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Abstract

The Directed Steiner Tree (DST) problem is a corner-
stone problem in network design. We focus on the gen-
eralization of the problem with higher connectivity re-
quirements. The problem with one root and two sinks is
APX-hard. The problem with one root and many sinks
is as hard to approximate as the directed Steiner forest
problem, and the latter is well known to be as hard to
approximate as the label cover problem. Utilizing pre-
vious techniques (due to others), we strengthen these
results and extend them to undirected graphs. Specif-
ically, we give an Ω(kε) hardness bound for the rooted
k-connectivity problem in undirected graphs; this ad-
dresses a recent open question of Khanna. As a conse-
quence, we also obtain the Ω(kε) hardness of the undi-
rected subset k-connectivity problem. Additionally, we
give a result on the integrality ratio of the natural lin-
ear programming relaxation of the directed rooted k-
connectivity problem.

1 Introduction

Problems in network design have a central position in
Theoretical Computer Science and in Combinatorial
Optimization. Moreover, they arise in many practical
settings, such as telecommunication networks, the elec-
tricity supply network, etc. By a network we mean ei-
ther a directed graph or a graph (undirected), together
with non-negative costs on the edges. A basic problem
in network design is to find a minimum cost sub-network
H of a given network G such that H satisfies some pre-
specified connectivity requirements. Fundamental ex-
amples include the minimum spanning tree (MST) prob-
lem, the Steiner tree problem, and the directed Steiner
tree (DST) problem. In the latter problem, we are given
a directed graph G = (V,E) with costs on the edges, a
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root vertex r ∈ V , and a set of terminals (or sinks)
T ⊆ V ; the goal is to find a subgraph G′ of minimum
cost such that G′ has a dipath (i.e., directed path) from
r to each terminal t ∈ T . The DST problem plays a
key role in the design of directed networks. The prob-
lem is NP-hard, and moreover, a result of Halperin and
Krauthgamer [11] shows that the problem is hard to ap-
proximate within polylogarithmic factors; see Section 3
for further details.

We focus on a generalization of the DST problem
with higher connectivity requirements. An instance of
the directed rooted connectivity problem is similar to an
instance of the DST problem, and in addition there is
a connectivity requirement of ki (a positive integer) for
each terminal ti ∈ T . The goal is to find a subgraph
G′ of minimum cost such that for each terminal ti ∈ T ,
G′ has ki openly disjoint dipaths from r to ti. If all
of the connectivity requirements ki are the same, say,
ki = k,∀i, then we call this special case the directed
rooted k-connectivity problem. We also examine the so-
called undirected rooted connectivity problem, where the
graph is undirected.

We mention that requirements for arc disjoint (or,
edge disjoint) dipaths (or, paths) are also of interest.
But, for directed graphs, the two problems (with re-
quirements for openly disjoint dipaths, and for arc dis-
joint dipaths, respectively) are essentially equivalent.
For undirected graphs, the two problems are different,
since there is a 2-approximation algorithm for the prob-
lem that requires edge disjoint paths, see Jain [12],
whereas the problem that requires openly disjoint paths
was known to be at least as hard to approximate as the
DST problem, see Lando and Nutov [16]. For notational
convenience, we focus throughout on the requirements
for openly disjoint dipaths (or, paths), except where
mentioned otherwise.

1.1 Definitions and notation. We list some key
information here; most of this can be found in the texts
by Vazirani [21], or Williamson and Shmoys [22].

For a digraph H and a pair of vertices s, t of H, let
λH(s, t) denote the maximum number of arc disjoint s, t-
dipaths, and let κH(s, t) denote the maximum number
of openly disjoint s, t dipaths.

In the survivable network design problem (SNDP),



we are given a directed or undirected graph G =
(V,E) with costs on the edges and integral connectivity
requirements req(s, t) ≥ 0 for all pairs of vertices
s, t ∈ V × V . In the edge-connectivity version of the
problem (EC-SNDP), the goal is to find a minimum cost
subgraph G′ = (V,E′) of G such that G′ has req(s, t)
edge disjoint paths between every pair s, t of vertices,
that is, to find E′ ⊆ E of minimum cost such that
λG′(s, t) ≥ req(s, t), ∀(s, t) ∈ V × V . In the vertex-
connectivity version of the problem (VC-SNDP), G′

is required to have req(s, t) openly disjoint (internally
vertex disjoint) paths between every pair s, t of vertices,
that is, to find E′ ⊆ E of minimum cost such that
κG′(s, t) ≥ req(s, t), ∀(s, t) ∈ V × V .

The directed Steiner forest problem (DSF) is the
special case of SNDP on directed graphs where the
requirement of each pair s, t is zero or one, thus,
req(s, t) ∈ {0, 1},∀s, t ∈ V × V .

For a pair of vertices s, t ∈ V × V with positive
requirement (that is, req(s, t) > 0), we call s a source
and t a sink; in general, a vertex may be both a source
and a sink.

For subsets of vertices S and S′ of H, we denote the
set of arcs from S to S′ by δ+

H(S, S′) = {(x, y) ∈ H :
x ∈ S, y ∈ S′}. We use δ+

H(S) to denote δH(S, V − S),
and δ−H(S) to denote δH(V − S, S).

1.2 Summary of our results. Our results shed
light on some of the key questions on rooted Steiner
networks, and we resolve, at a qualitative level, a recent
question of Khanna [13] on the rooted k-connectivity
problem on undirected graphs. Our results are achieved
using standard techniques and building on previous
work (by others), together with some very simple ideas.
Our results fall under two headings: (1) results for O(1)
terminals, and (2) results for an arbitrary number of
terminals.

Consider the directed rooted connectivity problem
on an acyclic digraph. When the total connectivity
requirement is O(1), then it is easy to solve the problem
in polynomial time via dynamic programming. But
the natural linear programming (LP) relaxation is not
integral, and there is an example with two terminals
and total connectivity requirement of 3 that has an
integrality ratio of ≈ 6

5 . Based on this example, we
construct a gadget, and using that, together with a
result of Berman et al [3], we show that the problem
with large total connectivity requirement is APX-hard,
even on an acyclic digraph with two terminals. Formal
statements of these results follow.

Theorem 1.1. There is a polynomial-time algorithm
for the directed rooted connectivity problem on an acyclic
digraph, assuming that the total connectivity require-

ment is O(1).

Theorem 1.2. There is an example of the directed
rooted arc connectivity problem on an acyclic digraph
such that the natural LP relaxation has an integrality
ratio of 6

5 − ε, ∀ε > 0. This example has two sinks and
a total arc connectivity requirement of 3.

Theorem 1.3. The directed rooted arc connectivity
problem with two terminals (Two-Sinks-DST) is
APX-hard, even in acyclic digraphs with uniform costs.

The last result is in contrast with results of Feldman
and Ruhl [8], who designed a polynomial-time algorithm
for the DSF problem assuming that the number of
terminals is O(1).

Our second batch of results (arbitrary number
of terminals) is based on a very simple idea that
reduces the directed Steiner forest (DSF) problem to
the directed rooted k-connectivity problem, where k is
equal to the number of demands pairs. For the sake of
exposition, consider the arc-connectivity version of the
rooted problem in this paragraph, that is, the solution
subgraph should have k arc disjoint r, ti-dipaths for each
terminal ti. Moreover, assume that the demand pairs
(si, ti) of the DSF instance have no vertices in common,
that is, each vertex occurs in at most one demand pair.
The construction adds a new vertex r that we take
to be the root, and the arcs (r, si) for i = 1, . . . , q,
where q denotes the number of demand pairs; thus
r is directly connected to each source si of the DSF
instance. The intention is to give a mapping between
si, ti-dipaths of the DSF instance and r, ti-dipaths of the
rooted instance. Unfortunately, this does not work since
an r, ti-dipath in the rooted instance may not imply
an si, ti-dipath of the DSF instance. We circumvent
this difficulty by adding padding arcs and increasing
the connectivity requirement of each terminal ti. In
more detail, we add padding arcs (sj , ti),∀tj 6= ti, and
we fix the connectivity requirement to be q. Now, it
can be seen that there is a mapping between each si, ti-
dipath of the DSF instance and a set of q arc disjoint
r, ti-dipaths of the rooted instance. See Figure 5, and
for more details, see Section 3.1. Thus, the directed
rooted k-connectivity problem is at least as hard to
approximate as the DSF problem; the latter problem
is well known to be as hard to approximate as the label
cover problem (which has a hardness of approximation

threshold of 2log1−ε n, for any fixed ε > 0, assuming that
NP is not contained in DTIME(npolylog(n))).

One drawback of the above result is that the connec-
tivity parameter k is large, since k equals the number of
demand pairs in the DSF problem. We get an improved
hardness result for the directed rooted k-connectivity



problem by starting with a different problem and ap-
plying our construction with more care. Following a re-
sult of Chakraborty, Chuzhoy and Khanna [5], we start
with a special case of the label cover problem that has a
hardness threshold of 2γ` (where ` is a positive integer
and γ > 0 is a constant), such that the connectivity pa-
rameter k of the rooted instance can be fixed at 2O(`);
it follows that the hardness threshold for the rooted k-
connectivity problem is kε for some constant ε > 0.
Although the details have to be verified with care, the
key point is that the special case of the label cover prob-
lem (given by the construction of [5]) can be reduced to
an instance of the rooted k-connectivity problem using
the simple method described in the previous paragraph.
Formal statements of these results follow.

Theorem 1.4. The directed rooted k-connectivity prob-
lem is at least as hard to approximate as the label cover
problem.

Theorem 1.5. The directed rooted k-connectivity prob-
lem cannot be approximated within O(kε), for some
constant ε > 0, assuming NP is not contained in
DTIME(npolylog(n)).

We remark that Lando and Nutov [17] recently
gave an approximation-preserving reduction from an
instance of SNDP on a directed graph to an instance
of SNDP on an undirected graph; the size of the vertex
set and each positive connectivity requirement increase
by an additive term of n (the number of vertices of the
directed graph). By applying this result together with
Theorem 1.4 we get a label-cover hardness result for
the undirected rooted connectivity problem. But to get
stronger hardness results for the undirected problem, we
avoid the reduction of [17]. Instead, following results
of [5], we give a direct reduction from a special case
of the label cover problem to the undirected rooted
connectivity problem.

Theorem 1.6. The undirected rooted k-connectivity
problem cannot be approximated within O(kε), for some
constant ε > 0, assuming NP is not contained in
DTIME(npolylog(n)).

To the best of our knowledge, all previous hardness
results for (all variants of) the undirected rooted con-
nectivity problem were poly-logarithmic (of the form

Ω(logΘ(1) n)) or weaker. On the other hand, the best
approximation guarantees known for the undirected
rooted k-connectivity problem are of the form Õ(k), see
[4, 17, 18]. This prompted Sanjeev Khanna [13] to raise
the question of narrowing this gap. Our results have ad-
dressed Khanna’s question, and the gap has been nar-
rowed.

As a consequence, we also have a hardness of Ω(kε)
for the undirected subset k-connectivity problem, where
k does not depend on n. This is due to the result
of Laekhanukit (Appendix B in [15]); he showed that
the undirected rooted k-connectivity problem can be
reduced to the undirected subset k-connectivity problem
with the same connectivity requirement.

Theorem 1.7. The undirected subset k-connectivity
problem cannot be approximated within O(kε), for some
constant ε > 0, assuming NP is not contained in
DTIME(npolylog(n)).

Our results can also be extended to obtain hardness
results of Ω(|T |ε), for some fixed ε > 0, for directed
and undirected rooted k-connectivity problems and the
undirected subset k-connectivity problem.

Finally, we modify a construction (and analysis) of
Chakraborty et al [5] to show that the natural linear
programming (LP) relaxation for the directed rooted
k-connectivity problem has a large integrality ratio.

Theorem 1.8. The natural LP relaxation of the di-
rected rooted k-connectivity problem has an integrality
ratio of Ω̃(k).

1.3 Our techniques. We elaborate on the tech-
niques used to prove our second batch of results (ar-
bitrary number of terminals). All of these results are
obtained by starting from results/constructions of Dodis
and Khanna [7] or Chakraborty et al [5], and then
giving a reduction to an instance of the (directed or
undirected) rooted connectivity problem, by adding a
root vertex, and some padding vertices and padding
arcs/edges. Of course, these constructions have to be
analyzed carefully, but usually the analysis follows from
standard methods in the literature.

2 Directed rooted connectivity with O(1)
terminals

This section has our results on the directed rooted
connectivity problem in the special but important case
of O(1) terminals. Moreover, all of the hardness results
in this section apply to acyclic digraphs. When the
total connectivity requirement is O(1), then it is easy
to solve the problem in polynomial time via dynamic
programming. But the natural linear programming
(LP) relaxation is not integral, and there is an example
with two terminals and total connectivity requirement
of 3 that has an integrality ratio of ≈ 6

5 . Based on
this example, we construct a gadget, and using that,
together with a result of Berman et al [3], we show that
the problem with large total connectivity requirement
is APX-hard, even with only two terminals.



2.1 Acyclic digraphs with O(1) total connectiv-
ity requirements. Consider the directed rooted con-
nectivity problem on an acyclic digraph. This subsec-
tion shows the following: when the total connectivity
requirement is O(1), then the problem can be solved in
polynomial time via dynamic programming.

Theorem 1.1. There is a polynomial-time algorithm
for the directed rooted connectivity problem on an acyclic
digraph, assuming that the total connectivity require-
ment is O(1).

Proof. We assume that the digraph G = (V,E) is
layered. That is, the vertex set V can be partitioned
into layers V1, V2, . . . , Vq so that every arc goes from
layer Vi to Vi+1, for 1 ≤ i ≤ q−1. Moreover, we assume
that V1 = {r}, Vq = T , and every vertex is reachable
from r (using a dipath).

For each terminal tj ∈ T there must be kj openly
disjoint dipaths from r to tj . For each layer Vi we may
guess the kj vertices (intersection points) used by these
dipaths. Thus we have a collection of |T | sets, one set for
each terminal in T , and each set has size ≤ k. Over all
the terminals, there are at most |Vi|k·|T | ways to choose
such a collection. We then need to connect, at minimum
cost, each such collection of intersection points to the
terminals via dipaths that are openly disjoint for each
terminal (and its set in the collection); note that the
goal is to minimize the total cost, and not just the cost
for the openly disjoint dipaths for one terminal. This
can be done via dynamic programming, by solving for
collections in increasing order of distance from the layer
Vq = T ; we omit the details. The algorithm runs in
polynomial time, assuming that the total connectivity
requirement is O(1).

2.2 Integrality ratio for directed rooted
arc connectivity with two terminals. This sub-
section has our construction for the integrality ratio
for the directed rooted connectivity problem with total
requirement O(1); the digraph is acyclic.

Theorem 1.2. There is an example of the directed
rooted arc connectivity problem on an acyclic digraph
such that the natural LP relaxation has an integrality
ratio of 6

5 − ε, ∀ε > 0. This example has two sinks and
a total arc connectivity requirement of 3.

Proof. Consider the digraph in Figures 1 and 2 and its
associated arc costs; an arc labeled α has cost α, an
arc labeled β has cost β, and an unlabeled arc has cost
1. The problem is to find a minimum cost subgraph H
such that λH(r, t1) ≥ 1 and λH(r, t2) ≥ 2.

Assume that α = 2β and β ≥ 1; we need this
to ensure optimality of the integral solution discussed
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Figure 1: An integral solution.
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Figure 2: A fractional solution.

below. An optimal integral solution, with cost 2α +
2β + 6 = 6β + 6, is shown in red in Figure 1. To
see that this is optimal, observe that (i) if we select
three arcs of cost α then we need 7 more arcs, giving
a total cost of ≥ 3α + 7 = 6β + 7, and (ii) selecting
exactly two of the four arcs of cost α also produces a
solution of cost ≥ 2α + 2β + 7 = 6β + 7. On the other
hand, Figure 2 shows in red a fractional solution of cost
2α+ β + 7 = 5β + 7; each dotted red arc has value 1

2 in
the fractional solution.

Thus an integral solution has cost ≥ 6β + 6 while
a fractional solution has cost 5β + 7; hence, by taking
β to be sufficiently large, we get an integrality ratio of
6
5 − ε, ε > 0.

2.3 APX-hardness of directed rooted arc con-
nectivity. We show that the following special case of
the directed rooted arc connectivity problem is APX-
hard. In fact, our construction uses an acyclic digraph.

Problem 1. (Two-Sinks-DST) Given a digraph G
with cost c : E(G) → N, vertices r, t1, t2 ∈ V (G), and
arc connectivity requirements k1, k2 ∈ N, find a minimal
cost subgraph G′ of G, such that λG′(r, ti) = ki, i = 1, 2
(that is, G′ has ki arc disjoint r, ti-dipaths, for i = 1, 2).



We need the following result:

Theorem 2.1. (Berman, Karpinski, Scott [3])
For every 0 < ε < 1, it is NP-Hard to approximate
MAX-3SAT where each literal appears exactly twice,
within an approximation ratio smaller than 1016−ε

1015 .

Theorem 1.3. The directed rooted arc connectiv-
ity problem with two terminals (Two-Sinks-DST) is
APX-hard, even in acyclic digraphs with uniform costs.

Proof. We use a reduction from MAX-3SAT where
each literal appears exactly twice. Let C1, . . . , Cq be
q clauses of size 3 over variables in {X1, . . . , Xn}, where
each literal appears twice in C1, . . . , Cq (hence each
variable appears four times).

Our plan is to exhibit a polytime computable bijec-
tion between truth assignments φ : {X1, . . . , Xn} →
{>,⊥} for the MAX-3SAT instance, and so-called
canonical solutions F to the Two-Sinks-DST instance,
such that the cost of F is equal to βn+α, where α is the
number of clauses not satisfied by φ, and β is a constant
(whose value is given below).

To create the corresponding instance of Two-
Sinks-DST, we build a digraph G consisting of variable
gadgets, clause gadgets, and the three terminal vertices
r, t1 and t2. For each clause Cj , we have a clause gadget
consisting simply of two vertices uj and vj joined by an
arc (uj , vj). For each variable Xi, we have a variable
gadget, Hi, as shown in Figure 3.

2

2

2

2

b

a

x

r2

r1

⊥

>

Figure 3: A variable gadget. Arc costs equal 1, except
for the cost 2 arcs shown.

In addition to the arcs within the gadgets, we have
the following arcs:

• For every variable gadget Hi, we have arcs (r, r1),
(r, r2), and (x, t1).

• For every clause Cj , we have two parallel arcs
(uj , t2) and a single arc (vj , t2).

• For each (positive) occurrence of Xi in Cj , an arc
(⊥, uj) where ⊥ refers to the vertex of Hi,

• For each (negative) occurrence of Xi in Cj , an arc
(>, uj), where > refers to the vertex of Hi.

All the arcs have cost 1, except those explicitly
mentioned in the variable gadgets H1, . . . ,Hn. (Note
that we could reduce the problem to the case of uniform
costs by subdividing every arc of cost 2 into two arcs.)
An illustration of the construction is given in Figure 4.
Observe thatG is acyclic. Finally, we need to specify the
arc connectivity requirements for the instance of Two-
Sinks-DST. We fix req(r, t1) = n and fix req(r, t2) =
2n.

t1 t2r

Cp

C4

C3

C2

C1

⊥

>

Xn

X3

X2

X1

Figure 4: An example for the reduction used in Theo-
rem 1.3. Red arcs have cost 2, the other arcs have cost
1. The arc connectivity requirement is n for t1 and 2n
for t2.

Given this construction, we need to show how
solutions to the Two-Sinks-DST problem relate to
solutions to the satisfiability problem. Recall our goal of
showing a bijection between the truth assignments φ (of
the MAX-3SAT instance) and the canonical solutions
F (of the Two-Sinks-DST instance). Towards this
goal, let F be an inclusion-wise minimal solution to the
instance of Two-Sinks-DST obtained from a formula
on n variables. We explain our notion of canonical
solutions.

Notice that every variable gadget can and must
contribute to exactly two r, t2-dipaths, and to one r, t1-
dipath. Hence, in every variable gadget Hi, we have
λF ({r1, r2}, {>,⊥}) = 2. There are three possibilities:



(a) λF ({r1, r2},⊥) = 2, and there is a solution
{(r1, a), (a,⊥), (a, x), (r2,⊥)} of value 6,

(b) λF ({r1, r2},>) = 2, and there is a solution
{(r1,>), (r2, b), (b,>), (b, x)} of value 6,

(c) λF ({r1, r2},⊥) = λF ({r1, r2},>) = 1, and the best
solution has value 7.

We may assume that case (c) does not occur. Indeed,
given a variable gadget in case (c), we can switch it
to one of the two other cases, say (a). Then we must
replace a dipath from > to t2 (of length at least 2) by
a dipath from ⊥ to t2 (of length at most 3). Note that
we can always find a dipath from ⊥ to t2 in G − F
because the vertices of clause gadgets satisfy the Euler
condition: d+(v) = d−(v). Thus, the new solution is no
more expensive than the original one.

A solution F is canonical if F is inclusion-wise
minimal, case (c) does not occur for any gadget Hi,
and, moreover, for each clause Cj , (uj , vj) ∈ F if
and only if λF (uj , t2) = 3. This last requirement
implies that a canonical solution is determined by the
partial solution induced on the variable gadgets. Thus,
assignment φ and solution F are in correspondence
when φ(Xi) = > if and only if Hi is in case (b). Notice
that λF (uj , t2) = 3 if and only if the clause j is not
satisfied in the corresponding assignment. Dipaths from
a ⊥ or > vertex to t2 have length 2, except dipaths using
an arc (uj , vj) of a clause gadget. Hence, the cost of a
solution F corresponding to the truth assignment φ is
13n+ α, where α is the number of clauses that are not
satisfied by φ.

Finally, we derive a hardness threshold for Two-
Sinks-DST. Let ρ > 1 be the approximation ratio of a
polytime algorithm for Two-Sinks-DST. Consider the
instance of MAX-3SAT. Let OPT be the maximum
number of clauses satisfied by a truth assignment, and
let APP be the number of clauses satisfied by a truth
assignment corresponding to a ρ-approximate canonical
solution to the instance of Two-Sinks-DST. Recall
that the number of clauses q is equal to 4n

3 because
each variable appears exactly four times, and that
OPT ≥ 7q

8 = 7n
6 (because this is the expected value

of a random truth assignment). We will use the bound
13n+ q ≤ 86

7 OPT below. We deduce that

ρ ≥ 13n+ (q −APP)

13n+ (q −OPT)
= 1 +

OPT−APP

13n+ q −OPT

≥ 1 +
7

79

OPT−APP

OPT
= 1 +

7

79

(
1− γ−1

)
where γ = 1016−ε

1015 is the hardness threshold for MAX-
3SAT (Theorem 2.1). This proves that unless P = NP ,

Two-Sinks-DST is hard to approximate within a ratio
of 1 + 7

80264 − ξ, for any ξ > 0.

On the other hand, it is easy to design an algorithm
with approximation ratio 2: find a minimum cost flow
f1 of value k1 from r to t1, and a minimum cost flow f2

of value k2 from r to t2, and take each edge contained in
at least one of these two flows. The cost of the solution
is at most the sum of the cost of the two flows; but the
cost of either of the two flows is a lower bound on the
optimal value of the Two-Sinks-DST problem. Hence,
the cost of the solution is at most two times the optimal
value.

2.4 A related problem: undirected min-cost cy-
cle through three given vertices. This subsection
shows a connection between the undirected rooted con-
nectivity problem and the following problem whose com-
plexity status (polynomial-time solvable or not) is a
long-standing open question in the area of Combina-
torial Optimization.

Problem 2. (Min-cost Cycle on Three Vertices)
Given an undirected graph G with cost c : E(G) → N,
and vertices p, q, r ∈ V (G), find a minimum cost cycle
C of G such that C contains p, q, r (if such a cycle
exists).

We show that (a special case of) the undirected
rooted connectivity problem is closely related to the
above problem. The following problem is similar to
Problem 1, except the graph is undirected and the
requirement is for openly disjoint paths (not arc disjoint
dipaths).

Problem 3. (Undirected Two-Sinks with Req.(1,2))

Given an undirected graph G with cost c : E(G) → N,
and distinct vertices r, t1, t2 ∈ V (G), find a minimal
cost subgraph G′ of G, such that κG′(r, ti) = i, i = 1, 2
(that is, G′ has i openly disjoint r, ti-paths, for i = 1, 2).

Proposition 2.1. There is a polynomial-time reduc-
tion from the undirected Two-Sinks problem with re-
quirements (1,2) to the problem of finding a min-cost
cycle on three given vertices.

Proof. Consider an optimal solution to the above prob-
lem. In general, it consists of a cycle C∗ that contains
r and t2, and a path P ∗ between t1 and a vertex v∗ of
C∗. (Possibly, t1 = v∗ and P ∗ has zero edges.)

We can find an optimal solution by guessing the
vertex v∗, and then computing a min-cost cycle through
r, t2, v

∗, together with a min-cost path from v∗ to t1.
The subgraph with the minimum total cost, over all
choices of v∗, gives an optimal solution to Problem 3.



3 Hardness of directed rooted connectivity
with many terminals

This section has our hardness results for the (general)
directed rooted connectivity problem; there is no restric-
tion on the number of terminals.

3.1 Label cover hardness for rooted connectiv-
ity. We begin with a simple reduction that illustrates
our methods.

Theorem 1.4. The directed rooted k-connectivity
problem is at least as hard to approximate as the label
cover problem; the same hardness result applies to the
undirected rooted k-connectivity problem.

Proof. We give an approximation-preserving reduction
from the directed Steiner forest problem to the directed
rooted k-connectivity problem. The hardness bound
then follows from a result of Dodis and Khanna [7].
Recall that in the directed Steiner forest problem (DSF)
we are given a directed graph G = (V,E) with arc costs,
a set of sources S, a set of sinks T , and a set of demand
pairs D ⊆ S × T . The goal is to find a minimum cost
subgraph that has an s, t-dipath for every demand pair
(s, t) ∈ D.

First we may apply some basic operations to an
arbitrary instance of DSF to obtain an instance with a
simplified structure. Specifically, for each demand pair
(s, t) with req(s, t) = 1, we may add two new vertices
s′ and t′, and two new arcs (s′, s) and (t, t′) of zero
cost; we then replace the demand pair (s, t) with the
demand pair (s′, t′). Clearly, the resulting instance is
“equivalent” to the original one. Thus, we may assume
that:

• S and T are disjoint.

• For each source s, there is exactly one demand pair
(s, t) in D.

Now, given G, S and T , we construct an instance of
directed rooted k-connectivity. First, we construct an
auxiliary graph Ĝ. We add to G a root vertex r with
zero-cost arcs (r, s) to all sources s ∈ S. Then for each
demand pair (s, t), we add a padding arc of zero-cost
from each s′ ∈ S−{s} to t. We define the root (source)
to be r; the set of terminals is then the set of sinks T .
We set the connectivity requirements to be k = |S|. The
construction is illustrated in Figure 5.

To complete the proof, it can be verified that a
solution of the DSF instance maps to a solution of
the rooted k-connectivity instance with the same cost,
by adding the root r, all its incident arcs, and all of
the padding arcs. (Note that these additional arcs all
have zero cost.) Conversely, a solution of the rooted

s

t

r

Figure 5: The figure shows an example of a reduction
from DSF to the directed rooted k-connectivity prob-
lem. The instance of DSF is on the left, and the instance
of directed rooted k-connectivity is on the right. The
blue vertices are the sources and sinks (respectively, root
and terminals). The padding arcs incoming to a par-
ticular terminal t are indicated in green, but all other
padding arcs are omitted. The red dipath from the root
to t corresponds to an s, t-dipath of the DSF instance.

connectivity instance maps to a solution of the DSF
instance with the same cost, by removing the root r,
its incident arcs, and all of the padding arcs. Observe
that a solution subgraph of the DSF instance has an s, t-
dipath, where (s, t) ∈ D, if and only if the corresponding
solution subgraph of the rooted connectivity instance
has k openly disjoint r, t-dipaths.

The above result (on the directed rooted k-
connectivity problem), together with the reduction of
Lando and Nutov [16], gives a similar hardness bound
for the the undirected rooted k-connectivity problem.

3.2 kε-hardness for directed graphs. In this sec-
tion, we give a reduction from the label cover problem
to the directed rooted k-connectivity problem, to prove
the following result.

Theorem 1.5. The directed rooted k-connectivity
problem cannot be approximated to within O(kε), for
some constant ε > 0, assuming that NP is not contained
in DTIME(npolylog(n)).

As a starting point, we use an instance of the
label cover problem obtained from MAX-3SAT(5) with
` repetitions.

3.2.1 The label cover problem and MAX-
3SAT(5). In the minimum total label cover problem
(the label cover problem, in short), we are given, a d-
regular bipartite graph G = (U,W,E), a set of labels
L, and a constraint (or a set of admissible pairs of la-
bels) Πe ⊆ L × L for each edge e ∈ E. A labeling f
is a function f : (U ∪W ) → 2L assigning a subset of
labels to each vertex of U and W . We say that f cov-
ers an edge (u,w) ∈ E if there are labels a ∈ f(u) and
b ∈ f(w) such that (a, b) ∈ Π(u,w). The cost of the la-
beling f is the total number of labels assigned by f , i.e.,



∑
v∈(U∪W ) |f(v)|. The goal is to find a minimum cost

labeling that covers all the edges.
In the MAX-3SAT(5) problem, we are given a for-

mula φ on N variables x1, x2, . . . , xN and 5N/3 clauses
C1, C2, . . . , C5N/3, where each clause has 3 literals, and
each variable appears in exactly 5 clauses. The goal is
to find an assignment that maximizes the number of sat-
isfied clauses. By a standard reduction, MAX-3SAT(5)
with N variables can be reduced to the label cover prob-
lem with ` repetitions with the following parameters; see
[22, Chapter 16.4] for more details.

|U | = |W | = NO(`) |L| = 10` d = 15`

Theorem 3.1. (Parallel Repetition Theorem [20, 1])

There exists a constant γ > 0 (independent of `) such
that the minimum total label cover problem obtained
from instances of MAX-3SAT(5) with ` repetitions
cannot be approximated within a factor of 2γ`.
(For a constant `, this holds if P 6= NP . For
` = polylog(n), this holds under the assumption that
NP * DTIME(npolylog(n)).)

3.2.2 The reduction. We now present a reduction
from instances of the label cover problem obtained from
MAX-3SAT(5) with ` repetitions to instances of the
directed rooted k-connectivity problem. For notational
convenience, let U = {u1, u2, . . . , uq}, and let each
vertex ui have its own set of labels, Ai; similarly, let
W = {w1, w2, . . . , wq}, and let each vertex wj have
its own set of labels, Bj . We start by creating a

directed bipartite graph Ĝ = (A,B, Ê), where A =
A1 ∪ A2 ∪ . . . ∪ Aq, B = B1 ∪ B2 ∪ . . . ∪ Bq and

Ê = {(a, b) : a ∈ Ai, b ∈ Bj , (a, b) ∈ Πui,wj}. The

cost of every arc of Ĝ is zero. Note that arcs in Ĝ are
directed from A to B. Next, we add to Ĝ a set of vertices
U and W . For each vertex ui ∈ U , for i = 1, 2, . . . , q, we
add to Ĝ an arc (ui, a) with cost 1 for each a ∈ Ai. For
each vertex wj ∈W , for j = 1, 2, . . . , q, we add to Ĝ an
arc (b, wj) with cost 1 for each b ∈ Bj . Next, we add to

Ĝ a root vertex r and an arc (r, ui) of zero cost, for each
vertex ui ∈ U . For each edge (ui, wj) ∈ E of the label

cover instance, we add a terminal ti,j and add to Ĝ a
zero-cost arc (wj , ti,j). We denote the set of terminals
by T = {ti,j : (ui, wj) ∈ E}. For each terminal ti,j , we
add padding arcs (ui′ , ti,j) for all i′ = 1, 2, . . . , q such
that i′ 6= i and (ui′ , wj) ∈ E. In other words, there are
padding arcs incoming to ti,j and outgoing from every
neighbor of wj in G except for ui (G is the bipartite
graph of the label cover instance). Finally, we set k to
be the degree of a vertex of W , i.e., k = d = 15`. The
construction is illustrated in Figure 6 where, for ease of
presentation, we use ` = 1 and use a label cover instance
obtained from MAX-2SAT instead of MAX-3SAT(5).

w1

w2

u1

u2

u3

r t21

u1

u2

u3

w1

w3

t11

t32

t22

Figure 6: The figure shows an example of a reduction
from the label cover problem to the directed rooted k-
connectivity problem. The instance of the label cover
problem is on the left, and the instance of the directed
rooted k-connectivity problem is on the right. The blue
vertices are the root vertex and the terminals. The
green arcs are the padding arcs. The red path is an s, t-
dipath corresponding to a satisfying labeling of (u2, w1).

Construction size: The above construction has
NO(`) vertices, and the connectivity requirement is k =
15`. Since the hardness of the label cover problem is
2γ` for some fixed γ > 0, this implies kε-hardness for
the directed rooted k-connectivity problem, for some
fixed ε > 0.

Next, we will show the correctness of the construc-
tion. Going from a solution to the label cover instance
to a solution to the rooted k-connectivity instance is
straightforward. The key idea for the other direction is
that Ĝ has a dipath from a vertex ui ∈ U to a terminal
ti,j ∈ T iff there is an edge {ui, wj} in G (the bipartite

graph of the label-cover instance); thus, Ĝ has d = k
vertices ui′ such that ti,j is reachable from each. More-
over, all of these vertices except ui have an outgoing
padding arc with head at ti,j , and hence, we have (k−1)
openly disjoint dipaths from r to ti,j via the vertices ui′ .
The remaining r, ti,j-dipath uses the one remaining ver-
tex in U that is adjacent to wj in G, namely, ui, and
this gives a canonical path of the form r, ui, a, b, wj , ti,j .

Completeness: The solution f to the label cover
instance maps to a solution Ĝ′ to the directed rooted
k-connectivity instance by adding all the zero-cost arcs,
and arcs corresponding to the chosen labels. That is,
for each vertex ui ∈ U , we add to Ĝ′ an arc (ui, a), if
a label a is assigned to ui. Similarly, for each vertex
wj ∈ W , we add to Ĝ′ an arc (b, wj) if a label b ∈ Bj
is assigned to wj . Clearly, the cost of Ĝ′ is equal to the
cost of f .

For the feasibility, observe that a labeling (a, b) that
covers an edge {ui, wj} ∈ E corresponds to an s, ti,j-

dipath s, ui, a, b, wj , ti,j in Ĝ′. By the construction, Ĝ
has (k − 1) other openly disjoint r, ti,j-dipaths of the



form s, ui′ , ti,j , where i′ 6= i and {ui′ , wj} ∈ E. All of

these s, ti,j-dipaths are openly disjoint. Thus, Ĝ′ has k
openly disjoint r, ti,j-dipaths for each terminal ti,j ∈ T ;

hence, Ĝ′ satisfies the connectivity requirements.

Soundness: The solution Ĝ′ to the directed rooted
k-connectivity instance maps to a solution to the la-
bel cover instance by choosing labels corresponding to
positive-cost arcs of Ĝ′. That is, we have a label
a ∈ f(ui) if (ui, a) is in Ĝ′, where ui ∈ U and a ∈ Ai.
The label for each vertex of W is obtained similarly.
Clearly, f and Ĝ′ have the same cost.

To show the feasibility of f , we have to show that
f covers all the edges. Consider an edge {ui, wj} of the

label cover instance. Assume w.l.o.g. that Ĝ′ contains
all the zero-cost arcs. Observe that the terminal ti,j is

incident to k arcs in Ĝ′, where one is the arc (wj , ti,j)
and the others are the padding arcs (ui′ , ti,j), where
i′ 6= i, and ui′ is adjacent to wj in G. We may assume
that each padding arc incident to ti,j is in an r, ti,j-
dipath of the form r, ui′ , ti,j ; this gives (k − 1) openly
disjoint r, ti,j-dipaths, and moreover, this ensures that

the k-th r, ti,j-dipath of Ĝ′ avoids all of the vertices
ui′ , i

′ 6= i, that are adjacent to wj in G. It follows that

the k-th r, ti,j-dipath of Ĝ′ uses the arc (wj , ti,j), hence,
it is a canonical path of the form r, ui, a, b, wj , ti,j , where
a ∈ f(ui), b ∈ f(wj) and (a, b) ∈ Πui,wj . Thus, f covers
the edge {ui, wj} of G. Therefore, f is feasible to the
label cover problem.

3.3 kε-hardness of undirected rooted connec-
tivity. This subsection has our hardness result for the
rooted k-connectivity problem on undirected graphs.

Theorem 1.6. The undirected rooted k-connectivity
problem cannot be approximated to within O(kε), for
some constant ε > 0, assuming that NP is not contained
in DTIME(npolylog(n)).

3.3.1 Construction. The construction is adapted
from the hardness construction of VC-SNDP by
Chakraborty, Chuzhoy and Khanna [5]. At a high level,
we use a construction similar to the construction used in
the previous subsection (to show the hardness of the di-
rected rooted k-connectivity problem). Unfortunately,
there are difficulties with undirected graphs; one diffi-
culty is that a path in an undirected bipartite graph
may follow a “zig zag” pattern; in other words, we may
have illegal paths that cannot be decoded to a feasible
solution to the label cover problem. We handle these dif-
ficulties by adding padding vertices and padding edges,
and then fixing the connectivity parameter k such that
the first (k − 1) paths block all possible illegal paths,

thus imitating the construction for directed graphs.
We start with an instance of the label cover problem

derived from MAX-3SAT(5) with ` repetitions: a d-
regular bipartite graph G = (U,W,E), a set of labels
L, and a constraint Πui,wj on each edge {ui, wj} ∈ E.
Moreover, we use a well-known additional property of
such label cover instances. This is called the “star
property” and it asserts that the bipartite subgraph
induced on Ai, Bj by Πui,wj is a collection of vertex-
disjoint stars whose centers are in Ai; see Kortsarz et al
[14, Section 2.1] and Feige [9, Section 2.2].

We construct an instance Ĝ = (V̂ , Ê) of the undi-
rected rooted k-vertex connectivity problem as follows.

• For each vertex ui ∈ U , we add to Ĝ a vertex ui and
a set of vertices Ai corresponding to labels of ui.
Then we join ui to each vertex a ∈ Ai by an edge
{ui, a} with cost 1. Each edge {ui, a} corresponds
to a label a.

• For each vertex wj ∈ W , we add to Ĝ a vertex
wj and a set of vertices Bj corresponding to labels
of wj . Then we join wj to each vertex b ∈ Bj
by an edge {wj , b} with cost 1. Each edge {wj , b}
corresponds to a label b.

• For each edge {ui, wj} ∈ E, we add to Ĝ a terminal
ti,j and join ti,j to wj by a zero-cost edge.

• For each pair (Ai, Bj) with {ui, wj} ∈ E, we add
a zero-cost edge {a, b} for a ∈ Ai and b ∈ Bj if
(a, b) ∈ Πui,wj .

• For each edge {ui, wj} ∈ E, we add to Ĝ a clique
Xi,j with zero-cost edges. The size of Xi,j will
be specified later. Then we add a zero-cost edge
joining each vertex of Xi,j to ui.

• We add a root vertex r to Ĝ and add a zero-cost
edge joining r to each vertex of Xi,j for all i, j.

This completes the base construction. It remains to
add more padding vertices and edges to Ĝ and to specify
the size of Xi,j . We define the padding of each terminal
ti,j in terms of three sets of vertices, Qi,j , Yi,j and Zi,j .
All vertices of Yi,j and Zi,j are chosen from amongst the
current set of vertices, and the set Qi,j consists of new
vertices. The padding edges are meant to ensure that
any solution contains a path ui, a ∈ Ai, b ∈ Bj , wj , tij ,
which we call a canonical path, for any edge {ui, wj} of
G.

For the sake of presentation, we write ij to mean
an edge {ui, wj} of G. We define the distance between
two edges e and e′ of G to be their distance in the line



graph of G, and denote it by dist(e, e′). Hence ij and
i′j′ are at distance 2 if ij′ or i′j is an edge of G.

We define the padding in two steps. First, we

need the set Z
(1)
i,j to block possible r, ti,j-paths that use

vertices of Ai′ with i 6= i′ or of Bj′ with j 6= j′. We
define

Z
(1)
i,j =

 ⋃
i′j∈E,i6=i′

Ai′

 ∪
 ⋃
ij′∈E,j 6=j′

Bj′


Then we add zero-cost padding edges {x, z}, {z, ti,j} for

all x ∈ Xi,j and z ∈ Z(1)
i,j .

By adding these padding edges for every ij ∈ E, we
may create new paths to Ai (or Bj) from some Xi′,j′ or
ti′,j′ . For example, consider i′j′ ∈ E, and also assume
ij′ ∈ E. By construction, we add padding edges from
Xi′,j′ and ti′,j′ to Ai. This creates non-canonical paths
going to ti,j . However, this occurs only for pairs ij and
i′j′ that are at distance two from each other. To block
these paths, we define more padding vertices to contain
all Xi′,j′ and ti′,j′ such that dist(ij, i′j′) ≤ 2. This
does not create further difficulties because the distance
function is symmetric. We define two sets of padding

vertices Z
(2)
i,j and Yi,j as follows.

Z
(2)
i,j = {ti,j : dist(ij, i′j′) ∈ {1, 2}}

Yi,j =
⋃

i′j′∈E : dist(ij,i′j′)∈{1,2}

Xi′,j′

We handle Z
(2)
i,j by adding zero-cost padding edges

{x, z}, {z, ti,j} for all x ∈ Xi,j and z ∈ Z(2)
i,j . We handle

Yi,j by adding zero-cost padding edges {y, ti,j} for all
y ∈ Yi,j .

Then we define Zi,j = Z
(1)
i,j ∪ Z

(2)
i,j . Thus we have

two sets of padding vertices Zi,j and Yi,j for each edge
ij (or, {ui, wj}) of G; the reason is that the size of Xi,j

depends on Zi,j but is independent of Yi,j ; in fact, we
fix |Xi,j | = 1 + |Zi,j |, see below.

One more goal of the construction has to be han-
dled: we want to ensure that the connectivity require-
ment is the same for every terminal. To handle this, we
add a set of new vertices Qi,j for each terminal ti,j and
add zero-cost edges {r, q} and {q, ti,j} for each vertex
q ∈ Qi,j .

To finish, we have to specify the size of Xi,j and
Qi,j for every edge ij ∈ E, and select the connectivity
requirement k. For each terminal ti,j , we want the first
(k − 1) r, ti,j-paths to be padding paths (of the form
r, Yi,j , ti,j or r,Xi,j , Zi,j , ti,j) and the k-th r, ti,j-path to
contain a canonical path, i.e., it contains a subpath of

Xi'',j

ti,j

Xi,j

Ai

Bj

i Xi'',j''

Ai''

Bj''

ti'',j''ti'',j

i''

j j''

i'

j'

Xi,j'Xi',j'

Ai'

Bj'

ti',j'ti,j'

Figure 7: An illustration of the padding construction.
Dotted rectangles denote sets added to Yi,j . Dotted
circles denote sets added to Zi,j .

the form ui, Ai, Bi, wj , ti,j . Thus, we set the size of Xi,j

to be |Zi,j | + 1 so that we have one vertex of Xi,j for
the k-th path, and we set the connectivity requirement
to be k = max(i,j)∈E(|Xi,j | + |Yi,j |). Now, it is clear
that we have to set |Qi,j | = k − (|Xi,j | + |Yi,j |). This
completes the construction.

Thus, the set of neighbors of ti,j in the input graph

Ĝ is {wj} ∪ Zi,j ∪ Yi,j ∪Qi,j . Hence, ti,j has exactly k
neighbors.

We make some observations. Consider an edge
ij of G. If a padding edge is incident to Ai (or, Bj),
then the other end of the padding edge is either some
terminal ti′,j′ or a vertex in some set Xi′,j′ ; moreover,
we have Ai ⊆ Zi′,j′ (or, Bj ⊆ Zi′,j′); moreover, we
also have either ti′,j′ ∈ Zi,j or Xi′,j′ ⊆ Yi,j Figure 7
illustrates the padding.

Construction size: Now, we have to calculate the
size of Ĝ and the connectivity requirement k. Recall
that we obtain the instance of the label cover problem
from the instance of Max-3SAT(5) with ` repetitions
that has the following properties: |U | = |W | = NO(`),
R = |Ai| = |Bj | = 10` for all i, j and d = 15`. The next
lemma shows that k is 2O(`).

Lemma 3.1. The value of k is 2O(`).

Proof. Recall that the graph G of the label cover
instance is a d-regular graph. Thus, for each edge ij
of G, the number of other edges at distance 1 of ij is
at most 2d − 2, and the number of edges at distance 2
is less than 2d2. We deduce immediately that |Zi,j | <
2dR + 2d + 2d2, |Xi,j | = 1 + |Zi,j | ≤ 2dR + 2d + 2d2,
and thus |Yi,j | ≤ 2(d + d2)(2dR + 2d + 2d2). Because
|Xi,j | = |Zi,j |+ 1, and k ≤ |Xi,j |+ |Yi,j | for some edge
ij, we get k = 2O(`).

The hardness of the label cover problem is 2γ`,
for some fixed γ > 0, while k = 2O(`). Thus, we



have kε-hardness for the undirected rooted k-vertex
connectivity problem, for some fixed ε > 0. It remains
to prove the completeness and soundness.

Completeness: Given a solution f to the label
cover instance, we obtain a solution G′ to the undi-
rected rooted k-vertex connectivity instance by taking
all zero-cost edges and taking edges {ui, a} and {wj , b}
corresponding to the chosen labels. Clearly, the cost of
G′ and f are the same. Consider a terminal ti,j ∈ T .
By construction, we have |Yi,j |+ |Zi,j |+ |Qi,j | = k − 1
and |Xi,j | = |Zi,j | + 1. Moreover, all the vertices of
Yi,j , Zi,j , Qi,j and Xi,j are distinct. Thus, we have
a total of (k − 1) openly disjoint r, ti,j-paths, where
there are |Yi,j | paths of the form r, Yi,j , ti,j , |Xi,j | − 1
paths of the form r,Xi,j , Zi,j , ti,j , and |Qi,j | paths of
the form r,Qi,j , ti,j . Since |Xi,j | = |Zi,j | + 1, we have
one vertex x ∈ Xi,j not used by any of these paths.
As all edges of G are covered by the labeling f , we
have the k-th r, ti,j-path r, x, ui, a, b, wj , ti,j , where
a ∈ f(ui), b ∈ f(wj) and (a, b) ∈ Πui,wj . The k-th
path has no common vertices with the other paths ex-
cept r and ti,j . Thus, the connectivity requirement for
each terminal ti,j is satisfied, and the solution is feasible.

Soundness: Given a solution G′ to the undirected
rooted k-vertex connectivity problem instance, we con-
struct a solution f to the label cover instance by choos-
ing labels corresponding to edges {ui, a} and {wj , b} of
G′. Clearly, the cost of f is the same as the cost of
G′. To show that f covers all the edges of G, it suf-
fices to show that there is a canonical subpath of the
form ui, Ai, Bj , wj , ti,j for every terminal ti,j . Consider
a terminal ti,j . Because G′ is feasible, there are k openly
disjoint paths from r to ti,j . Moreover, recall that the

set of neighbors of ti,j in the input graph Ĝ is exactly
{wj} ∪ Zi,j ∪ Yi,j ∪ Qi,j , and the number of neighbors
is exactly k. Hence, all these vertices must be used by
distinct paths, and the path P using wj cannot intersect
Zi,j ∪ Yi,j ∪ Qi,j . We show that P is a canonical path
by proving the next lemma.

Lemma 3.2. Consider any edge ij = {ui, wj} of G. Let
Si,j denote the set {wj , ti,j} ∪ Ai ∪ Bj. Let Ci,j =
{ui}∪Zi,j ∪Yi,j ∪Qi,j. There is no edge leaving Si,j in

the graph Ĝ−Ci,j, that is, every edge of Ĝ with exactly
one end in Si,j has its other end in Ci,j.

Proof. In our proof, we use the following fact that holds
for edges ij and i′j′ of G: Ai ⊆ Zi′,j′ or Bj ⊆ Zi′,j′

implies that Xi′,j′ ⊆ Yi,j and ti′,j′ ∈ Zi,j , because we
must have dist(ij, i′j′) ∈ {1, 2}.

We simply perform a breadth-first search in Ĝ−Ci,j
from ti,j .

• The only vertex adjacent to ti,j is wj .

• The vertices of level 2 are precisely Bj because any
terminal adjacent to ti,j is in Zi,j .

• The vertices of level 3 are Ai, since any Ai′ with
i′j ∈ E is contained in Zi,j ; moreover, any Xi′,j′ or

ti′,j′ with Bj ⊆ Z(1)
i′,j′ is contained in Yi,j or Zi,j .

• In Ĝ, Ai is adjacent to the following sets: Bj , Bj′

with ij′ ∈ E, and Xi′,j′ , {ti′,j′} with Ai ⊆ Z
(1)
i′,j′ .

But, by definition, all these sets are in Zi,j or Yi,j .
Hence, the search stops here.

Since this instance is reduced from the instance of
the label cover problem with the star property, edges
between Ai and Bj form disjoint stars. This means
that P cannot go from Ai to Bj and then back to Ai
and Bj again. So, any r, ti,j-path in Ĝi,j must contain a
canonical subpath ui, a, b, wj , ti,j , where a ∈ Ai, b ∈ Bj ,
and (a, b) ∈ Πui,wj . Thus, the labeling f covers the edge
{ui, wj} ∈ E. Therefore, f is feasible for the label cover
problem, and the cost of f is the same as the cost of G′,
completing the soundness proof.

4 Integrality ratio for directed rooted
connectivity

In this section, we modify a construction (and analy-
sis) of Chakraborty, Chuzhoy and Khanna [5] to show
that the natural linear programming (LP) relaxation
for the directed rooted connectivity problem has an in-
tegrality ratio of at least Ω(k/ log k). The construction
of Chakraborty, Chuzhoy and Khanna [5] gives an in-

tegrality ratio of Ω̃(k
1
3 ) for VC-SNDP. We restate the

main result of this section.

Theorem 1.8. The natural LP relaxation of the
directed rooted k-connectivity problem has an integrality
ratio of Ω̃(k).

In fact, we prove this result for the special case
of the rooted connectivity augmentation problem, where
the zero-cost arcs form an initial graph G0 = (V,E0)
that already has (k − 1) openly disjoint r, t-dipaths for
each terminal t ∈ T . We denote the set of positive-
cost arcs (or augmenting arcs) by Eaug. Consider the
initial graph G0. For subsets of vertices S and S′,
we denote the set of out-arcs of Eaug from S to S′

by δ+
Eaug (S, S′) = {(x, y) ∈ Eaug : x ∈ S, y ∈ S′};

moreover, for S ⊆ V , we denote the set of out-neighbors
of S in G0 by Γ+

G0
(S) = {y : (x, y) ∈ E0, x ∈ S, y /∈ S},

and the out-vertex complement of S by S∗ = V − (S ∪
Γ+
G0

(S)).

Let S = {S ⊆ V : r ∈ S, S∗∩T 6= ∅ and |Γ+
G0

(S)| =
k−1}. The following is an LP relaxation for the directed



rooted connectivity augmentation problem.

(LP) min
∑
e∈E

cexe

s.t.
∑

e∈δ+
Eaug

(S,S∗)

xe ≥ 1 ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ Eaug

4.1 Construction. The construction of [5]
starts with a bipartite graph H = (A,B,E).
Let A1, A2, . . . , Aq be a partition of A, and let
B1, B2, . . . , Bq be a partition of B, where |Ai| = p, ∀i
and |Bj | = p, ∀j. For each pair (Ai, Bj), we add a
random perfect matching Πi,j between Ai and Bj . All
of these edges have cost zero, i.e., each edge in each
perfect matching has cost zero. Next, for each Ai, we
add a vertex ui and add an edge {ui, a} joining ui to
every vertex a ∈ Ai. Similarly, for each Bj , we add a
vertex wj and add an edge {b, wj} joining wj to every
vertex b ∈ Bj . All of these edges have cost one.

Our construction uses a directed graph; we start
with H and direct every edge between A and B from A
to B; moreover, we direct every edge of the form {ui, a}
from ui to a, and every edge of the form {b, wj} from b
to wj .

Then we add a root vertex r and join r to every
vertex ui by a zero-cost arc (r, ui). For each pair
(Ai, Bj), we add a terminal ti,j and join wj to ti,j by a
zero-cost arc (wj , ti,j). Finally, we add padding arcs of
zero cost. For each terminal ti,j , we add arcs (ui′ , ti,j)
for all i′ 6= i. We fix the connectivity requirement k = q
and fix the parameter p = k2; recall that q denotes the
number of sets Ai (or Bj) in the partition of A (or B),
and that p denotes |Ai| = |Bj |,∀i,∀j.

It can be seen that the zero-cost arcs form a graph
G0 = (V,E0) that has (k − 1) openly disjoint r, ti,j-
paths for every terminal ti,j , and the instance has a
feasible solution. Thus, the instance is valid for the
rooted connectivity augmentation problem.

The bipartite graph H in the construction may be
viewed as a special case of the label cover problem,
where we are given a complete bipartite graph and each
constraint Πi,j forms a perfect matching on the set of
labels.

4.2 Fractional solution. We show that there is a
fraction solution of cost 2k, giving an upper bound on
the LP solution. To see this, we assign xe = 1/k2 for
all positive-cost arcs e, and we have xe = 1 for all zero-
cost arcs e. Thus the cost of x is 2k. Let us verify
that x is a feasible solution of the LP, that is, it satisfies
all of the constraints. Consider any terminal ti,j : we
have k − 1 openly disjoint dipaths from r to ti,j of the

form r, ui′ , ti,j , where i′ 6= i, using the zero-cost arcs;
moreover, we have a fractional flow of one unit from
r to ti,j via the k2 edges of the perfect matching Πi,j ,
where each flow-path has the form r, ui, a, b, wj , ti,j and
supports 1/k2 units of flow; note that each flow-path
has two arcs of unit cost; it can be seen that the flow
through each vertex is ≤ 1. Hence, the LP has a feasible
solution of cost 2k.

4.3 Integral solution. We show that there exist
instances such that every integral solution has cost
≥ Ω̃(k2). Our analysis is similar to that of [5, Section 6].
The analysis uses the following fact. Consider any
terminal ti,j , and observe that the instance has (k −
1) openly disjoint r, ti,j-dipaths of the form s, ui′ , ti,j ,
where i′ 6= i, and each of these dipaths has cost zero.
But the k-th dipath from r to ti,j must be a canonical
path of the form s, ui, a, b, wj , ti,j , where (a, b) ∈ Πi,j ,
and it has two arcs of unit cost.

Let γ be a parameter (below, we fix γ = k/(2 log k)).
We consider the integral solutions of cost less than γk/2,
and focus on any one of these integral solutions G′.
Our plan is to examine the probability space of all
input instances generated by the random choice of the
perfect matchings Πi,j between Ai and Bj , for all i, j,
and to derive an upper bound on the probability that
a random instance admits G′ as a feasible solution, i.e.,
κG′(r, ti,j) ≥ k, ∀i, j. It turns out that this probability
is so small that even when we take the union bound over
all the possible subset of edges of cost ≤ γk/2, the total
probability is still less than 1. This implies that there
are input instances (in the probability space) that have
no integral solutions of cost less than γk/2.

Consider a subgraph G′ of cost ≤ γk/2. Assume
w.l.o.g. that all zero-cost arcs are included in G′. Let us
say that we buy a vertex a ∈ Ai (or, b ∈ Bj) if (ui, a) (or,
(b, wj)) is inG′. The number of sets Ai, i = 1, . . . , k such
that we buy at least γ vertices from each such set is at
most k/2, because we incur a cost of one for buying each
vertex in any Ai and the total cost (of G′) is less than
γk/2. The same applies for the sets Bj , j = 1, . . . , k.
Thus, we have at least k2/4 pairs (Ai, Bj) such that we
bought less than γ vertices from each of Ai and Bj . We
call such a pair a bad pair.

For each vertex-pair (a, b), where a ∈ Ai and b ∈ Bj ,
the probability that (a, b) ∈ Πi,j is 1/|Bj | = 1/|Ai| =
1/k2. Thus, for each bad pair (Ai, Bj), the probability
that we can form a canonical path, i.e., we bought both
a and b for a pair (a, b) ∈ Πi,j , is less than γ2/k2.
The perfect matchings Πi,j are independently chosen.
Thus, the probability that we can form a canonical path
for a particular bad pair is less than γ2/k2, and the
probability that we can form canonical paths for all



the bad pairs is less than (γ/k)k
2/2. In other words,

a random instance admits G′ as a feasible solution with
probability less than (γ/k)k

2/2.
Now, we estimate the number of possible subset of

edges with cost at most γk/2. The number of such
solutions is at most

γk/2∑
i=1

(
2k3

i

)
≤
γk/2∑
i=1

(2k3)i ≤ 2(2k)3γk/2.

Setting γ = k/(2 log k) and applying union bound,
the probability that there is a feasible integral solution
of cost at most γk/2 is upper bounded by

2(2k)
3γk
2 ·

(γ
k

)k2/2
= 2(2k)

3k2

2 log 2k · (log 2k)
−k2
2 < 1

To see that the last inequality holds, we take
logarithms on both sides. It gives

log 2+3
k2

2
−k

2

2
log log 2k < log 1 = 0 for large enough k.

Thus, there exist instances that have no integral
solutions of cost ≤ γk/2; that is, every integral solution
has cost > k2/(2 log 2k). As these instances have LP
solutions of cost at most 2k, the integrality ratio of (LP)
is at least Ω(k/ log k). This proves Theorem 1.8.
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