ball of (X,d). We will show that X \Br(x) is an arc; since the complement
of an arc is an arc, this will also show that Br(x) is an arc. Let y, y′ ∈ X \ Br(x) and suppose,

with no loss of generality, that x ⋖ y ⋖ y′. Let z ∈ Xβ
yy′ . If z /∈ X \ Br(x), then d(z, x) ≤ r <

d(y, x),d(y′, x), contradicting the condition qcR(z, y′, x, y). Consequently, X \Br(x) and Br(x) are
arcs. Conversely, suppose that there exists a circular order β such that each ball Br(x) is an arc
of β. Pick arbitrary points x, y, z, t ∈ X such that x ⋖ y ⋖ z ⋖ t. Let r = d(x, z). Since Br(z) is
an arc of β and β(x, y, z), β(z, t, x) hold, either y or t must belong to the ball Br(z). Consequently,
d(x, z) ≥ min{d(y, z),d(t, z)}, establishing qcR(x, y, z, t).

Let (X,d) be a quasi-circular Robinson space and β be a compatible circular order. For any
point x ∈ X , recall that Fx consists of all farthest neighbors of x and rx is the eccentricity of x.
Let Mx := X \ (Fx ∪ {x}). Note that Mx ∪ {x} is a ball Br(x) for some r that is strictly smaller
but sufficiently close to rx. Thus, by Proposition 4.1, Mx ∪ {x} and Fx are complementary arcs
of β. Consequently, the set Mx is partitioned into two arcs Lx := {t ∈ Mx : x ⋖ t ⋖ Fx} and
Rx := {t ∈ Mx : Fx⋖ t⋖x} (left and right arcs), where one of those arcs may be empty. Two points
y, y′ ∈ Mx are called x-separated if they belong to distinct arcs Lx and Rx.

The algorithmic importance of the sets Lx and Rx is due to the fact that, as the following lemma
shows, the circular order of each of these sets is given by the order of the distances to x.

Lemma 4.2. Let (X,d) be a quasi-circular Robinson space, β be a compatible circular order, and
x any point of X. If y, z ∈ Lx and x ⋖ y ⋖ z or y, z ∈ Rx and z ⋖ y ⋖ x, then d(x, y) ≤ d(x, z).
Moreover, if (X,d) is strict quasi-circular, then d(x, y) < d(x, z).
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Proof. Let y, z ∈ Lx with x ⋖ y ⋖ z. Let t ∈ Fx. By qcR(x, y, z, t) and since d(x, z) < d(x, t),
we obtain that d(x, y) ≤ d(x, z). The proof for y, z ∈ Rx is similar.

Lemma 4.3. Let (X,d) be a strict quasi-circular Robinson space, β be a compatible circular
order, and x any point of X. Then any sphere Sr(x) contains at most two points. Furthermore, if
r < rx and Sr(x) consists of two points y, y′, then y and y′ are x-separated.

Proof. Suppose by way of contradiction that there exist three points y, y′, y′′ ∈ Sr(x). We can

suppose, with no loss of generality, that y⋖ y′⋖ y′′. Since X is covered by the arcs Xβ
yy′, X

β
y′y′′ , and

Xβ
y′′y, we can suppose that x belongs toXβ

y′′y, i.e., that x⋖y⋖y′⋖y′′. By condition sqcR(y′, y′′, x, y),
we must have d(x, y′) > min{d(x, y′′), d(x, y)}. Since d(x, y) = d(x, y′) = d(x, y′′) = r, this is
impossible. Thus |Sr(x)| ≤ 2. Since (X,d) is strict quasi-circular, by Lemma 4.2, |Sr(x) ∩ Lx| ≤ 1
and |Sr(x) ∩Rx| ≤ 1, proving the second assertion.

4.2. Differences between (strictly) circular and quasi-circular Robinson spaces. In
this subsection, we present two properties which distinguish (strictly) circular Robinson spaces and
(strictly) quasi-circular Robinson spaces. Roughly speaking, in a circular space, for x, y ∈ X , x′ ∈ Fx

and y′ ∈ Fy, xx
′ and yy′ have to cross each other, but this is not the case for quasi-circular spaces

(see Figure 4.1).

y

y′ ∈ Fy

x′ ∈ Fx

x

y

x′ ∈ Fx

y′ ∈ Fy

x

Fig. 4.1. Illustration of Propositions 4.4. and 4.5. On the left, since xx′ and yy′ do not cross, the space can be
quasi-circular but not circular. On the right, the space can be circular.

Proposition 4.4. Let (X,d) be a circular Robinson space with a compatible order β. Then for
all x, y ∈ X, x′ ∈ Fx, y

′ ∈ Fy with |{x, x′, y, y′}| ≥ 3, one of the following assertions holds:
(a) x⋖ y ⋖ x′ ⋖ y′,
(b) x⋖ y′ ⋖ x′ ⋖ y,
(c) {y, y′} ∩ Fx 6= ∅ or {x, x′} ∩ Fy 6= ∅.

Moreover if (X,d) is strictly circular Robinson, then either (a) or (b) holds.

Proof. Suppose first that (X,d) is strictly circular Robinson. For sake of contradiction, assume
none of these assertions holds. There are two cases depending on the order (up to reversal) of
x, y, x′, y′.
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If x⋖ y ⋖ y′ ⋖ x′, by scR(x, y, y′, x′) and scR(y, y′, x′, x), and since x′ ∈ Fx, y
′ ∈ Fy , we get:

d(x, x′) ≥ d(x, y′)

> min{max{d(x, y),d(y, y′)},max{d(x, x′),d(x′, y′)}}

≥ min{d(y, y′),max{d(x, x′),d(x′, y′)}}

≥ min{d(y, y′),d(x, x′)},

d(y, y′) ≥ d(y, x′)

> min{max{d(y, y′),d(y′, x′)},max{d(y, x),d(x, x′)}}

≥ min{max{d(y, y′},d(y′, x′)},d(x, x′)}

≥ min{d(y, y′),d(x, x′)}.

From this, we get that d(x, x′) > d(y, y′) and d(y, y′) > d(x, x′), a contradiction.
If x⋖ y′ ⋖ y ⋖ x′, then by scR(x, y′, y, x′) and using that x′ ∈ Fx, y

′ ∈ Fy , we get:

min{d(x, x′),d(y, y′)} ≥ d(x, y)

> min{max{d(x, y′),d(y′, y)},max{d(x, x′),d(x′, y)}}

≥ min{d(y′, y),d(x, x′)},

a contradiction.
Suppose now that (X,d) is non-strictly circular Robinson. We follow the same argument. In

the first case, instead of a contradiction, we get that d(x, x′) = d(y, y′). Applying cR(x, y, y′, x′)
and cR(y, y′, x′, x), we conclude that y′ ∈ Fx and x′ ∈ Fy, implying (c). In the second case, we get
that d(x, y) = min{d(x, x′),d(y, y′)}, implying either y ∈ Fx or x ∈ Fy, that is (c).

Now, let β be a circular order on X that is compatible with a quasi-circular Robinson space
(X,d). We determine under which conditions β is not compatible with respect to the circular
Robinson property of (X,d).

Proposition 4.5. Let (X,d) be a (strict) quasi-circular Robinson space and β a compatible
order, such that (X,d) is not (strict) circular Robinson with respect to β. Then there exist x, y ∈ X,
x′ ∈ Fx, y

′ ∈ Fy such that x ⋖ x′ ⋖ y ⋖ y′ or x ⋖ y′ ⋖ y ⋖ x′. Moreover, in the non-strict case, we
may also assume that x, x′ /∈ Fy and y, y′ /∈ Fx.

Proof. We first prove the strict case. Let x⋖u⋖y⋖v be such that scR(x, u, y, v) does not hold:

(4.1) d(x, y) ≤ min{max{d(x, u),d(u, y)},max{d(x, v),d(v, y)}}.

By sqcR(x, u, y, v) and sqcR(y, v, x, u), we get:

d(x, y) > min{d(x, u),d(x, v)},(4.2)

d(x, y) > min{d(y, u),d(y, v)}.(4.3)

Combining these inequalities, we get:

min{d(x, u),d(x, v)} < max{d(x, u),d(u, y)}, min{d(x, u),d(x, v)} < max{d(x, v),d(v, y)},

min{d(y, u),d(y, v)} < max{d(x, u),d(u, y)}, min{d(y, u),d(y, v)} < max{d(x, v),d(v, y)},

and then:

d(x, v) < d(x, u) ∨ d(x, u) < d(u, y), d(x, u) < d(x, v) ∨ d(x, v) < d(v, y),

d(y, v) < d(y, u) ∨ d(y, u) < d(x, u), d(y, u) < d(y, v) ∨ d(y, v) < d(x, v),

which is equivalent to the disjunction of these two symmetric assertions:
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(i) d(x, v) < d(x, u), d(x, v) < d(v, y), d(y, u) < d(y, v), and d(y, u) < d(x, u),
(ii) d(x, v) > d(x, u), d(x, v) > d(v, y), d(y, u) > d(y, v), and d(y, u) > d(x, u).

We may assume the first. Then d(x, v) = min{d(x, v),d(x, u)} < d(x, y) ≤ min{d(x, u),d(v, y)} ≤
d(x, u) (by Inequalities (4.1) and (4.2)), which implies by the strict unimodality of distances from x
that Fx ⊆ Xβ

uy. Similarly, d(y, u) < d(x, y) ≤ d(y, v) which implies that Fy ⊆ Xβ
vx. Consequently,

if x′ ∈ Fx and y′ ∈ Fy, then we get x⋖ x′ ⋖ y ⋖ y′, as expected.
In the non-strict case, Inequality (4.1) becomes a strict inequality, while Inequalities (4.2)

and (4.3) become non-strict inequalities. Combining these inequalities, we get the same conclu-
sion as in the strict case. For example, in the first case we get that d(x, v) = min{d(x, v),d(x, u)} ≤
d(x, y) < min{d(x, u),d(v, y)} ≤ d(x, u), yielding d(x, v) ≤ d(x, y) < d(x, u) and d(y, u) ≤
d(x, y) < d(y, v). By unimodality of distances, we conclude that Fx ⊆ Xβ

uy and Fy ⊆ Xβ
vx. Conse-

quently, if x′ ∈ Fx and y′ ∈ Fy, then we get x ⋖ x′ ⋖ y ⋖ y′. Moreover, y /∈ Fx and x /∈ Fy. Since
x⋖x′

⋖v⋖y′ and d(x, v) < d(x, x′), by qcR(x, x′, v, y′) we conclude that d(x, v) ≥ d(x, y′), yielding
y′ /∈ Fx. Analogously, one can show that x′ /∈ Fy.

4.3. Verification of compatibility. In this subsection, given a circular order β, we describe
how to check in O(n2) whether a dissimilarity space (X,d) on n points is (strictly) quasi-circular
Robinson or (strictly) circular Robinson with respect to β. This verification task can also be done
in O(n2) for strict circular Robinson spaces, as defined in [17]. Then, we will show how to extend
this result to strict versions of the other definitions of circular dissimilarities introduced by Brucker
and Osswald [5], namely the dissimilarities whose 2-balls or clusters are arcs.

To test whether (X,d) is (strictly) quasi-circular Robinson with respect to β, by Proposition 4.1
we have to test whether all balls of (X,d) are arcs of β. This can be done in the following way. Let
D be the distance matrix of (X,d) ordered according to the circular order β. The matrix D is called
unimodal if for each row i, when moving circularly from the element dii on the main diagonal of D
to the right until the last element din and then from the first element di1 until dii, the elements first
increase monotonically, stay at the maximal values, and then decrease monotonically. Since D is
symmetric, the same monotonicity property holds also for each column i: moving down from dii until
dni and then from d1i until dii, the elements first increase monotonically, stay at the maximal value,
and then decrease monotonically. We say that D is strictly unimodal if the values strictly increase,
have one or two maximal elements, and then strictly decrease. It was shown in [1, Proposition
3.7] that β is a compatible circular order for a quasi-circular Robinson space (respectively, strictly
quasi-circular Robinson space) if and only if D is unimodal (respectively, strictly unimodal). From
the definition, testing if D is (strictly) unimodal can be easily done in O(n2) time. In case of strict
unimodality we also have to check that each row has at most two maximal elements (this correspond
to computing for each x ∈ X the set Fx and checking if |Fx| ≤ 2). Notice that for strictly circular
Robinson spaces defined in [17], this testing task can be also done in O(n2) time.

Next, we consider the task of testing whether (X,d) is (strictly) circular Robinson with respect
to a circular order β. As (strictly) circular Robinson spaces are particular cases of (strictly) quasi-
Robinson spaces, the (strict) unimodality of the distance matrix D is a necessary condition for
compatibility. Under this condition, we can use Proposition 4.5. Namely, we compute the arc Fx

for each x ∈ X , and store the indices of its extremities. This can be done by dichotomy (using β) in
O(n log n) total time. Then for each pair x, y ∈ X , we can check in constant time whether there are
x′ ∈ Fx, y

′ ∈ Fy as given in Proposition 4.5. If such elements exist, then by Proposition 4.4, (X,d)
is not (strictly) circular Robinson. Otherwise, (X,d) is (strictly) circular Robinson with respect to
β. This testing task can be done in O(n2) time. As a consequence, we have the following result:

Proposition 4.6. For a dissimilarity space (X,d) on n points and a circular order β on X, one
can check in O(n2) time whether, with respect to β, (X,d) is (1) (strictly) quasi-circular Robinson,
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(2) (strictly) circular Robinson.

5. The recognition algorithm. In this section, we describe a simple but optimal algorithm
to recognize strictly circular Robinson spaces and strictly quasi-circular Robinson spaces. Our
algorithm consists in partitioning X into four sets with respect to any point x ∈ X and any x′ ∈ Fx.
We prove that those four sets are arcs in any compatible circular order β and that the restriction
of β to each of these four sets is obtained by sorting its points by distances to x. Concatenating
these four arcs, we obtain two circular orders. Finally, it suffices to verify that one of these circular
orders is compatible. This also shows that any strict circular Robinson space (in each of the three
versions) has one or two compatible circular orders and their opposites.

5.1. How to define arcs Xβ
xy metrically. Given a dissimilarity space (X,d) and two distinct

points x, y ∈ X , we set J◦(x, y) = {u ∈ X : d(x, y) > max{d(x, u),d(u, y)}} and J(x, y) =
J◦(x, y) ∪ {x, y}. In all results of this subsection, we assume that (X,d) is a strict quasi-circular
Robinson space and β is an arbitrary compatible circular order on X .

Lemma 5.1. Let x⋖ y ⋖ z be three points of X such that d(x, y) ≤ min{d(x, z),d(y, z)}. Then
Xβ

xy = J(x, y).

Proof. First, let v ∈ Xβ
xy \ {x, y}, i.e., x⋖ v ⋖ y. By sqcR(x, v, y, z) and since d(x, y) ≤ d(x, z),

we have d(x, v) < d(x, y). By sqcR(y, z, v, x) and since d(y, x) ≤ d(y, z), we have d(y, u) < d(y, x).
Hence Xβ

xy ⊆ J(x, y). To prove the converse inclusion, let u ∈ Xβ
yz \ {y, z}, that is y ⋖ u ⋖ z.

By sqcR(u, z, x, y), d(x, u) > min{d(x, y),d(x, z)} = d(x, y), hence u /∈ J◦(x, y). Similarly if u ∈
Xβ

zx\{z, x}, applying sqcR(y, z, u, x) we also get u /∈ J◦(x, y). Consequently, (Xβ
yz∪X

β
zx)∩J

◦(x, y) =

{x, y}, establishing the inclusion J(x, y) ⊆ Xβ
xy. Thus X

β
xy = J(x, y).

Now, let x be an arbitrary point of X and x′ ∈ Fx. Let N = {u ∈ X : d(u, x) ≤ d(u, x′)} and
F = {u ∈ X : d(u, x) ≥ d(u, x′)}. Note that N ∪ F = X and x ∈ N \ F, x′ ∈ F \N .

Lemma 5.2. N and F are arcs of β.

Proof. It suffices to prove that N is an arc, as F = X \N and x′ ∈ F 6= ∅. Let y, z ∈ X \{x, x′}
be distinct points with x ⋖ y ⋖ z ⋖ x′ and z ∈ N . We assert that y ∈ N . Since z ⋖ x′ ⋖ x ⋖ y by
(CO3) and d(x, x′) ≥ d(x, y) because x′ ∈ Fx, by sqcR(z, x′, x, y), we have d(x, y) < d(x, z). Since
we also have y ⋖ z ⋖ x′

⋖ x by (CO3), by condition sqcR(y, z, x′, x),

d(x′, y) > min{d(x′, z),d(x′, x)} ≥ min{d(x, z),d(x, z)} = d(x, z) > d(x, y).

The second inequality follows from the fact that d(x′, z) ≥ d(x, z) since z ∈ N and d(x′, x) ≥ d(x, z)
since x′ ∈ Fx. Consequently, d(x′, y) > d(x, y), implying that y ∈ N . Symmetrically, if z ⋖ y ⋖ x
with z ∈ N , then y ∈ N . Hence, N is an arc of β.

Lemma 5.3. If N ∩ F 6= ∅ and y is a point of X with d(x, y) = d(y, x′), then J(x, y) ∪ J(y, x′)

either coincides with Xβ
xx′ when x⋖ y ⋖ x′ or with Xβ

x′x when x′ ⋖ y ⋖ x.

Proof. Suppose without loss of generality that x ⋖ y ⋖ x′ (see Figure 5.1 (a)). Since d(x, y) =
d(y, x′) and d(x, y) ≤ d(x, x′), by Lemma 5.1 we conclude that Xβ

xy = J(x, y). By (CO3), we have
y⋖x′⋖x. From the choice of the points x′ ∈ Fx and y we have d(y, x′) ≤ min{d(x′, x),d(y, x)}. By

Lemma 5.1 we conclude that Xβ
yx′ = J(y, x′). Finally, since x⋖ y⋖ x′, we have Xβ

xx′ = Xβ
xy ∪Xβ

yx′ ,

yielding Xβ
xx′ = J(x, y) ∪ J(y, x′).

Consequently, if N ∩ F 6= ∅, and y is a point with d(x, y) = d(y, x′), then according to
Lemma 5.3, the circular order β such that x ⋖ y ⋖ x′ can be computed in O(n log n) time. This is

done by computing Xβ
xx′ = J(x, y)∪J(y, x′), then ordering the points of Xβ

xx′ and of its complement
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x

y

x′

J(x, y)

J(y, x′)

x

z
y

x′

z′

y′

J(x, z)

J(y, x′)

N

F

(a) (b)

Fig. 5.1. Configurations occurring in (a) Lemma 5.3 and (b) Lemma 5.4. In (b), the positions of z and z′ may
be swapped, as well as those of y and y′.

X \Xβ
xx′ by distances to x, by Lemma 4.2. Notice that in this case the compatible circular order β

is unique up to reversal.
Thus, we may next assume that N ∩F = ∅. The points w ∈ N such that x⋖w⋖x′ form an arc

whose ordering is given by increasing distances from x. Analogously, the points w ∈ N such that
x′ ⋖w⋖ x form an arc whose ordering is given by decreasing distances from x. The points of F are
similarly distributed into two arcs with respect to the distances from x′. Therefore, it is sufficient
to partition the sets N \ {x} and F \ {x′} into such pairs N ′, N ′′ and F ′, F ′′, respectively. This is
done by the next lemma.

Lemma 5.4. If N ∩ F = ∅, then there exist z, z′ ∈ N and y, y′ ∈ F and two bipartitions
N \ {x} = N ′ ∪N ′′, F \ {x′} = F ′ ∪ F ′′ such that for any compatible order β on X we have {N ′ ∪

{x}, N ′′ ∪ {x}} = {Xβ
zx, X

β
xz′} and {F ′ ∪ {x′}, F ′′ ∪ {x′}} = {Xβ

yx′, X
β
x′y′}. The sets N ′, N ′′, F ′, F ′′

and the points z, z′, y, y′ can be computed in O(n) time.

Proof. Assume that N 6= {x}, and let z ∈ N with d(x, z) maximal (see Figure 5.1 (b)). Then
applying Lemma 5.1 to x, z, x′, we have that J(x, z) is either Xβ

xz or Xβ
zx (depending of whether

x ⋖ z ⋖ x′ or x′
⋖ z ⋖ x). We denote N ′ = J(x, z). If N ′′ = N \N ′ 6= ∅, let z′ ∈ N ′′ with d(x, z′)

maximal. By Lemma 5.1, J(x, z′) is either Xβ
xz′ or X

β
z′x. By Lemma 4.2, z and z′ are x-separated,

that is:
• either J(x, z′) = Xβ

z′x and J(x, z) = Xβ
xz,

• or J(x, z) = Xβ
zx and J(x, z′) = Xβ

xz′ .
By the choice of z and z′, we conclude that N = J(x, z)∪J(x, z′). If z or z′ are not defined (because
N = {x} or N ′ = ∅), we may suppose them equal to x.

Pick any y ∈ F . Then d(x′, y) < d(y, x) ≤ d(x′, x). Thus we can also use Lemma 5.1 and get
similarly that there exist points y, y′ ∈ F (where y ∈ F with d(x′, y) maximal, F ′ = J(x′, y), and
y′ ∈ F ′′ = F \ F ′ with d(x′, y′) maximal) such that

• either J(x′, y′) = Xβ
y′x′ and J(x′, y) = Xβ

x′y,

• or J(x′, y) = Xβ
yx′ and J(x′, y′) = Xβ

x′y′ ,
and F = J(x′, y) ∪ J(x′, y′). From their definitions, it immediately follows that the pairs {z, z′},

{y, y′} and the partition Xβ
zx ∪Xβ

xz′ ∪Xβ
yx′ ∪Xβ

x′y′ can be computed in O(n) time.

Sorting the points of N ′, N ′′ and F ′, F ′′ by their distances to x and to x′ takes O(n logn) time.
Then Lemma 5.4 allows to partition the compatible circular order into two ordered sequences. In the
first sequence, N is ordered into N = {x1, x2, . . . , xk} by taking N ′ in decreasing order of distances
from x, followed by x and then N ′′ in increasing order of distances from x; the second order is the
reverse of the first order. Similarly, F is ordered into F = {y1, y2, . . . , yl} using F ′, F ′′ and the
distances from x′ and its reverse order. This leads to four possibilities to compose the two ordered
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(up to reversal) sequences N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yl} into a compatible circular
order. Notice that up to symmetry, this reduces to only two possibilities. The next lemma gives a
criterion to decide which one of the two options is valid.

Lemma 5.5. Let N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ} be the ordered sequences defined
as above. Let β1 and β2 be the two circular orders on X defined by setting

(a) x1 ⋖β1
x2 ⋖1 . . .⋖β1

xk ⋖β1
y1 ⋖β1

y2 ⋖β1
. . .⋖β1

yℓ,
(b) xk ⋖β2

xk−1 ⋖β2
. . .⋖β2

x1 ⋖β2
y1 ⋖β2

y2 ⋖β2
. . .⋖β2

yℓ.
One can decide which of these two circular orders β1, β2 (possibly both) is compatible in O(n) time.

x1

x2
xk

y1
y2

yl

uv

w
z

x1

x2
xk

y1
y2

yl

(a) (b)

Fig. 5.2. In (a), a configuration occuring in the proof of Lemma 5.5. If β1 is not compatible for the quadruplet
(u, v, w, z), then it is not compatible for the quadruplet (u, xk, y1, y2). In (b), an illustration of the two families of
quadruplets which are enough to check the compatibility on.

Proof. Suppose that β1 is not compatible and that is β2 is compatible. Then there is a quadru-
plet u ⋖β1

v ⋖β1
w ⋖β1

z with d(u,w) ≤ min{d(u, v),d(u, z)}. Since β2 is a compatible circular
order, we must have that (u, v, w, z) is one of the four quadruplets (xi, xi′ , yj , yj′), (xi′ , yj , yj′ , xi),
(yj , yj′ , xi, xi′), or (yj′ , xi, xi′ , yj), with i < i′ and j < j′. Up to symmetry, we may assume the first
without loss of generality. We may also assume that j = 1 and j′ = 2. Indeed, the distances from
x1 of the points of F , from y1 to yℓ, are strictly increasing, then maximal, then strictly decreasing,
thus by the existence of j and j′ the increasing sequence is non-empty and d(xi, y1) < d(xi, y2).
Moreover, d(xi, y1) ≤ d(xi, yj) < d(xi, xi′ ).

Furthermore, we may also assume that i′ = k. Indeed, if d(xi, xk) < d(xi, y1), then d(xi, xk) <
max{d(xi, x

′

i),d(xi, y2)}, which implies that xi ⋖β2
xi′ ⋖β2

xk ⋖β2
y2 is a quadruplet violating com-

patibility of β2, a contradiction. This proves that d(xi, xk) ≥ d(xi, y1), hence xi, xk, y1, y2 is a
violating quadruplet. Thus, considering the three remaining symmetric cases, we obtain that if
there is a violating quadruplet, then also there is a violating quadruplet of the form {xi, xk, y1, y2}
or {xi, yl−1, yl, x1} for some point xi, or {yj, yℓ, x1, x2} or {yj, xk−1, xk, y1} for some point yj . There
are at most 2n such quadruplets in total, each of them may be checked in O(1) time, summing up
to a complexity of O(n) time using Algorithm 5.1.

5.2. The algorithm. The previous discussion leads to an algorithm for finding a compatible
order, presented in Algorithms 5.1 and 5.2. The function Sort(x, S) sorts S by increasing values
of d(x, t) for t ∈ S (we call this an x-sorting of the set S) and the function ReverseSort(S, x)
sorts S by decreasing values of d(x, t). The operator ++ between two sequences represents their
concatenation into a circular order. Notice that the same algorithm works for strictly circular and
strictly quasi-circular Robinson dissimilarities, and that the algorithm always outputs an ordering,
which may be arbitrary if the dissimilarity space is not strictly circular or strictly quasi-circular
Robinson.

Theorem 5.6. Algorithm 5.2 called to a strictly quasi-circular Robinson or a strictly circular
Robinson dissimilarity (X,d) on n points produces a compatible circular order in O(n log n) time.
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Algorithm 5.1 OrdersAgree

Input: A dissimilarity space (X,d), a partition X = N ∪ F with N = {x1, . . . , xk} and F =
{y1, . . . , yℓ}.

Output: whether the order N ++ F may be compatible based on Lemma 5.5.
1: if k = 1 or ℓ = 1 then
2: return true
3: end if
4: for all i ∈ {1, 2, . . . , k} do
5: if not sqcR(xi, xk, y1, y2) or not sqcR(xi, yℓ−1, yℓ−2, x1) then
6: return false
7: end if
8: end for
9: for all i ∈ {1, 2, . . . , ℓ} do

10: if not sqcR(yi, yℓ, x1, x2) or not sqcR(yi, xk−1, xk−2, y1) then
11: return false
12: end if
13: end for
14: return true

Algorithm 5.2 FindCompatibleOrder

Input: A dissimilarity space (X,d).
Output: A total ordering of X , compatible if (X,d) is (quasi-)circular Robinson.
1: let x ∈ X , x′ ∈ Fx

2: let N = {u ∈ X : d(u, x) ≤ d(u, x′)}
3: let F = {u ∈ X : d(u, x′) ≤ d(u, x)}
4: if N ∩ F 6= ∅ then
5: let y ∈ N ∪ F
6: let X1 = J(x, y) ∪ J(y, x′)
7: let X2 = X \X1 \ {x, x

′}
8: return Sort(x,X1) ++ReverseSort(x,X2)
9: else

10: let z = argmaxu∈N d(x, u) and y = argmaxu∈F d(x′, u)
11: let N ′ = J(x, z) and F ′ = J(x′, y)
12: let XN = ReverseSort(x,N \N ′) ++ Sort(x,N ′)
13: let XF = Sort(x′, F \ F ′) ++ReverseSort(x′, F ′)
14: if OrdersAgree(XN , XF ) then
15: return XN ++XF

16: else
17: return XN ++Reverse(XF )
18: end if
19: end if

Proof. The correctness of the algorithm follows from Lemmas 5.2 to 5.5. Namely, Lemma 5.3
covers the case N ∩ F 6= ∅ (lines 4 to 8), while Lemma 5.4 covers the case N ∩ F = ∅ (lines 10
to 17). From these lemmas and Lemma 5.2 it follows that the circular orders returned in lines 8, 15
and 17 are the only possible compatible circular orders for (X,d). Since (X,d) is strictly circular
Robinson or strictly quasi-circular Robinson, we can apply Lemma 5.5 to deduce that one of these
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circular orders is indeed compatible. The complexity of the algorithm is dominated by the time to
sort the lists, as every other operation can easily be implemented in either constant or linear time.

From Proposition 4.6 and Theorem 5.6 we immediately obtain the following result:

Corollary 5.7. For a dissimilarity space (X,d) on n points, one can decide in optimal O(n2)
time if (X,d) is strictly circular Robinson or strictly quasi-circular Robinson.

The complexity in Theorem 5.6 is dominated by the time to sort the points by their distances
to x or x′, and is actually tightly related to the complexity of sorting:

Proposition 5.8. The problem of sorting a set Y of n distinct integers reduces linearly to the
problem of finding a compatible circular order for a strictly quasi-circular Robinson dissimilarity.

Proof. Given a set Y ⊆ N, let X = Y ∪ {z} and let d be a dissimilarity on X defined by

d(y, z) = ∆ + 1 for all y ∈ Y,

d(y, y′) = |y − y′| for all y, y′ ∈ Y,

d(z, z) = 0,

where ∆ = maxY −min Y . Then it can be readily checked that (X,d) is a strictly quasi-circular
Robinson dissimilarity, whose only two compatible orders induce an increasing or decreasing ordering
of Y . This reduction is linear, as long as we encode the distance function d as an oracle, to avoid
the computation of Θ(n2) values.

5.3. On the number of compatible circular orders. From Algorithm 5.2, we can derive
the following result about the number of compatible orders:

Proposition 5.9. A strict quasi-circular Robinson space (X,d) has one or two compatible or-
ders and their opposites. A strict circular Robinson space has one compatible order and its opposite.

Proof. The first assertion is a direct consequence of Algorithm 5.2 and the proof of Theorem 5.6.
Now, let (X,d) be a strict circular Robinson space with two compatible circular orders β and β′.
Then N ∩F = ∅ and the arcs N and F are partitioned into N ′, N ′′ and F ′, F ′′, respectively (see the
proof of Lemma 5.4). Then the second compatible order β′ is built from β by reversing N ′ and N ′′.
If the set N is empty, then this reversal does not change the order, thus β′ = β. If F is empty, then
this reversal builds the opposite order of the original one, thus β′ = βop. So, we can suppose with
no loss of generality that there exist y ∈ N ′ and z ∈ F ′ and that the points y and z are on the same
arc Xβ

xx′ of β. The arcs Xβ
xz and Xβ

yx′ are strictly Robinson, so d(y, z) < min{d(x, z),d(y, x′)}.
By scR(z, x, y, x′) applied to β′, we must have d(y, z) > d(x, z), which is in contradiction with
d(y, z) < min{d(x, z),d(y, x′)}, whence β and β′ cannot be both compatible.

If a strict quasi-circular Robinson space has two compatible orders and their opposites, then
Algorithm 5.2 yields a bipartition of X into N ∪ F . Next we prove that this happens exactly when
there is a threshold value that clusters the dissimilarity space into two cliques:

Proposition 5.10. Let (X,d) be a strict quasi-circular Robinson space. Then (X,d) admits
two compatible orders and their opposites if and only if there exists a partition X = N ∪ F with
|N |, |F | > 1 and δ ∈ R+ such that for all u, v ∈ X, we have d(u, v) > δ if and only if |{u, v}∩N | = 1.

Proof. Suppose first that (X,d) admits two compatible orders and their opposites. By Lem-
mas 5.4 and 5.5, there is a bipartition N ∪ F with N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ},
such that the compatible orders are β (given by N ++ F ), β′ (given by N ++ Reverse(F)), and
their reverses. Notice that k > 1 and ℓ > 1. Let δN = d(x1, xk) and δF = d(y1, yℓ). Then for any
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δN δF
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xk y1

yl

N F

linear
R
o
b
in
son

lin
ea
r
R
o
b
in
so
n> δ

> δ

Fig. 5.3. The structure of a strictly quasi-circular Robinson space with two non-opposite compatible orders, with
δ = max{δN , δF }, as shown by Proposition 5.10. N and F have diameters δN and δF respectively, and all pairs
between N and F have distance greater than δ. The proof that N (symmetrically, F ) are linear Robinson follows
easily from sqcR(xi1 , xi2 , xi3 , y1) and sqcR(xi3 , y1, xi1 , xi2).

distinct j, j′ ∈ {1, 2, . . . , ℓ}, sqcR(xk, yj , yj′ , x1) (in β) and sqcR(xk, yj′ , yj , x1) (in β′) we have:

d(xk, yj′) > min{d(xk, x1),d(xk, yj)},

d(xk, yj) > min{d(xk, x1),d(xk, yj′)}.

Thus δN = d(x1, xk) < min{d(xk, yj),d(xk, yj′)}. Analogously, δN < min{d(x1.yj),d(x1, yj′)}.
Then for any i ∈ {2, 3, . . . , k − 1}, by sqcR(y, x1, xi, xk), d(xi, y) > min{d(y, x1),d(y, xk)} > δN .
This proves that min{d(x, y) : x ∈ N, y ∈ F} > δN .

Consequently, for any y ∈ F and i ∈ {1, 2, . . . , k − 1}, by sqcR(xk, y, x1, xi), δN = d(xk, x1) >
min{d(xk, y),d(xk, xi)}, which implies that d(xi, xk) < δN . For j ∈ {i + 1, i + 2, . . . , k − 1}, by
sqcR(xi, xj , xk, y)), d(xi, xk) > min{d(xi, xj),d(xi, y)}, which implies that d(xi, xj) < δN , hence
max{d(u, v) : u, v ∈ N} = δN . Analogously, we have max{d(u, v) : u, v ∈ F} = δF and min{d(x, y) :
x ∈ N, y ∈ F} > δF . Thus taking δ = max{δN , δF } proves the assertion.

Conversely, suppose that (X,d) is a strictly quasi-circular Robinson space admitting such a
bipartition X = N ∪F . Clearly N and F are balls of radius δ and thus, in any compatible order, by
Proposition 4.1, N and F are arcs. Let x1 ⋖ x2 ⋖ . . .⋖ xk ⋖ y1 ⋖ y2 ⋖ . . .⋖ yℓ be a compatible order
β, with N = {x1, x2, . . . , xk} and F = {y1, y2, . . . , yℓ}. Then, we can check that for any quadruplet
u⋖v⋖w⋖t of the circular order β′ induced by N++Reverse(F ), sqcR(u, v, w, t) holds. Indeed, the
only nontrivial case (where the circular order is distinct for β and β′ up to reversal) is when u, v ∈ N
and w, t ∈ F (up to symmetry). In that case, we have d(u,w) > β ≥ d(u, v) ≥ min{d(u, s),d(u, v)},
that is sqcR(u, v, w, t). This implies that β′ is also compatible. Since k, ℓ > 1, β and β′ are not the
reverse of each other, proving the proposition.

6. Conclusion. In this paper, we presented a very simple algorithm which solves the strict
quasi-circular and strict circular seriation problems in optimal O(n2) time. Notice that the O(n2)
time is entirely due to the verification of the result, while the computation of a compatible circular
order (the main part of the algorithm) is in O(n log n) time. In addition, using the algorithm we
proved some structural properties of strictly quasi-circular and strictly circular Robinson spaces.
We also proved that any pre-circular Robinson space is circular Robinson, a result which can find
further applications. As we already noticed in the introduction, designing an algorithm which solves
the circular seriation problem in O(n2) (or even in O(n2 log n) time) is an interesting open question.
Designing approximation algorithms for fitting a dissimilarity by a circular Robinson dissimilarity
is another open problem.
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