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Abstract

Gomory-Hu (GH) Trees are a classical sparsi�cation technique for graph connectivity. For
an edge-capacitated undirected graph G = (V,E) and subset Z ⊆ V of terminals, a GH Tree is
an edge-capacitated tree T = (Z,E(T )) such that for every u, v ∈ Z, the value of the minimum
capacity uv cut in G is the same as in T . It is well-known that there does not always exist a
GH tree which is a subgraph (or minor if Z 6= V ) of G. We characterize those graph-terminal
pairs (G,Z) which always admit such a tree. We show that these are the graphs which have no
terminal-K2,3 minor, that is, aK2,3 minor whose nodes each corresponds to a terminal. We then
show that the pairs (G,Z) which forbid such K2,3 terminal-minors arise, roughly speaking, from
so-called Okamura-Seymour instances, planar graphs whose outside face contains all terminals.
One consequence is a result on cut-su�cient pairs (G,H), that is, multi�ow instances where the
cut-condition is su�cient to guarantee a multi�ow for any capacity/demand weights on G/H.
Our results characterize the pairs (G,Z) where G is a graph, Z ⊆ V (G), such that (G,H) is
cut-su�cient for any demand graph H on Z.

Keywords. Graph theory, Gomory-Hu Tree, connectivity, cut condition.

1 Introduction

The notion of sparsi�cation is ubiquitous in applied mathematics and combinatorial optimization
is no exception. For instance, shortest paths to a �xed root node in a graph G = (V,E) are usually
stored as a tree directed towards the root. Another classical application is that of Gomory-Hu (GH)
Trees [4] which encode all of the minimum cuts of an edge-capacitated undirected graph G = (V,E),
with capacities c : E → R+. For each s, t ∈ V , we denote by λ(s, t) the capacity of a minimum
cut separating s and t. Equivalently λ(s, t) is the maximum �ow that can be sent between s, t in G
with the given edge capacities. Gomory and Hu showed that one may encode the O(n2) minimum
cuts by a tree on V .

*guyslain.naves@univ-amu.fr, Aix-Marseille Université, LIS, CNRS UMR 7020; fbrucesh@cs.ubc.ca (communicat-
ing author), University of British Columbia
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A spanning edge-capacitated tree for G is a spanning tree T = (V,E′) together with a capacity
function c′ : E′ → R+. Any edge e ∈ E′ induces a fundamental cut G(L,R), where L and R are
the node sets of the two components of T \ e. Here we use δG(L,R) to denote the associated cut in
G, that is, δG(L,R) = {e ∈ E(G) : e has one endpoint in L and the other in R}, and c(G(L,R)) to
denote the sum of the capacities of the edges of δG(L,R). We may omit the subscript if the context
is clear and also just write δ(L) and c(δ(L)). The de�nition holds, however, even for disjoint L,R
which do not partition V .

De�nition 1.1. Let T be a spanning edge-capacitated tree. An edge e = uv ∈ E(T ) is encoding if its
fundamental cut G(L,R) is a minimum uv-cut and its capacity is c′(e), that is, c(G(L,R)) = c′(e).

A Gomory-Hu tree (GH tree for concision) is a spanning edge-capacitated tree all of whose edges
are encoding. In this case, it is an exercise to prove that any minimum cut can be found as follows.
For s, t ∈ V we have that λ(s, t) = min{c′(e) : e ∈ T (st)}, where T (st) denotes the unique path
joining s, t in T .

It is well-known that there may not always exist a GH tree which is a subgraph of G. For
instance, every GH tree for the nodes of K3,3 is a 5-star (cf. [6] Section 8.6, p. 169). It is a natural
question to understand when the existence of such a subtree is possible. One application is to
minimum communication spanning trees. We are given a capacitated network G which represents a
logical network with c(ij) denote the bandwidth of the pipe between nodes i, j. The goal is to �nd
a tree T which minimizes the routing cost

∑
ij∈E(G) c(ij)T (i, j), where T (i, j) is the length of the

ij-path in T . Hu [5] showed that the optimal tree corresponds to the GH Tree for G. It is natural
to seek a tree whose edges are chosen amongst the pairs ij which already have bandwidth set up.

Our �rst main result characterizes the graphs which admit GH subtrees. More precisely, we say
that G has the GH Property if for any edge-capacity function c : E(G)→ R+, G, c has a Gomory-Hu
tree T such that T is a subgraph of the edges of G with positive capacity (we cannot use edges with
capacity 0). Recall that the 1-sum of two disjoint graphs G,H is the graph obtained by identifying a
single node u ∈ G with some node v ∈ H. An outerplanar graph is a graph with a planar embedding
such that each vertex is on the border of the outer face.

Theorem 1.2. G has the GH Property if and only if G is the 1-sum of outerplanar and K4 graphs.

In some applications we only specify a subset Z ⊆ V for which we need cut information. We refer
to Z as the terminals of the instance. The Gomory-Hu method allows one to store a compressed
version of the GH Tree which only captures cut values λ(s, t) for s, t ∈ Z, and whose vertices are
precisely V (T ) = Z.

We use Theorem 1.2 to study the generalized version where we are given a graph-terminal
pair (G,Z), where G is again endowed with edge capacities c : E(G) → R+. A GH Z-Tree is a
capacitated tree T = (V (T ), E(T )) (cf. [9] Theorem 15.14, p. 250). Formally, the nodes of T form
a partition {B(v) : v ∈ Z} of V (G), with z ∈ B(z) for each z ∈ Z. The sets B(v) are sometimes
called bags. De�nition 1.1 extends as follows. First, for X ⊆ V (T ) we de�ne B(X) = ∪z∈XB(z).
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For any adjacent vertices s, t ∈ Z in T , the fundamental cut induced by the edge e = B(s)B(t) of
T is then G(B(L), B(R)) where L,R are the two components of T − e. We then say e is encoding
if its fundamental cut induces a minimum st-cut in G. As before, if all edges are encoding, then T
determines the minimum cuts for all pairs s, t ∈ Z.

De�nition 1.3. Let (G,Z) be a graph-terminal pair, Z ⊆ V (G). A GH Z-tree is a terminal-minor
GH tree if (i) each bag B(z) induces a connected subgraph of G and (ii) for each st ∈ T , there is

an edge of G with one end in B(s) and the other in B(t).

We characterize those graph-terminal pairs (G,Z) which admit GH terminal minors for any edge
capacities on G. Our starting point is the following elementary observation.

Proposition 1.4. K2,3 with unit capacities has no Gomory-Hu tree that is a subgraph of itself.

Even if a graph-terminal pair (G,Z) admits a terminal-minor GH tree, it may still contain a
K2,3 minor. For instance, we could choose Z to be any two nodes in a K2,3 itself. The proposition
implies, however, that it should not have a K2,3 minor where all nodes in the minor are terminals.
Given a set Z of terminals, we say that a graph H is a terminal minor of G if V (H) ⊆ Z and for
each z ∈ V (H), there is a bag B(z) ⊆ V (G), such that

(i) each bag B(z) contains its terminal z,

(ii) each bag is connected in G,

(iii) bags are disjoint: for distinct y, z ∈ V (H), B(y) ∩B(z) is empty,

(iv) if y, z ∈ V (H) are adjacent in H, there is an edge in G(B(y), B(z)).

Notice that the union of the bags need not be V (G) in a Z-minor.
In other words, it is a minor such that each v ∈ V (H) arises by contracting a connected subgraph

which contains a node from Z, and possibly deleting arbitrarily many non-terminal nodes. By
Proposition 1.4, a natural necessary condition for the graph-terminal pair (G,Z) to always contain
terminal-minor GH trees is that G must not contain a K2,3 as a terminal minor. For convenience,
for any graph H, we will say that the graph-terminal pair (G,Z) contains a terminal-H minor if
it contains H as a terminal minor, othersize it is terminal-H minor free. We will often consider
the set Z of terminals to be implicitely given, and will abusely speak about terminal-H minors of
a graph or about terminal-H free graphs, meaning with respect to some �xed set Z.

We show that being terminal-K2,3 free is also su�cient for having a terminal-minor GH tree
(see Section 5) by building on Theorem 1.2.

Theorem 1.5. Let G = (V,E) be a graph, and let Z ⊆ V (G). The graph terminal pair (G,Z)
admits a terminal-minor GH tree for any capacity function c : E → R+ if and only if (G,Z) is

terminal-K2,3 minor free.
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Establishing the su�ciency requires a better understanding of terminal minor-free graphs. We
show that the family of graph-terminal pairs (G,Z) that do not have a terminal-K2,3 minor arises
precisely as subgraphs of Z-webs. Z-webs are built from planar graphs with one outside face which
contains all the terminals Z and each inner face is a triangle to which we may add arbitrary sub-
graphs connected to the three nodes. Subgraphs of Z-webs are called Extended Okamura-Seymour

Instances. Throughout the paper, we will use the term 2-connected for 2-vertex-connected.

Theorem 1.6. Let (G,Z) be a graph-terminal pair where G is 2-connected. Then (G,Z) is terminal-

K2,3 minor free if and only if either G has at most 4 terminals or it is an Extended Okamura-Seymour

Instance.

This will imply the following corollary.

Corollary 1.7. A graph-terminal pair (G, z) is terminal-K2,3 minor free if and only if for any

2-connected block B of G, the subgraph obtained by contracting every edge not in B is terminal-K2,3

minor free.

These results also yield an interesting consequence for multi�ow problems. Let G,H be graphs
such that V (H) ⊆ V (G). Call a pair (G,H) cut-su�cient if the cut condition is su�cient to
characterize the existence of a multi�ow for any demands on edges of H and any edge capacities on
G. If Z ⊆ V (G), we also call (G,Z) cut-su�cient if (G,H) is cut-su�cient for any graph on Z.

Corollary 1.8. (G,Z) is cut-su�cient if and only if it is terminal-K2,3 free.

The literature contains other results on cut su�ciency. For instance, results of Lomonosov
and Seymour ([7, 11], cf. Corollary 72.2a [9]) yield a characterization of the demand graphs H
such that every supply graph G �works� for H, i.e., (G,H) is cut-su�cient for any graph G with
V (H) ⊆ V (G). They prove that any such H is (a subgraph of) either K4, C5 or the union of two
stars. Another question asks for which (supply) graphs G is it the case that (G,H) is cut-su�cient
for every H which is a subgraph of G; Seymour [12] shows that this is precisely the class of K5

minor-free graphs. We refer the reader to [3] for discussion and conjectures related to cut-su�ciency.
The paper is structured as follows. In the next section we prove that every outerplanar instance

has a GH tree which is a subgraph. In Section 3 we present the proof of Theorem 1.2. Section 5
wraps up the proof of Theorem 1.5 using Theorem 1.6 whose proof details are deferred to the
appendix. We prove Corollary 1.8 in the �nal Section 6.

1.1 Some Notation and a Lemma

For every capacitated graph G = (V,E) and a node pair s, t in V , there is a minimum cut δ(X)
which is central, a.k.a. a bond: that is, G[X], G[V \X] are connected. We also denote such a cut by
G[X,V \X] and we call X,V \X the shores of the cut. If needed, we use subscripts to explicitly
refer to the graph, e.g., δG(X). For any X ⊆ V (G) we use shorthand c(X) to denote the capacity of
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the cut δ(X) =
∑

e∈δ(X) c(e). For disjoint sets X,Y ⊆ V (G), c(X,Y ) denotes the sum of capacities

of all edges with one endpoint in X, and the other in Y . We consistently use c′(e) to denote the
computed capacities on edges e in some Gomory-Hu tree.

We always work with connected graphs and sometimes with k-connected graphs, by which we
always mean k-vertex-connected graphs. Recall that the block decomposition of a graph G = (V,E)
is the partition of E into its maximal 2-connected subgraphs.

We also usually assume (without loss of generality) that the edge capacities c(e) have been
adjusted so that no two cuts have the same capacity.1 Indeed, this can only restrict the set of
possible GH trees to a single tree that must also be a GH-tree in the original graph (with slightly
di�erent capacities). As a consequence of this assumption, the minimum st-cut is unique for any
pair of nodes s, t. This also implies that the GH Tree is unique. To see this, let T be a GH tree.
Let e = uw ∈ E(T ) an edge of T , consider the fundamental cut G(U,W ) de�ned by e, with u ∈ U ,
w ∈W . G(U,W ) is the unique minimum uw-cut so it must appears in any GH tree. Thus, any GH
tree T ′ has a unique edge e′ = u′w′ between U and W , with u′ ∈ U , w′ ∈ W . Suppose that u 6= u′

(say), and consider the unique minimum uu′-cut, let U ′ be its shore containing u. T contains a path
traversing u′, u, w,w′ in that order, hence we have U ′ ∩ {u′, u, w,w′} = {u′}. T ′ contains a path
traversing u, u′, w′, w in that order, hence we have U ′ ∩ {u′, u, w,w′} = {u′, w, w′}, contradiction.
Hence u′w′ = uw, the GH tree is unique. We note that the same arguments also work for GH
Z-trees:

Proposition 1.9. Let G = (V,E) be a capacitated graph with terminals Z ⊆ V . Suppose that

for any pair of terminals u,w, there is a unique minimum uw-cut. Then any two GH Z-trees are
isomorphic including the composition of bags.

If C is a subset of nodes, or a subgraph, we use N(C) (or NG(C) if explicitly needed) to denote
its neighbour set {v ∈ V (G) \ C : ∃u ∈ C, uv ∈ E}. Let H be an arbitrary graph. A subgraph R
is 3-separated at X if X ⊆ V (R), |X| = 3, X is an independent set in R and NG(R \X) = X, see
Figure 1.1. A subgraph is 3-separated in H if it is 3-separated at some X.

An OS-instance (for Okamura-Seymour) is a planar graph where all terminals appear on the
boundary of the outer face. An Extended OS Instance is obtained from an OS-instance H by adding
arbitrary graphs, called 3-separated graphs, each connected to up to three nodes of some inner face of
the Okamura-Seymour instance. We also require that 3-separated graphs in a common face cannot
be crossing each other in that face, meaning that if, for each X such that there is 3-separated
subgraph at X, we add a complete graph on X to G, then the resulting graph is still planar. H is
called the planar part of the instance.

The following lemmas prove that, as long as we are only concerned by minimum cuts between
terminals, extended OS instances are not more general than OS instances.

Lemma 1.10. Let G be an extended OS instance and F be a 3-separated graph whose attachment

nodes to the planar part are {x, y, z}. We can de�ne a new graph G′ from G by removing V (F ) \
1This can be achieved in a standard way by adding multiples of 2−δ where δ = O(|E|).
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Figure 1: An 3-separated set R (the dashed subgraph) with set X = {u, v, w} in red. This graph is
an extended OS instance (the square vertices are the terminal), whose planar part contains all the
plain black edges.

{x, y, z} and add three edges xy, yz, zx with capacities cxy, cyz, czx so that minimum cuts separating

disjoint sets of terminals in Z have the same capacities in G′ and in G.

Proof. For each α ∈ {x, y, z}, let cα be the value of a minimum cut in F separating α from
{x, y, z} \ {α}. We use Sα to denote the shore of such a cut in F , where α ∈ Sα. We replace F in G
by a claw where the central node is a new node uH , and leaves are x, y and z, and the capacity of
uHα is cα for any α ∈ {x, y, z}. We claim that this transformation preserves the values of minimum
cuts between sets of terminals.

Notice that cα ≤
∑

β∈{x,y,z}\{α} cα, hence a minimum cut induced by S′ in G′ where x ∈ S′ but
y, z 6∈ S′ will also have uH 6∈ S′. For such a set S′ in G′ with x ∈ S, uH , y, z 6∈ S, we may then
identify a cut with the same capacity in G induced by S := S′ ∪ Sx. Reciprocally, given a cut S of
G with x ∈ S, y, z 6∈ S, the cut S′ := S \ (V (F ) \ {x, y, z}) has capacity at most the capacity of S.
Thus the values of minimum terminal cuts are preserved.

Finally we can remove uH and its incident edges and replace them with three edges xy, yz,
zx without changing the capacities of the cuts, by posing cxy :=

cx+cy−cz
2 , cyz :=

cy+cz−cx
2 and

czx :=
cz+cx−cy

2 (note that these quantities are positive). Indeed this new triangle has the same cut
capacities as the tripod of edges incident to uH .

�

Since the 3-separated graphs are non-crossing, we may iterate the process to obtain the following.

Lemma 1.11. For any extended OS instance G we can replace each 3-separated graph by a three

edges to obtain an equivalent (planar) OS instance G′. It is equivalent in that for any partition

Z1 ∪ Z2 = Z, the value of a minimum cut separating Z1, Z2 in G is the same as it is in G′.

As we use the following lemma several times throughout we introduce it now.
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Lemma 1.12. Let t ∈ V (G) and X,Y be disjoint subsets which induce respectively a minimum

xt-cut and a minimum yt-cut where x ∈ X, y ∈ Y . For any non-empty subset M of V which is

disjoint from X ∪ Y ∪ {t}, we have c(M,V \ (X ∪ Y ∪M)) > 0.

Proof. We have

c(M ∪X) + c(M ∪ Y )

= c(X) + c(Y ) + 2c(M,V \ (X ∪ Y ∪M))

< c(M ∪X) + c(M ∪ Y ) + 2c(M,V \ (X ∪ Y ∪M))

where the second inequality follows from the fact that δ(M ∪X) (respectively δ(Y ∪M)) separates
t from X (respectively Y ) but M ∪X 6= X (respectively M ∪ Y 6= Y ). �

The de�nition of the GH Property for G requires that the desired subtrees exist in any subgraph.
The property also holds after contracting an edge e. Indeed GH Trees in the contracted graph are
in 1-1 correspondence to GH trees in the original graph where we set c(e) = ∞. We obtain a tree
in the larger graph by adding a pendant leaf with capacity ∞. Hence:

Proposition 1.13. The GH Property is closed under taking minors.

Recall that a 1-sum of two disjoint graphs G = (V,E) and H = (U,F ) is a graph obtained from
the union of G and H by identifying a vertex v ∈ V with a vertex u ∈ U . The 1-sum operation is
also well-behaved relative to GH trees and the GH property. To see this, suppose that G is obtained
by the 1-sum of two graphs H1, H2 at a node v. Note that for any s, t ∈ V (G), there is a minimum
st-cut G[A,B] which is central. Without loss of generality either A ⊆ V (H1) \ v or A ⊆ V (H2) \ v.
If the latter holds, then this cut is exactly the same as the cut δH2(A). One may now verify that a
GH Tree for G is obtained by taking the union of GH Trees for H1, H2. Hence:

Proposition 1.14. The GH property is closed under 1-sums. Moreover, if a graph G has the GH

property, each block of G has the GH property.

The second part of the proposition follows from the fact that the restriction of a GH tree for G
to the subset of vertices of one block will be a GH tree for that block.

2 Outerplanar graphs have Gomory-Hu Subtrees

Theorem 2.1. Any 2-connected outerplanar graph G has a Gomory-Hu tree that is a subgraph of

G.

Proof. Let G be an outerplanar graph with outer circuit C = v1, v2, . . . , vn (C exists because G is
2-connected). As discussed in Section 1.1, we assume that no two cuts have the same capacity, so
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Figure 2: Edges of T into each component of T \ v on outer face.

let T be the unique Gomory-Hu tree of G (see Section 1.1). We want to prove that T is a subgraph
of G.

Notice that the shore of any min-cut in G is a subpath vi, vi+1, . . . , vj−1, vj (indices taken modulo
n) because we assumed for any min-cut δ(S), both S and V − S induce connected subgraphs.

Let v be any node and consider the fundamental cuts associated with the edges incident to v in
the Gomory-Hu tree. The shores (not containing v) of these cuts de�ne a partition X1, X2, . . . Xk

of V \ {v} where each Xi is a subpath of C. We may choose the indices such that v,X1, . . . , Xk

appear in clockwise order on C � see Figure 2.

Claim 2.2. For each i ∈ {1, . . . , k}, there is an edge in G from v to some node in Xi.

Proof. We prove this by contradiction, so assume there is no edge from v to some Xi. Notice
that i /∈ {1, k} because of the edges of C. Let j be the maximum index in {1, . . . , i − 1} with
c(v,Xj) 6= ∅, and let j′ ∈ {i + 1, . . . , k} minimum with c(v,Xj′) 6= ∅, hence c(v,M) = ∅ where
M := Xj+1 ∪ Xj+2 . . . ∪ Xj′−1. By taking X = Xj , Y = Xj′ , t = v, Lemma 1.12 implies that
c(M,V \ (Xj ∪Xj′ ∪M) > 0. However, outerplanarity and the existence of edges from both Xj and
Xj′ to v, imply that there is an edge between v and M , see Figure 3. This contradicts the choice of
i, j or j′. �

Let xy ∈ E(T ) be an edge of the Gomory-Hu tree. We must prove that xy ∈ E(G). Let
δ(X) be the fundamental cut associated with xy, with x ∈ X, de�ne Y = V \ X. As in the
preceding arguments we may use the fundamental cuts associated with edges incident to x and
partition X \ {x} into min-cut shores X1, X2, . . . , Xk; we do this by ignoring the one shore Y .
Similarly, we may partition Y \ {y} into min-cut shores Y1, Y2, . . . , Yl. We can label these so that
X1, X2, . . . , Xk, Y1, . . . , Yl appear in clockwise order around C - see Figure 4. There are two cases
for the position of x. Either there is some i ∈ {1, . . . , k− 1} such that x is between Xi and Xi+1 or
x lies on the �fringe�, i.e., it is adjacent to some node of Y by an edge of C. Similarly, either y lies
on the fringe or there exists j ∈ {1, . . . , l} such that y is between Yj and Yj+1. In the fringe cases,
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M := X3

X4X2
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?

Figure 3: Con�guration occurring in the proof of Claim 1.

either xy ∈ C or the argument is similar to (and easier than) the non-fringe case so we focus on
them.

x

y

X1X3

X4

X2

X5

Y1

Y2

δ(X)

Figure 4: An arbitrary edge xy ∈ T .

By contradiction suppose xy /∈ E(G). By Claim 2.2, there is an edge e from x to Y , let
m ∈ {1, . . . , l} such that e ∈ δ(x, Ym). If m /∈ {1, l}, by outerplanarity either δ(y, Y1) or δ(y, Yl)
is empty; this contradicts Claim 2.2. By symmetry we may assume e ∈ δ(x, Y1). By a similar
argument there is an edge e′ ∈ δ(y,X1). By Claim 2.2, there are also two edges e′′ ∈ c(x,X1) and
e′′′ ∈ c(y, Y1).

Let X ′ = {x} ∪ X2 ∪ . . . ∪ Xk and Y ′ = {y} ∪ Y2 ∪ . . . ∪ Yl, δ(X ′) is a cut separating x from
X1 and similarly δ(Y ′) separates y from Y1. As δ(X1) is the fundamental cut between x and X1,
we have that c(X1) < c(X ′), and similarly c(Y1) < c(Y ′). Now, because of the edges e, e′, e′′, e′′′, by
outerplanarity there is no edge between X ′ and Y ′, hence

c(X1) + c(Y1) = c(X ′) + c(Y ′) + 2c(X1, Y1) > c(X1) + c(Y1) + 2c(X1, Y1)
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Y2

Figure 5: Showing that xy ∈ T must be an edge of G.

a contradiction. �

3 Which Instances have Gomory-Hu Subtrees?

The previous result leads to a characterization of graphs with the GH Property: that is, graphs
whose capacitated subgraphs always contain a Gomory-Hu Tree as a subtree. We prove this char-
acterization in this section.

We start with a simple observation that K2,3 does not have a GH subtree.

Proposition 1.4. K2,3, when all edges have capacity 1, has no Gomory-Hu tree that is a subgraph

of itself.

Proof. Let {u1, u2}, {v1, v2, v3} be the bipartition. Since the minimum u1, u2 cut is of size 3, a GH
tree should contain a u1u2-path all of whose edges have capacity at least 3. If this path is u1v1u2,
then the tree's fundamental cut associated with u1v1 must be a minimum u1v1-cut. But this is
impossible since δ(v1) is a cut of size 2. �

This leads to the desired characterization.

Theorem 1.2. G has the GH Property if and only if G is the 1-sum of outerplanar and K4 graphs.

Proof. First suppose that G is such a 1-sum. Consider the block decomposition of G. Each outerpla-
nar block in this sum has the GH Property by Theorem 2.1. So consider a K4 block and a subgraph
G′ of K4 with edge capacities. If G′ is K4, then clearly any GH tree is a subtree. Otherwise G′ is a
proper subgraph of K4 and hence is outerplanar. It follows that each block has the GH Property.
Because the GH property is closed by 1-sum, G has the GH property.
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For the reverse direction, suppose that G has the GH property. By Proposition 1.14, each block
of G has the GH property. Hence we may assume that G is 2-connected, and prove that it is either
K4 or an outerplanar graph.

Because the GH property is closed by minor operations, G has no K2,3 minor. Outerplanar
graphs are graphs with forbidden minors K2,3 and K4, see [9] p. 28. Hence if G is not outerplanar,
then it has a K4 minor. Notice that any proper subdivision of K4 contains a K2,3 minor, as well
as any graph built from K4 by adding a path between two distinct nodes contains a K2,3 minor.
Hence G must be K4 itself. The result now follows. �

In Section 5, we extend this result to the case where a subset of terminals is speci�ed.

4 Characterization of terminal-K2,3 free graph-terminal pairs

In this section we prove Theorem 1.6. Throughout, we assume that we have an undirected 2-
connected graph G with terminals Z ⊆ V (G).

We �rst check su�ciency of the condition of Theorem 1.6. Any graph with at most 4 terminals
is automatically terminal-K2,3 free and one easily checks that any extended Okamura-Seymour
instance cannot contain a terminal-K2,3 minor. Hence we focus on proving the other direction: any
terminal-K2,3 minor-free 2-connected graph G lies in the desired class. To this end, we assume that
|Z| ≥ 5 and we ultimately derive that G must be an extended OS instance.

We start by excluding the existence of certain K4 minors.

Proposition 4.1. If |Z| ≥ 5 and G has a terminal-K4 minor, then G has a terminal-K2,3 minor.

Proof. Let K+
4 be the graph obtained from K4 by subdividing one of its edges. By removing the

edge opposite to the subdivided edge, we see that K+
4 contains K2,3. Hence it su�ces to prove that

G contains a terminal-K+
4 minor.

Consider a terminal-K4 minor on terminals Z ′ = {s, t, u, v}. We may assume this is obtained
from contracting node-disjoint trees Tx for each terminal x ∈ Z ′, such that for any x, y ∈ Z ′, there is
an edge exy having one extremity in Tx and one in Ty. We may assume that Tx =

⋃
y∈Z′\{x} P [x, y],

where P [x, y] is a path in G from x to an end of exy and not containing exy, see Figure 4, left side.
Denote U :=

⋃
x∈Z′ V (Tx).

As |Z| ≥ 5 > |Z ′|, there is some terminal w′ 6∈ Z ′. If w′ 6∈ U , then let Q be a minimal path which
joins w′ to some w ∈ U ; otherwise let w = w′ and Q be this singleton. Without loss of generality, w
is in Ts. Suppose �rst that w lies in exactly one of the paths P [s, u], P [s, v], P [s, t], say P [s, u]. We
then obtain a terminal-K+

4 minor by contracting Q into a single node q. This node q is a terminal
because Q contains the terminal w′, and q is the terminal which subdivides the minor edge su.

Consider next the case where w lies in exactly 2 of the paths, say P [s, u], P [s, v]. In this case,
we obtain the desired minor after contracting Q again in a terminal q, by exchanging the role of s
and q, so that q is a degree 3 node of the K4 minor. Hence s can play the role of the degree 2 node
in a terminal-K+

4 minor, as desired.
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Figure 6: An illustration of a terminal-K4 minor embedded in a graph. On the right, a bad case:
w′ is connected to Ts on the intersection of the three paths to each other terminal.

In the last case, w lies in all three of the paths P [s, u], P [s, v], P [s, t]. We call this the bad case

as we must take more care in selecting Q. Let R := P [s, u] ∩ P [s, v] ∩ P [s, t] and we can assume
that w′ 6∈ R. If it were, then we could just replace s by w′ and consider s as our �outside� terminal.

By the 2-connectivity of G, there are two vertex-disjoint paths Q1, Q2 from w′ to U such that
Qi ∩ U = {wi}, where w1, w2 are distinct. If either wi ∈ Ts \ R, then we may use Qi to be in one
of the good cases. If w1 is in Tx and w2 is in Ty with x 6= y, we can create a K+

4 minor where w′ is
the degree 2 terminal for the edge xy.

So we now assume w1, w2 are both in R and in particular |R| ≥ 2. Let z be the endpoint of R
which is not s. De�ne U ′ := U \ (V (R) \ z) and note that s, w′ are in the same component, K, of
G′ = G \ U ′. There exists edges zz′, bb′ with distinct endpoints such that z′, b′ ∈ K and b ∈ U ′.
Indeed, the 2-connectivity of G implies that no vertex covers every edge in δ(U ′,K), hence there
are two disjoint edges in δ(U ′,K). If none of these two edges contains z, we can replace one of them
by an edge in δ(z, k′).

By the 2-connectivity of G, there exist vertex-disjoint paths Rs, Rw′ in K from {s, w′} to {z′, b′}.
Without loss of generality, we may contract s into z′ and w′ into b′ using these two paths (at this
point, we do not care which terminal is which). Moreover, since K is connected we may contracted
edges to make a minor of K where sw′ is an edge. Using this construction, we are back in some of
the earlier cases: either b lies in one of the paths P [s, x] \ R, or b ∈ Tx for some x 6= s. In both
cases, we create a K+

4 minor as before.
�

Now we have ruled out the existence of terminal-K4 minors, we start building up minors which
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can be possible.

Proposition 4.2. Any 2-connected graph with terminals Z, with |Z| ≥ 3, has a 2-connected minor

H with V (H) = Z.

Proof. Clearly there is a 2-connected minor H with V (H) ⊇ Z. Choose one which minimizes |V (H)|
and suppose there is a non-terminal node in H. In particular we may assume there is an edge sv
with s ∈ Z, v /∈ Z. By minimality, contracting sv decreases the connectivity to 1. Hence, {s, v} is
a cut separating two nodes t and t′. Thus, there are two disjoint tt′-paths, one containing s and the
other v. That is, there is a circuit C containing s, t, v, t′ in that order.

By minimality of H, we also have that H − sv is not 2-connected. It follows that H − sv
contains a cut node {z} where s, v lie in distinct components of H − sv − z. This would contradict
the existence of C, and this completes the proof. �

As |Z| ≥ 5, the previous proposition implies that there is a terminal-C4 minor. We now show
that G contains a terminal-Ck minor where k = |Z|.

Proposition 4.3. Consider a 2-connected graph G with terminals Z such that (G,Z) is terminal-

K2,3 minor free, and let k be maximum such that G contains a terminal-Ck minor. Then k = |Z|.

Proof. By Proposition 4.2, let H be a 2-connected terminal-minor of G with V (H) = Z. Consider
an ear-decomposition of H, starting with longest cycle C0 and ears P1, . . . , Pk. Then all ears are
single edges (from which the proposition follows), otherwise let Pi be an ear that is not a single
edge, with i minimum. The two ends of Pi are nodes x, y of C0. If x and y are consecutive in C0,
this contradicts the maximality of C0. If they are not consecutive, C0 ∪ Pi is a subdivision of K2,3.

�

We let k = |Z| henceforth. A terminal-Ck minor of G can also be represented as a collection of
k node-disjoint subtrees T1, . . . , Tk, where each Ti contains exactly one terminal ti. There also exist
edges e1, . . . , ek, where ei has one extremity ui in Ti and the other, vi+1, in Ti+1. The subscript
k + 1 is taken to be 1; the edges in the subtrees are the contracted edges and the edges e1, . . . , ek
are the undeleted edges. We de�ne si as the only node in V (P [ti, ui]) ∩ V (P [ui, vi]) ∩ V (P [vi, ti]),
where V (P [x, y]) is the node set of the path with ends x and y in the tree Ti. Thus, Ti is P [si, ui]∪
P [si, vi] ∪ P [si, ti].

We denote by Si the path from ti to si in Ti and we take our representation so that
∑k

i=1 |Si|
minimized. We denote by Pi the path from si to si+1 in Ti ∪ {ei} ∪ Ti+1, that is Pi := P [si, ui] ∪
{ei} ∪ P [vi+1, si+1].

Proposition 4.4.
∑k

i=1 |Si| = 0.

Proof. By contradiction, suppose |S1| > 0 and so t1 does not lie in the graph induced by D =
P1 ∪ . . . ∪ Pk ∪ S2 ∪ . . . ∪ Sk. By 2-connectivity, there are two vertex-disjoint paths in G from t1
to distinct nodes x and y in D. Moreover we may choose that x = s1. To see this, suppose that
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Figure 7: In cases (a) and (b), we reducing |S1| by keeping the shaded subgraphs. In cases (c) and
(d) the shaded edges are contracted to get a terminal-K2,3 minor.

z ∈ S1 is the closest node to s1 which is used by the one of the paths (possibly z = t1). We may
then re-route one of the paths to use the subpath of S1 from z to s1.

If y is contained in one of Pk, P1, it is routine to get another representation of the minor where
all the Si are at least as short, and S1 is empty, contradicting the minimality of our choice of
representation. A similar argument holds if y ∈ Sk ∪ S2, see Figure 7 cases (a) and (b).

So we assume y ∈ D \ (Pk ∪ P1 ∪ Sk ∪ S2). We now �nd a terminal-K2,3 minor, and that is
again a contradiction. To see this, let Ti be a tree which contains the second node y. As k ≥ 5, we
may assume either i ∈ [4, k], or i ∈ [2, k − 2]. Suppose the latter as the two cases are similar. Note
that if i = 2, then y is in P [s2, u2]. Then we obtain a terminal-K2,3 where the two degree-3 nodes
correspond to the terminals in Ti and Tk. The degree-2 nodes will correspond to t1, t2 and tk−1 �
see Figure 7 cases (c) and (d). �

Hence there is a circuit C in G containing every terminal. Let the terminal in C in cyclic order
be t1, t2, . . . tk.
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Proposition 4.5. There are no two node-disjoint paths in G, one from ti to ti′, the other from tj
to tj′ , with i < j < i′ < j′.

Proof. For convenience, let's denote s = ti, t = ti′ , s
′ = tj and t′ = tj′ . We will prove by

contradiction. Let P be the st-path and Q the s′t′-path in G. We may assume that we choose P
and Q to minimize their total number of maximal subpaths disjoint from C.

We consider the set (not multi-set) of edges E(C) ∪ E(P ) ∪ E(Q), and only keep s, s′, t, t′ as
terminals. This de�nes a subgraph G′ of G of maximum degree 4 by construction. Contract edges in
E(C)∩ (E(P )∪E(Q)), and then contract edges so that nodes of degree 2 are eliminated. This gives
a minor H where the only nodes not of degree 4 are s, t, s′, t′, which have degree 3. E(H) ∩ E(P )
induces an st-path P ′ in H, E(H)∩E(Q) induces an s′t′-path Q′ in H. P ′ and Q′ are again node-
disjoint. We call the remaining edges of E(C) in H C-edges. They induce a cycle which alternates
between nodes of P ′ and Q′. To see this, suppose that e is such an edge joining x, y ∈ V (P ′) (the
case for Q′ is the same). We could then replace the subpath of P between x, y by the subpath of C
which was contracted to form e. This would reduce, by at least 1, the number of maximal subpaths
of P disjoint from C, a contradiction.

Consider the two nodes u′ and v′ of Q′ adjacent to s in H, such that s′, u′, v′, t′ appear in that
order on Q′. u′ and v′ each has one more incident C-edge, whose extremities (respectively) are u,
v and must then be on V (P ′) \ {s}. We create a terminal-K4 minor on s, s′, t, t′ as follows � see
Figure 8, where u, v may be in either order on P ′. We contract all the edges of P ′ except the one
es incident to s, and all the edges of Q′ except the one eu′ incident to u

′ in the direction of t′, we
get a terminal-K4 minor with the edges su′, sv′, uu′, vv′, es and eu′ . One easily checks that this
leads to the desired terminal-K4 minor. This contradiction completes the proof. �

s u v t

s′ u′ v′ t′

P ′

Q′

Figure 8: How to get a terminal-K4 minor: red parts are contracted into single nodes, the blue
edges will then form a K4.

To conclude the characterization of terminal-K2,3 minor free graphs, we use (a generalization
of) the celebrated 2-linkage theorem. Take a planar graph H, whose outer face boundary is the
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cycle t1, t2, . . . , tk, and whose inner faces are triangles. For each inner triangle, add a new clique of
arbitrary size, and connect each node of the clique to the nodes of the triangle. Any graph built this
way is called a (t1, . . . , tk)-web, or a {t1, . . . , tk}-web if we do not specify the ordering. Extended
OS instances are precisely the subgraphs of Z-webs (the former is less constrained than the latter
as we do not ask to start from a graph whose inner faces are triangle, and we allow to glue any
3-separated subgraph instead of only those built from a complete graph).

Theorem 4.6 (Seymour [10], Shiloach [13], Thomassen [14] ). Let G be a graph, and s1, . . . , sk ∈
V (G). Suppose there are no two disjoint paths, one with extremity si and si′, and one with extremity

sj and sj′, with i < j < i′ < j′. Then G is the subgraph of an (s1, s2, . . . , sk)-web.

The linkage theorem is usually stated in the special case when k = 4, but the extension presented
here is folklore. One can reduce the general case to the case of k = 4 by identifying the nodes s1, . . . sk
with every other inner node of a ring grid with 7 circular layers and 2k rays, and choosing 4 nodes
of the outer layer, labelling them s, t, s′, t′ in this order, and connecting them in a square � see
Figure 9. It is easy to prove that there are two node-disjoint paths, one with extremity s and s′,
the other with extremities t and t′ in the graph built this way if and only there are two disjoint
paths as in the theorem in the original graph (for instance, use the middle layer to route the path
from s to si with only 2 bends, then the remaining graph is a su�ciently large subgrid to route
the three other paths). Because the grid is 3-connected, its embedding is unique and we get that
G is embedded inside the inner layer of the ring, from which the general version of the theorem is
deduced.

By using Theorem 4.6 with Proposition 4.5, we get that any 2-connected terminal-K2,3 free
graph is a subgraph of a Z-web where Z is the set of terminals.

This now completes the proof of Theorem 1.6. �
We now establish Corollary 1.7.

Proof. If G is terminal-K2,3 minor-free, then clearly contacting all blocks but one must create a
terminal-K2,3 free instance.

Conversely, suppose that G has a terminal-K2,3 minor. Since this minor is 2-connected, it
must be a minor of a graph obtained by contracting or deleting all the edges of every 2-connected
component except one. Let's call that last block B. Hence the terminal-K2,3 minor is a minor of
the graph obtained by contracting all the edges not in B. �

5 General Case: Gomory-Hu Terminal Trees in terminal-K2,3 minor

free graphs.

In this section we prove Theorem 1.5 using the characterization of terminal-K2,3 minor free graphs.
The high level idea is a reduction to Theorem 2.1 by contracting away the non-terminal nodes in
the graph.

16



s

t
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t′

Figure 9: Gadget for the proof of the general linkage theorem, the square notes are s1, . . . , sk and
the original graph must lie in the central face of the gadget.

In the following we let (G,Z) denote a connected graph G and terminals Z ⊆ V (G). In this
section we study graphs which always have GH Z-trees which are terminal-minor GH trees - see
De�nition 1.3. We also call these bag minors. We say that T occurs as a weak bag minor if it
occurs as a bag minor in the graph obtained by deleting some non-terminal nodes (so some bags
get smaller).

De�nition 5.1. The pair (G,Z) has the GH Minor Property if for all subgraph G′ with positive

capacities c′, there is a GH Z-Tree which occurs as a bag minor in G′. The pair (G,Z) has the weak
GH Minor Property if for all subgraph G′ with positive capacities c′, there is a GH Z-Tree which

occurs as a weak bag minor in G′.

An example where we have the weak but not the (strong) property is for K2,3 where Z consists
of the degree 2 nodes and one of the degree 3 nodes, call it t, and call s the other degree 3 node.
Clearly this is terminal-K2,3 minor free since it only has 4 terminals. The unique GH Z-tree T
is obtained from G by deleting the non-terminal node and assigning capacity 2 to all edges in the
3-star. Hence T is obtained as a minor (in fact a subgraph) of G. However, the bag B(t) consists
of the 2 degree-3 nodes s and t, which do not induce a connected subgraph. Indeed s cannot be
put in another bag, as otherwise such a bag would induce a cut of capacity 3 whereas the minimum
capacity of a cut between a degree-2 node and any other node is 2. Hence T does not occur as a bag
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minor. Fortunately, such instances are isolated and arise primarily due to instances with at most 4
terminals. We handle these separately.

Proposition 5.2. Let G be an undirected, connected graph and Z be a subset of at most 4 terminals.

If no two central cuts have the same capacity, then the unique GH Z-Tree T occurs as a weak bag

minor. Moreover, if T is a path, then it occurs as a bag minor.

We defer the proof of this and the following lemma to an appendix.

Lemma 5.3. Let T be a GH Z-Tree bag minor for some graph-terminal pair (G,Z) and let v ∈ Z.
Let uv be the edge of T incident to v of maximum weight. If we set B′(u) = B(v) ∪ B(u) and

B′(x) = B(x) for each x ∈ Z \ {u, v}, then the resulting partition de�nes a GH (Z \ v)-Tree T ′
which is a bag minor.

We now prove the following strengthening of Theorem 1.5.

Theorem 5.4. thm:minorGHstrength Let G be an undirected graph and Z ⊆ V . (G,Z) has the

weak GH Minor Property if and only if (G,Z) is a terminal-K2,3 minor free graph. Moreover, if

none of G's blocks is itself a 4-terminal instance, then (G,Z) has the GH Minor Property.

Proof. If G has a terminal-K2,3 minor H, then consider setting capacities as follows. If an edge was
deleted to produce the minor H, we set its capacity to 0. If an edge was contracted its capacity is
∞. The remaining edges have capacity 1. It is clear that minimum cuts for this instance correspond
to cuts within the K2,3 minor itself. Starting from the GH Z-tree T of G, we can also contract the
edges of T with in�nite capacity, to get a GH tree T ′ of K2,3.

T ′ must have an edge e between its two degree-3 vertices, where e is not an edge in H. This
implies that T also contains e. For T to be a terminal-minor GH subtree, it is necessary that e is an
edge of G with positive capacity. But if it has capacity 1, it should be in H, and if it has capacity
∞, the two degree-3 vertices of H should have been identi�ed.

We now consider the converse direction and hence assume that G is a terminal-K2,3 minor free
graph. Let G′ be some subgraph of G with edge capacities c(e) > 0, perturbed so that all minimum
cuts are unique. We show that the unique GH Z-tree of G′ occurs as a (possibly weak) bag minor.

We deal �rst with the case where G′ has cut nodes. Note that one may iteratively remove any
leaf blocks which do not contain terminals. This operation essentially does not impact the GH
Z-Tree. Now consider any block L. Let G′L be the minor obtained by contracting the edges of every
block except L. By our assumption on leaf blocks, each cut point of L is a terminal in G′L as it is
contracted with at least one other block.

Since this minor G′L is K2,3-free, let ZL be the set of terminals in G′L, we show the desired
bag minor exists for (G′L, ZL). This is su�cient since we can later retrieve the desired bag minor
for the original terminal set, as Lemma 5.3 tells us that the partition into bags for (G′, Z) is a
re�nement of the partition into bags for G′L, ZL. One checks that a GH Z-Tree for G′ is obtained
by gluing together the appropriate GH terminal trees in each block. Moreover, since each cut node
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is a terminal, if each block's tree is a bag minor (resp. weak bag minor), then the whole tree is a
bag minor (resp. weak bag minor). Therefore it is now su�cient to prove the result in the case
where G′ is 2-connected.

If G′ has at most 4 terminals, then Proposition 5.2 asserts that it has a weak bag minor for a
GH tree. Moreover, if it has less than 4 terminals, then its GH Tree is a path and hence occurs as
a bag minor. So we now assume that G′ contains at least 5 terminals and hence it is an extended
OS instance whose outside face is a simple cycle, by Theorem 1.6. Lemma 1.11 implies that we
can replace each 3-separated set by three edges and the resulting graph is planar and has the same
pairwise connectivities amongst nodes in Z. It is easy to check that any Z-tree bag minor in this
new graph is also such a minor in the original instance. Therefore, it is su�cient to show that any
planar OS instance with terminals on the outside face has the desired GH tree (�strong�) bag minor.

Denote by t1, t2, . . . , t|T | the terminals in the order in which they appear on the boundary of
the outer face. Let {B(t) : t ∈ Z} be the bags associated with the (necessarily unique) GH Z-tree
T . We show that (i) each G′[B(t)] is connected and (ii) for any st ∈ T , there is some edge of G′

between B(s) and B(t).
Consider the fundamental cuts associated with edges incident to some terminal t. Let X1,X2,

. . .Xk be their shores which do not contain t. Since any min-cut is central, each Xi intersects the
outside face in a subpath of its boundary. Hence, similar to Claim 2.2 (cf. Figure 2), we can order
them X1,. . . ,Xk in clockwise order on the boundary with t between Xk and X1.

The next two claims complete the proof of the theorem.

Claim 5.5. For each terminal t, G′[B(t)] is connected.

Proof. By contradiction, suppose that G′[B(t)] = G′\(X1∪ . . .∪Xk) has more than one component.
Note �rst that the component containing tmust contain a subpath of the outside face which, together
with the Xi's, includes all nodes on the outside face. Now let K be a component of G′[B(t)] which
doesn't contain t. If N(K) ⊆ Xi for some i ∈ {1, . . . , k}, then δ(K ∪Xi) is a cut separating t from
any node in Xi with capacity strictly smaller than δ(Xi) (as we assumed no two cuts have the same
capacity). This contradicts that Xi induces a minimum st-cut for some s ∈ Xi.

Suppose now that there are 1 ≤ j < j′ ≤ k such that N(K) ∩ Xj 6= ∅ and N(K) ∩ Xj′ 6= ∅,
i.e. K adjacent to Xj and Xj′ . Choose j minimal and j′ maximal. Then one can de�ne a circuit
D which traverses C from Xj to Xj′ , and then traverses K and terminates at Xj .

LetM be the union ofK, Xj , . . . , Xj′ and all the components insideD, andM ′ =M\(Xj∪Xj′).
By Lemma 1.12 applied to X = Xj , Y = Xj′ , we have c(M

′, V \M) > 0. But an edge from M ′ to
V \M would either contradict the planarity (if it has one end in Xj+1 ∪ . . .∪Xj′−1,), the fact that
K is a component (if it is between K and G′[B(t)]) or the choice of j and j′ (if it has one end in K
and the other in Xi with i < j or i > j′).

�

Claim 5.6. For each i ∈ {1, . . . , k}, there is an edge from a node in B(t) to a node in Xi.
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Proof. By contradiction, suppose δ(B(t), Xi) = ∅, for some i ∈ {1, . . . , k}. Let j maximum and j′

minimum such that j < i < j′, δ(B(t), Xj) 6= ∅ and δ(B(t), Xj′) 6= ∅. Note that j and j′ are de�ned
because X1 and Xk are adjacent to B(t) by the outer cycle. If we de�ne M := Xj+1 . . . ∪ Xj′−1,
then c(M,V \ (M ∪Xj ∪Xj′)) = 0, contradicting Lemma 1.12 where we take X = Xj , Y = Xj′ . �

�

6 A Consequence for Multi�ows

Recall from the introduction that for a graph G and Z ⊆ V (G), we call (G,Z) cut-su�cient if for
any multi-�ow instance (capacities on G, demands between terminals in Z), we have feasibility if
and only if the cut condition holds.

Let (G,H) be a pair of graphs over the same set of vertices with capacities c : E(G)→ R+ and
demands d : E(H)→ R+. The �ow-cut gap of (G,H) is the minimal value α over all c and d such
that, if the capacity c(δG(X)) of any cut of G is at least α times the value of �ow demand d(δH(X))
in H across that cut, then the �ow demand (H, d) is routable in (G, c). The su�ciency of the cut
condition for (G,Z) is equivalent to saying that the �ow-cut gap of (G,K|Z|) is equal to 1.

Corollary 1.8. (G,Z) is cut-su�cient if and only if it is terminal-K2,3 free.

Proof. First, if there is a terminal-K2,3 minor then we obtain a �bad� multi�ow instance as follows.
For each deleted edge we assign it a capacity of 0. For each contracted edge we assign it a capacity
of ∞. The remaining 6 edges have unit capacity. We now de�ne four unit demands. One between
the two degree-3 nodes of the terminal minor and a triangle on the remaining three nodes. It is
well-known that this instance has a �ow-cut gap of 4

3 cf. [2, 1].
Now suppose that G is terminal-K2,3 free and consider a multi�ow instance with demands on

Z. By Lemma 1.11, we can replace each 3-separated graph by a degree-3 node and this new OS
instance will satisfy the cut condition if the old one did. Hence the Okamura-Seymour Theorem [8]
yields a half-integral multi�ow in the new instance.

We now show that the �ow in the modi�ed instance can be mapped back to the original extended
OS instance. We do this one 3-separated graph at a time. Consider the total �ow on paths that
use the new edges through s obtained via the reduction. Let d(xy), d(yz), d(zx) be these values.
We claim that these can be routed in the original F . First, it is easy to see that this instance on F
satis�es the cut condition: indeed any violated cut δF (S) would contain exactly one of x, y, z, say
x. Hence this cut would have capacity less than d(xy) + d(xz) but since this �ow routed through
s, this value must be at most cx which is a contradiction. Finally, the cut condition is su�cient to
guarantee a multi�ow in any graph if demands only arise on the edges of K4, cf. Corollary 72.2a [9].
Hence we can produce the desired �ow paths in F . �
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A Proof of Proposition 5.2 and Lemma 5.3

We start with a proof of Proposition 5.2.

Proposition 5.2. Let G be an undirected, connected graph and Z be a subset of at most 4 terminals.

If no two central cuts have the same capacity, then the unique GH Z-Tree T occurs as a weak bag

minor. Moreover, if T is a path, then it occurs as a bag minor.

Proof. We �rst consider the case where we have 4 terminals and let T be the unique GH tree.
Suppose that T is a star with center node 1 and let B1, B2, B3, B4 be the bags. Since each funda-
mental cut of T is central (in G) we have that B2, B3, B4 each induces a connected subgraph of G.
Let Y ⊆ B1 be those nodes (if any) which do not lie in the same component of G[B1] as 1. We
may try to produce T as a weak bag minor of G by deleting Y . This fails only if for some j ≥ 2,
c(B1 \ Y,Bj) = 0 (the only real edges between Bj , B1 are incident to Y ). Suppose this occurs for
say j = 2 (the other cases are the same). Let R = B2 ∪ Y ∪ B3, S = B2 ∪ Y ∪ B4. It follows that
c(R ∩ S, V − (R ∪ S)) = 0 and hence c(R) + c(S) = c(R \ S) + c(S \R) = c(B3) + c(B4). But δ(R)
is a 34-cut distinct from δ(B3). Hence by uniqueness of minimum cuts, c(R) > c(B3). Similarly,
c(S) > c(B4). This is contradiction, thus completing the �rst part.

Consider now the case where T is a path, say 1, 2, 3, 4. Since each fundamental cut is central,
G[B1], G[B4] are connected. Now suppose that G[B2] is not connected. Let M be the set of
nodes which do not lie in the same component as 2. If we de�ne X = B1, Y = B3 ∪ B4 and
t = 2, x = 1, y = 3, then Lemma 1.12 implies that c(M,B2 \M) > 0 a contradiction. It remains to
show that c(Bi, Bi+1) > 0 for each i = 1, 2, 3.

Suppose �rst that c(B1, B2) = 0. Then c(B1∪B3∪B4) ≤ c(B3∪B4) contradicting the fact that
B3∪B4 induces the unique minimum 23 cut. Hence c(B1, B2) > 0 and by symmetry c(B3, B4) > 0.
Finally suppose that c(B2, B3) = 0. Then, one easily checks that c(B1) + c(B4) ≥ c(B2) + c(B3).
But then either B2 induces a second minimum 12 cut, or B3 induces another minimum 34 cut.
In either case, we have a contradiction. The �nal cases where |Z| ≤ 3 follow easily by the same
methods. �

Lemma 5.3. Let T be a GH Z-Tree bag minor for some capacitated graph G and let v ∈ Z. Let

uv ∈ T be the maximum weight edge of T incident to v. If we set B′(u) = B(v) ∪ B(u) and

B′(x) = B(x) for each x ∈ Z \ {u, v}, then the resulting partition de�nes a GH (Z \ v)-Tree T ′
which is a bag minor.

Proof. Clearly T ′ is a bag minor and every fundamental cut of T , other than uv's, is still a funda-
mental cut of T ′ � see Figure A. It remains to show that for any a, b ∈ Z \ v, there is a minimum
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Figure 10: Illustration for Lemma 5.3.

ab-cut that does not correspond to the fundamental cut of uv. This is immediate if the unique
ab-path P in T does not contain uv. If it does contain uv, then since a, b 6= v, the ab-path in T
contains some edge vw. But since c′(vw) ≤ c′(uv), the result follows. �
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