
A DISSECTION OF L

ARNAUD SPIWACK

Inria – Ens – Paris, France
e-mail address: arnaud@spiwack.net

Abstract. This article describes a one-sided variant of system l whose typing corresponds
to linear sequent calculus and its application. A polarised version of the system is introduced
to control the reduction strategy. The polarised type system is then extended to dependent
linear types. The system with dependent type supports dependent elimination of positive
connectives.

Introduction

It is my strong belief that, if natural deduction has enlightened our path through programming
language design in the past half-century, sequent calculus will have a preponderant role in
the next one. Ever since the turn of the millennium, new results have been pointing towards
this conclusion.

Sequent calculus has been linked to strategy of evaluation [CH00, DL06, Zei08]. Lengrand,
Dyckhoff and McKinna have shown [LDM10] that the edge which sequent calculus has in
proof search extends to the dependently typed case. The quite popular bidirectional type-
checking discipline is well-modelled by sequent calculus [DK13]. Sequent calculus is also
know to be connected to program optimisation [Mar95].

Another tool which is becoming important for programming languages is linear logic. It
offers an alternative to commutative monads to represent effects [BW96], there is a fragment,
known as effect calculus [EMgS09], which can be use to encode arbitrary monadic effects. An
outstanding recent manifestation of linear types is [KB11] where linear typing is leveraged
for graphical interface programming.

The main technology for sequent-calculus based programming languages originates
in [CH00] where it was called λ̄µµ̃-calculus. It is more commonly known as system l (for
Gentzen’s name for sequent calculi: lk and lj). The tour de force of l, in my opinion, is to
provide a syntax for classical sequent calculus proofs in which, like λ-calculus for natural
deduction, contraction and weakening are done through variables: a bound variable which
isn’t used is weakened, if it is used twice or more it is contracted. This is, I would argue,
why it makes a good foundation for programming languages. There has also been linear
incarnations of system l [MM09].

1998 ACM Subject Classification: F.3.3.
Key words and phrases: Sequent calculus, Dependent types, Linear logic, Polarised logic, System L.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© Arnaud Spiwack
Creative Commons

1

2 ARNAUD SPIWACK

Despite the growing importance of sequent calculus in programming language design, the
literature on system l is scattered, and it still all too often feels impenetrable to outsiders.
There is, however, an excellent introductory write-up by Philip Wadler on the classical
version in [Wad03]. The most thorough studies of system l to date are Hugo Herbelin’s
habilitation [Her05] (see in particular the first chapter for historical notes) and Guillaume
Munch-Maccagnoni’s doctoral thesis [MM13].

My goal with this article is threefold. First, I aim at giving an overview of the system l
literature. Second, I want to outline how sequent calculus is relevant for programming
language design. Third and last, I give a proposal for a dependently typed linear sequent
calculus based on system l.

Readers familiar with system l who wish to jump quickly to dependent types should
skim through Figures 2 and 4 then go to Section 5.

Acknowledgement. This article may not have been written if it had not been for the long
discussions I had with Pierre-Louis Curien, Hugo Herbelin, Guillaume Munch-Maccagnoni,
and Pierre-Marie Pédrot.

1. Core l

Stripped down to its bare minimum, l appears as a very simple calculus whose syntax is
made of two kinds of objects, terms (t, u, v, . . .) and commands (c)

t, u ::= x | µx. c
c ::= 〈 t |u 〉

Together with reduction rules
〈 t |µx. c 〉 ; c[x\t]
〈µx. c | t 〉 ; c[x\t]

The intent being that the vertical bar be read as commutative. We shall use it as such from
now on.

Given a command c, the term µx. c can be thought as “let x be the current context, do
c”. Conversely, for t and u, two terms 〈 t |u 〉 runs t with context u (or symmetrically, u with
context t) it is read “t against u”.

The reduction rules look quite similar to β-reduction, however this core calculus does
not nearly have the power of λ-calculus. Indeed the fact that there are two kinds of object is
crucial here: from a functional programming perspective, it is like if the only construct was
let. . . in. Contrary to λ-calculus we have practically no computation power without additional
constructs.

Nonetheless, we can already observe undesirable behaviours. For instance it is easy
to cook up a non-terminating command 〈µx. 〈x |x 〉 |µx. 〈x |x 〉 〉. Much worse: any two
commands c1 and c2 have a common antecedent 〈µα. c1 |µα. c2 〉 where α is fresh.

1.1. Typing as classical sequent calculus. The original typing rules [CH00] for l corre-
sponded closely to classical sequent calculus. We shall present, in this section, a one-sided
variant of the classical core l. Therefore we shall require that every formula A has a dual
A⊥ such that A⊥⊥ = A.

The dualisation should not be understood as a connective – core l has none – but as an
operation on types. Duality tracks positional information: a variable of type A on the right is

A DISSECTION OF L 3

the same as a variable of type A⊥ on the left. Therefore, there is no difference between either
side and the variables can be arranged on a single side (or any convenient arrangement).
In classical logic, negation, which is a connective is a reflection of dualisation, and it may
be tempting – and is indeed often done – to forgo the negation altogether and keep only
dualisation. In that case, the de Morgan laws are not just tautologies, they are definitions for
the negation. An option which is more appealing from a programming language standpoint
is to keep negation as a connective, give it a dual, and equip them both with introduction
rules [Har12, Chapter 31][MM13, Chapter 4]. Duality, on the other hand, does not have
introduction rules – unless we count the identity and cut rules as introduction rules.

To follow the tradition of programming languages, let us choose to leave all the variables
on the left-hand side of the sequents. The tradition in proof theory, on the other hand, is
rather to keep the variables on the right. The latter is better suited for interpretation in
terms of proof nets [Gir96] or monoidal category [See89]. On the other hand, the left-handed
variant works very well with l. Duality ensures that the difference is only in the eye of the
reader: mathematically, these are all the same objects.

The typing of command is a simple assignment of types to its free variables: commands
are self-contained, they don’t have a “return type”.

Γ ` c
Terms, on the other hand, have an intrinsic type in addition to the type assignment of their
variables. From a logical standpoint, we shall need a distinguished formula which, since it
does not correspond to a variable, we shall display it on the right-hand side of the sequent:

Γ ` t : A

Keep in mind, though, that a term typing judgement, despite the similarity with natural
deduction sequents, is still a one-sided sequent. Indeed, a one-sided sequent is, by definition,
a sequent where formulæ can flow freely between left and right.

The typing rules for variables and interaction correspond, on the logical side, to identity
and cut respectively:

Γ, x:A ` x : A
id

Γ ` t : A Γ ` u : A⊥

Γ ` 〈 t |u 〉 cut

The cut rule emphasises the rôle of of the dual type A⊥ in the programming point of view:
A⊥ is the type of the contexts of A. Also, as A⊥⊥ = A, A is, conversely, the type of context
of A⊥: the idempotence of the duality operator goes hand to hand with the commutativity
of the interaction.

The typing rule for µ abstraction does not correspond to a logical rule: from the point
of view of sequent calculus, it corresponds to choosing a formula, and placing it to the
right-hand side of the sequent to make it active.

Γ, x:A ` c
Γ ` µx. c : A⊥

µ

From a programming point of view, µx. c expects a value for x and continues with c. In
other words, µx. c interacts with values of type A: it has type A⊥.

4 ARNAUD SPIWACK

What makes is so that these typing rules correspond to classical logic is that weakening
and contraction are admissible. In fact contraction is even derivable:

Γ, x:A, y:A ` c
Γ, x:A ` µy. c : A⊥ Γ, x:A ` x : A

Γ, x:A ` 〈µy. c |x 〉
Weakening cannot be defined as such a macro, as the context only grows upwards. However,
it is not difficult to check that any unused variable will be absorbed by the identity rules.
Just like in natural deduction, this implicit weakening is what allows to give type to terms of
the form µα. c for a fresh α.

As long as there is no type A such that A⊥ = A, the reduction of typed terms is
terminating. In particular the aforementioned 〈µx. 〈x |x 〉 |µx. 〈x |x 〉 〉 cannot be typed.
On the other hand, non-confluence is still as acute as in the untyped calculus: the untyped
example translates to a cut between to weakenings. Let Γ ` c1 and Γ ` c2 be two commands
typed in the same context, and α and β two fresh variable then we have the following
derivation:

Γ, α:A⊥ ` c1
Γ ` µα. c1 : A

Γ, β:A ` c2
Γ ` µβ. c2 : A⊥

Γ ` 〈µα. c1 |µβ. c2 〉
Which we can conclude by weakening. So again, any two typed commands have a common
antecedent. This is not specifically a property of l: in classical sequent calculus, a cut
between two weakening exhibits the same non-confluent behaviour.

1.2. Typing as linear sequent calculus. In order to address the issue of non-confluence,
we move away from classical logic and favour linear logic. The effect on the core calculus
is minimal. The identity and cut rules are modified to prevent implicit weakening and
conversion:

x:A ` x : A
id

Γ ` t : A ∆ ` u : A⊥

Γ,∆ ` 〈 t |u 〉 cut

The µ rule, on the other hand is left unchanged:
Γ, x:A ` c

Γ ` µx. c : A⊥
µ

Would we want to limit the exchange rules, like in non-commutative logic [AR99], we
would have to tweak the µ rule, but we will be content with treating the comma, in contexts,
as commutative.

2. Linear l

As mentioned in the previous section, core l does not have all that much computing abilities.
This is remedied by the introduction of logical connectives in types, and corresponding
constructions in terms. In this section we shall extend l to reflect the whole range of linear
logic connectives.

A DISSECTION OF L 5

2.1. Multiplicative fragment. Throughout this article, the connectives’ introduction rules
come in two varieties: some are value constructors, while the introduction rules of the dual
type are computation constructors, the syntax of which is inspired by pattern-matching.

For instance, the introduction rules of multiplicative connectives A ⊗ B and A ` B
correspond, respectively, to a pair of two terms, and matching on a pair. They are written
as follows:

t, u ::= . . . | (t, u) | µ (x, u) . c

A benefit of this syntax is that the reduction rules are pretty easy to figure. Here is the case
of pairs: 〈

(t, u)
∣∣µ (x, y) . c

〉
; c[x\t, y\u]

The typing rules follow naturally, keeping in mind that these are linear logic connectives
in particular the pair (x, x) is ill-typed:

Γ ` t : A ∆ ` u : B
Γ,∆ ` (t, u) : A⊗B ⊗

Γ, x:A, y:B ` c
Γ ` µ (x, y) . c : A⊥ `B⊥

`
The multiplicative connectives alone bring a lot of expressiveness: linear λ-calculus is

macro-expressible. The intuition comes from abstract machines: in abstract machines for
λ-calculus, λ-terms interact with a stack. The idea is to represent the stack as iterated pairs;
then the application must be a push operation, adding its second operand on the stack, while
abstraction must pop the first stack element and substitute it in the function body.

This is an important insight, so it bears repeating: in l the stack is first-class. Program-
ming in l is quite like programming directly an abstract machine. Giving a definition to
application and abstraction hence amounts to solving the equations:

〈 t u | v 〉;
〈
t
∣∣ (u, v)

〉〈
λx. t

∣∣ (u, v)
〉
;
〈
t[x\u]

∣∣ v 〉
Solving these equations ensures that the reduction rules of l simulate β-reduction:〈

(λx. t) u
∣∣ v 〉; 〈

λx. t
∣∣ (u, v)

〉
;
〈
t[x\u]

∣∣ v 〉
The equation defining the application is of particular interest because it is a special case

of an adjoint equation [MM13, Chapter 1], that is an equation of the form〈
ϕ[t]

∣∣u 〉; 〈
t
∣∣ψ[u]

〉
For two functions on terms ϕ and ψ compatible with substitution. One rôle played by the
µ-binder is to solve these adjoint equation generically. Specifically, when ψ is completely
specified, ϕ = µα. 〈 t |ψ[α] 〉 [t], for a fresh variable α:〈

ϕ[t]
∣∣u 〉 =

〈
µα.

〈
t
∣∣ψ[α]

〉 ∣∣∣u〉;
〈
t
∣∣ψ[u]

〉
Accordingly, application t u is defined as µα. 〈 t | (u, α) 〉: explicitely, the current context

(i.e. stack) is named α and t is then run against (u, α), the current stack on top of which u
has been pushed.

Abstraction does not enjoy such a generic description. However, the equation suggests
that λx. t ought to be defined as µ (x, α) . 〈 t |α 〉: the first element of the stack is called x
and the rest α, for a fresh α, the body t of the abstraction is then run against α, the popped
stack. Remember that x is binds a variable of t, so there is, implicitly a substitution in t. In

6 ARNAUD SPIWACK

fact, since we are in linear logic, typing will impose that x is, in some sense, used exactly
once in t. This definition is indeed a valid solution for the λ-abstraction equation.

Writing A(B for the linear arrow connective A⊥ `B, the typing rules of application
and abstraction are familiar:

Γ ` t : A(B
∆ ` u : A α:B⊥ ` α : B⊥

id

∆, α:B⊥ ` (u, α) : A⊗B⊥ ⊗

Γ,∆, α:B⊥ `
〈
t
∣∣ (u, α)

〉 cut

Γ,∆ ` µα.
〈
t
∣∣ (u, α)

〉
: B

µ

Γ,∆ ` t u : B
definition

Γ, x:A ` t : B α:B⊥ ` α : B⊥
id

Γ, x:A,α:B⊥ ` 〈 t |α 〉 cut

Γ ` µ (x, α) . 〈 t |α 〉 : A(B
`

Γ ` λx. t : A(B
definition

To the binary multiplicative connectives A ⊗ B and A ` B correspond the nullary 1
and ⊥ respectively. The constructor () of type 1 can be seen as an empty stacks, while
µ(). c is essentially the command c reified as a term: it discards the (anyway empty) stack
and runs c. The reader may refer to Figure 1 – which also contains the upcoming additive
connectives – for the typing rules of these nullary connectives.

2.2. Additive fragment. The additive connectives A ⊕ B and A&B bring something
radically new to simply typed lambda calculus: case analysis. Case analysis can be encoded
in pure λ-calculus, or in system F, but simply typed lambda calculus has no way of representing
it. Their are two value constructors for A⊕B, 1.t and 2.t, respectively injective A and B
into A⊕B. Terms of type A&B are made with a computation constructor which branches
on whether it is run against a 1.t or a 2.t:

t, u ::= . . . | 1.t | 2.t |
{
µ (1.x) . c1 , µ (2.y) . c2

}
The computation constructor {µ (1.x) . c1 , µ (2.y) . c2}, is written as a set of two pattern-
matching clauses, the appropriate clause is selected by the reduction rules:〈

1.t
∣∣∣ {µ (1.x) . c1 , µ (2.y) . c2

}〉
; c1[x\t]〈

2.t
∣∣∣ {µ (1.x) . c1 , µ (2.y) . c2

}〉
; c2[y\t]

In the typing rule for {µ (1.x) . c1 , µ (2.y) . c2}, as required by linear logic, both branches
share the same typing context:

Γ, x:A ` c1 Γ, y:B ` c2
Γ `

{
µ (1.x) . c1 , µ (2.y) . c2

}
: A⊥&B⊥

&

This typing rule can be framed in terms of the computational interpretation of l: linearity
imposes that each variable must be used exactly once. Since one of the branches (say c2)
is dropped by the reduction rule, none of the variables of c2 are used, therefore all of the
variables in the context must be used exactly once in c1. And symmetrically, they must be
used exactly once in c2.

A DISSECTION OF L 7

In the dual typing rules, the missing type is materialised from thin air, since the
corresponding branch is dropped by reduction:

Γ ` t : A
Γ ` 1.t : A⊕B ⊕l

Γ ` u : B
Γ ` 2.u : A⊕B ⊕r

There is a dual way to think about additive connectives, in which A&B is the type of
records (with two fields labelled 1 and 2), and the injections 1.t and 2.t play the role of
projections. Similarly to the case of λ-calculus in Section 2.1, we read 1.k as a stack which
begins with the first projection, and 2.k with the second projection.

Hence the projections t.1 and t.2 push the appropriate instruction on the top of the
stack and then run t. They are, like application, solutions to adjoint equations:

t.1 = µα. 〈 t | 1.α 〉
t.2 = µα. 〈 t | 2.α 〉

and the record {1 = t , 2 = u} (whose syntax is inspired by ml) pattern-matches on the top
of the stack:

{1 = t , 2 = u} =
{
µ (1.α) . 〈 t |α 〉 , µ (2.α) . 〈u |α 〉

}
The main difference between multiplicative pairs and additive records – apart from the

existence of projections in the latter – is that the former are values whereas the latter are
computations. The best way to think about the distinction between values and computation
may be to pretend that computations can have side effects. Under that view, a record stays
unevaluated, and only the effects of the selected field will happen. On the other hand, a
multiplicative pair (t, u) can be evaluated further, and the effects of both t and u will occur.

The binary A⊕B and A&B are accompanied by the nullary 0 – the empty type – and >,
whose sole constructor is {} the empty case analysis (a.k.a ex falso quodlibet). The complete
rules for the multiplicative and additive fragment of linear l can be found in Figure 1.

Notice how all the syntactic sugar so far defines computations. This is no coïncidence:
computations, as their name suggests, is where the fun happens. In other words, we program
functions, not pairs. The raw syntax of l is dry, and wholly unfamiliar; however, with a few
macros, familiar programming construct emerge, and l looks like a normal programming
language.

2.3. Exponentials. The typing rules presented so far are purely linear, in the sense that
there is no contraction – or weakening – happening. For instance, the term (x, x) can be
given a type in no context. Linear logic has the connective !A to represent the formulæ which
can be contracted and weakened on the left-hand side of sequents, and its dual ?A for the
formulæ which can be contracted and weakened on the right-hand side of sequents. In short:
a function of type !A (?B can use any number of copies of its argument of type A, and
may choose to return a B or not.

One way to incorporate the exponential connectives within linear l, proposed in [MM09],
is the following rule:

Γ, x:!A, y:!A ` c
Γ, x:!A ` c[y\x]

8 ARNAUD SPIWACK

Syntax

t, u ::= x | µx. c | (t, u) | µ (x, u) . c | () | µ(). c
1.t | 2.t | {µ (1.x) . c1 , µ (2.y) . c2} | {}

c ::= 〈 t |u 〉
Reduction

〈 t |µx. c 〉 ; c[x\t]
〈 (t, u) |µ (x, y) . c 〉 ; c[x\t, y\u]
〈 () |µ(). c 〉 ; c
〈 1.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c1[x\t]
〈 2.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c2[y\t]

Derived syntax

λx. t = µ (x, α) . 〈 t |α 〉
t u = µα. 〈 t | (u, α) 〉
{1 = t , 2 = u} = {µ (1.α) . 〈 t |α 〉 , µ (2.α) . 〈u |α 〉}
t.1 = µα. 〈 t | 1.α 〉
t.2 = µα. 〈 t | 2.α 〉

Typing

x:A ` x : A
id Γ ` t : A ∆ ` u : A⊥

Γ,∆ ` 〈 t |u 〉 cut

Γ, x:A ` c
Γ ` µx. c : A⊥

µ

Γ ` t : A ∆ ` u : B
Γ,∆ ` (t, u) : A⊗B ⊗

Γ, x:A, y:B ` c
Γ ` µ (x, y) . c : A⊥ `B⊥

`

` () : 1
1

Γ ` c
Γ ` µ(). c : ⊥ ⊥

Γ ` t : A
Γ ` 1.t : A⊕B ⊕l

Γ, x:A ` c1 Γ, y:B ` c2
Γ ` {µ (1.x) . c1 , µ (2.y) . c2} : A⊥&B⊥

&

Γ ` u : B
Γ ` 2.u : A⊕B ⊕r

No rule for 0 Γ ` {} : > >

Derived typing rules

Γ, x:A ` t : B

Γ ` λx. t : A(B
λ

Γ ` t : A(B Γ ` u : A
Γ ` t u : B

app

Γ ` t : A Γ ` u : B
Γ ` {1 = t , 2 = u} : A&B

record Γ ` t : A&B
Γ ` t.1 : A

π1

Γ ` t : A&B
Γ ` t.2 : B

π2

Figure 1: Multiplicative and additive fragment

A DISSECTION OF L 9

This rule mimics accurately the traditional linear sequent calculus, however it does not follow
the discipline of classical l, where contraction and weakening is only a matter of using a
variable several times or not at all.

In order to retain this property, we choose to use the dyadic presentation of linear logic.
This presentation, due to Andreoli [And92], classifies hypotheses according to whether they
are duplicable or not, and renders the duplicable hypotheses in a separate context which
behaves additively. The exponential connective !A reflects duplicable hypotheses in the linear
context.

The typing judgement in (dyadic) linear l of the form Ξ ; Γ ` t : A and Ξ ; Γ ` c, where
Γ is the linear context, and Ξ is the new duplicable context. Contraction and weakening are,
like in classical L in Section 1.1, are implicit as the duplicable context is copied by cut and
ignored by identity (more generally, the duplicable context is distributed on each premise of
inference rules):

Ξ ; Γ ` t : A Ξ ; ∆ ` u : A⊥

Ξ ; Γ,∆ ` 〈 t |u 〉 cut

Ξ ; x:A ` x : A
id

The addition of a new context in our sequents requires the addition of a new structural
rule to relate the new context to the old. A common form of structural rule for the duplicable
context is the copy, or absorbtion, rule:

Ξ, A ; Γ ` A⊥
Ξ, A ; Γ `

By the copy rule, copies of a duplicable hypothesis A in the linear context, can be contracted
into A. This rule does not follow the style of l as it would create a new kind of command.
The equivalent rule originally proposed by Andreoli [And92], on the other hand, fits the
design of l:

Ξ, x:A ; · ` x : A
id’

The duplicable identity rule makes it so that a duplicable hypothesis of type A can be used
as a term of type A. This rule can simply be read as stating that variables in the duplicable
context are duplicable variables. For example:

x:A ; · ` x : A
id’

x:A ; · ` x : A
id’

x:A ; · ` (x, x) : A⊗A ⊗

Variables in the duplicable context can, hence, be used freely, whereas variables of the linear
context must be used in a linear fashion. Precisely what we expected to achieve.

As a sanity check, let us consider the derivation of the copy rule from the duplicable
identity:

Ξ, x:A ; Γ ` t : A⊥ Ξ, x:A ; · ` x : A
id’

Ξ, x:A ; Γ ` 〈 t |x 〉 cut

For the exponential connectives themselves, !A has a value constructor, written btc,
which marks the term t as being duplicable (i.e. t does not use any linear variables), and ?A
has a dual computation constructor:

t, u ::= . . . | btc | µ bxc . c

10 ARNAUD SPIWACK

Syntax

t, u ::= . . . | btc | µ bxc . c
c ::= 〈 t |u 〉

Reduction

〈 t |µx. c 〉 ; c[x\t]
〈 (t, u) |µ (x, y) . c 〉 ; c[x\t, y\u]
〈 () |µ(). c 〉 ; c
〈 1.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c1[x\t]
〈 2.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c2[y\t]
〈 btc |µ bxc . c 〉 ; c[x\t]

Typing

Ξ ; x:A ` x : A
id

Ξ ; Γ ` t : A Ξ ; ∆ ` u : A⊥

Ξ ; Γ,∆ ` 〈 t |u 〉 cut

Ξ, x:A ; · ` x : A
id’

Ξ ; Γ, x:A ` c
Ξ ; Γ ` µx. c : A⊥

µ

Ξ ; Γ ` t : A Ξ ; ∆ ` u : B

Ξ ; Γ,∆ ` (t, u) : A⊗B ⊗ Ξ ; Γ, x:A, y:B ` c
Ξ ; Γ ` µ (x, y) . c : A⊥ `B⊥

`

Ξ ; · ` () : 1
1

Ξ ; Γ ` c
Ξ ; Γ ` µ(). c : ⊥ ⊥

Ξ ; Γ ` t : A

Ξ ; Γ ` 1.t : A⊕B ⊕l
Ξ ; Γ, x:A ` c1 Ξ ; Γ, y:B ` c2

Ξ ; Γ ` {µ (1.x) . c1 , µ (2.y) . c2} : A⊥&B⊥
&

Ξ ; Γ ` u : B

Ξ ; Γ ` 2.u : A⊕B ⊕r

No rule for 0 Ξ ; Γ ` {} : > >

Ξ ; · ` t : A

Ξ ; · ` btc : !A
!

Ξ, x:A ; Γ ` c
Ξ ; Γ ` µ bxc . c : ?A⊥

?

Figure 2: Linear l

The typing rules correspond, respectively, to the promotion and dereliction rules of linear
logic:

Ξ ; · ` t : A

Ξ ; · ` btc : !A
!

Ξ, x:A ; Γ ` c
Ξ ; Γ ` µ bxc . c : ?A⊥

?

The rest of the rules for linear l can be found in Figure 2. They are almost identical to
the rules of the multiplicative and additive fragment.

The choice of using substitution to embody contractions like in [MM09] or the dyadic
system has non-trivial implications: if they are logically equivalent, they do not have the

A DISSECTION OF L 11

same computational behaviour. In the substitution system, for instance, the sequent

x:!A ` µα.
〈

(x, x)
∣∣α 〉 : !A⊗ !A

is derivable. In the dyadic system, it is replaced, depending on the context, by either

x:A ; · `
(
bxc , bxc

)
: !A⊗ !A

or the more complex

· ; x:!A ` µβ.
〈
x

∣∣∣∣µ bαc . 〈 (bαc , bαc) ∣∣∣β 〉〉 : !A⊗ !A

More acutely, in [MM09], it is required for type safety that the promotion rule is a com-
putation constructor. Because of this, using the substitution system would be incompatible
with the treatment of Section 4.

3. Practical l

Linear l can be intimidating. It may feels verbose and impractical to write in directly.
We will use this section to review syntactic short-cuts and concrete examples in linear l.
The author hopes to convince the reader that the idea of programming in linear l is not
too far fetched. In fact, linear l makes a decent programming language, and an useful
intermediate language. The reason why such a claim can be confidently made, is that
standard programming constructs are macro-expressible in linear µ.

In Sections 4 and 5, we will refine linear l further. Each refinement has this same
property that we can recover a usual programming language by simple macro expansion.

3.1. Patterns. A most useful concept in linear µ is nested patterns, where we extend the
atomic patterns into a full-blown pattern-matching rule. Using the whole range of patterns,
however, is a bit involved, and unnecessary for this article, so we shall restrict ourselves to
the irrefutable patterns

p, q ::= x | bxc | () | (p, q)
Note how the bxc pattern is not recursive. This is not entirely necessary, but it would be a
significant complication: in the following typing rules, the rule for bxc would not generalise
easily to nested patterns because in the pattern b(x, y)c, the variables x and y should not be
duplicable (in other words, ! (A⊗B) does not have projections).

· ; x:A `p x : A
id

x:A ; · `p bxc : !A
id’

`p () : 1
1

Ξ ; Γ `p p : A Θ ; ∆ `p q : B

Ξ,Θ ; Γ,∆ `p (p, q) : A⊗B ⊗

The treatment of duplicable variables is significantly different with respect to the usual typing
rules: they are treated linearly, and they are solely introduced by the bxc construction.

The first application of patterns is a generalisation of the idiom 〈 t |x 〉 that the reader
may have noticed appeared a number of times earlier in this article. It is typed as follows:

Ξ ; Γ ` t : A Ξ ; x:A⊥ ` x : A⊥

Ξ ; Γ, x:A⊥ ` 〈 t |x 〉
In other words, using the terminology that the type of t is the active formula, 〈 t |x 〉
deactivates the type of t and give it the name x.

12 ARNAUD SPIWACK

It is useful to generalise this idiom to a 〈 t | p 〉 where p is a pattern. In this case, we may
see t as a box with a number of free wires – its inputs and outputs – and we give a name to
individual wires. This is a fairly common idiom throughout this article, sufficiently so that
we give it an derived typing rule. Let Θ ; ∆ `p p : A be a pattern, whose typing derivation
will be kept implicit, then we have the following derived rule:

Ξ,Θ ; Γ ` t : A⊥

Ξ,Θ ; Γ,∆ ` 〈 t | p 〉
cut p

The case of the variable-pattern is the simple version of the idiom as seen above. It is clear,
in general, that if Θ ; ∆ `p p : A, then Ξ,Θ ; ∆ ` p : A, which, with the help of the cut
rule proves the derived rule. Note that this derived rule stays correct for non-linear patterns
where duplicable variables are used multiple times.

The cut p rule allows for terser proofs even in the very common variable, as we shall see
immediately. Indeed, a more significant use of deep patterns is, of course, pattern matching:
we define the µp. c by induction on patterns. In the base cases, µp. c already exists, so only
µ (p, q) . c is left to be defined:

µ (p, q) . c = µ (α, β) .
〈
α
∣∣µp. 〈β |µq. c 〉 〉

There is a derived typing rule for µp. c, for Θ ; ∆ ` p : A:
Ξ,Θ ; Γ,∆ ` c

Ξ ; Γ ` µp. c : A⊥
µp

The base cases are already provided by the typing rules of linear µ, here is the proof (by
induction) of the pair pattern. Let Θ ; ∆ `p p : A and Ψ ; Ω `p q : B be two patterns such
that µp and µq are known to hold, we have Θ,Ψ ; ∆,Ω `p (p, q) : A⊗B and the following
derivation:

Ξ,Θ,Ψ ; Γ,∆,Ω ` c
Ξ,Θ ; Γ,∆ ` µq. c : Q⊥

µq

Ξ,Θ ; Γ,∆, β:Q ` 〈β |µq. c 〉 cutβ

Ξ ; Γ, β:Q ` µp. 〈β |µq. c 〉 : P⊥
µp

Ξ ; Γ, α:P, β:Q `
〈
α
∣∣µp. 〈β |µq. c 〉 〉 cutα

Ξ ; Γ ` µ (p, q) . c : A⊥ `B⊥
`

We can use this pattern-matching syntax to give meaning to the very useful λp. t: we
define it as µ (p, α) . 〈 t |α 〉. This is an extension of the definition in Section 2.1: in addition
to popping the stack, λp. t pattern-matches against the top element. Of course, λp. t has a
similarly concise typing rule. Let Θ ; ∆ `p p : A:

Ξ,Θ ; Γ,∆ ` t : B

Ξ ; Γ ` λp. t : A(B
λp

The justification is a straightforward extension of the variable case in Section 2.1:
Ξ,Θ ; Γ,∆ ` t : B

Ξ,Θ ; Γ,∆, α:B⊥ ` 〈 t |α 〉 cutα

Ξ ; Γ ` µ (p, α) . 〈 t |α 〉 : A⊥ `B
µ (p, α)

Ξ ; Γ ` λp. t : A(B
definition

A DISSECTION OF L 13

Typing

Ξ, x:A ; · ` x : A

Ξ, x:A ; · ` t : B

Ξ ; · ` λ bxc . t : !A(B

Ξ ; · ` t : !A(B Ξ ; · ` u : A

Ξ ; · ` t buc : B

Figure 3: Embedding λ-calculus

With this syntax, we can revisit the duplication of !A which we encountered in Section 2.3.
It is, now, quite easy to write a duplication function:

` λ bxc .
(
bxc , bxc

)
: !A(!A⊗ !A

It is possible, if quite a bit of work, to extend patterns to all of the value constructors.
In [CMM10], nested patterns are even primitive and are used to define everything else.
Primitive patterns can be used to as a syntax for the synthetic connectives of focusing [And92].

3.2. Natural deduction. Going back to Figure 2, we can observe that no rule modifies the
duplicable context except the dereliction rule. In the dereliction rule, the duplicable context,
Ξ, of the conclusion is adjoined an extra variable x in the premise.

This means like that the duplicable context is more similar to a natural deduction context
than a standard sequent calculus context. In fact, if we restrict our attention to the sequents
of the form Ξ ; · ` t : A, we essentially get intuitionistic natural deduction. Types make brief
appearances in the linear context, but this can be hidden by macros.

In Figure 3, we give the translation of simply typed λ-calculus inside linear µ. It is
probably comforting that using the duplicable context as a natural deduction context, the
intuitionistic arrow is naturally interpreted, as it is most common, as !A(B. Conjunction
can be interpreted by either conjunction connectives, though the additive conjunction is
simpler (because in the case of multiplicative conjunction the right encoding is !A ⊗ !B,
instead of the more straightforward A&B). Disjunction is encoded as !A⊕ !B (this time we
cannot use the multiplicative connective).

Intuitionistic natural deduction (a.k.a. typed λ-calculus) is indeed the logic of duplicable
formulæ in dyadic linear l. However, with extra type constructor, unusual manipulations can
be made. The reader who enjoys this sort of things can have fun proving that classical logic
can be encoded replacing the usual double-negation modality by the “why-not” modality:
classical formulæ are those such that ?A(A holds. In that case, the disjunction becomes
? (!A⊕ !B) and the falsity ?0, or, isomorphically, ?!A` ?!B and ⊥ [Lau02, Chapter 9].

3.3. Linear logic proofs. Let us, now, consider a few logical principles of linear logic,
starting with the isomorphism between ! (A&B) and !A⊗ !B. Using the syntactic facilities
introduced so far, the isomorphism is quite concise. We define

ϕ = λ bxc .
(
bx.1c , bx.2c

)
ϕ−1 = λ

(
bac , bbc

)
.
⌊
{1 = a , 2 = b}

⌋

14 ARNAUD SPIWACK

Which have the following types

x:A&B ; · ` x : A&B
id’

x:A&B ; · ` x.1 : A
π1

x:A&B ; · ` bx.1c : !A
!

x:A&B ; · ` x : A&B
id’

x:A&B ; · ` x.2 : B
π2

x:A&B ; · ` bx.2c : !B
!

x:A&B ; · `
(
bx.1c , bx.2c

)
: !A⊗ !B

⊗

` λ bxc .
(
bx.1c , bx.2c

)
: ! (A&B) (!A⊗ !B

λ bxc

` ϕ : ! (A&B) (!A⊗ !B
definition

a:A, b:B ; · ` a : A
id’

a:A, b:B ; · ` b : B
id’

a:A, b:B ; · ` {1 = a , 2 = b} : A&B
record

a:A, b:B ; · `
⌊
{1 = a , 2 = b}

⌋
: ! (A&B)

!

· ; · ` λ
(
bac , bbc

)
.
⌊
{1 = a , 2 = b}

⌋
: !A⊗ !B (! (A&B)

λ
(
bac , bbc

)
· ; · ` ϕ−1 : !A⊗ !B (! (A&B)

definition

We have 〈
ϕ
(
ϕ−1

(
bac , bbc

)) ∣∣∣∣α〉;

〈 (
bac , bbc

) ∣∣∣α〉
as well as 〈

ϕ−1
(
ϕ bxc

) ∣∣∣α〉;
⌊
{1 = x.1 , 2 = x.2}

⌋
Accepting the extensionality principles that every elements of !A is of the form bxc, every
elements of A⊗B is of the form (x, y) and for every x in A&B, {1 = x.1 , 2 = x.2} = x, we
conclude that ϕ and ϕ−1 form, indeed, an isomorphism.

The dual isomorphism between ? (A⊕B) and ?A` ?B, which we touched upon briefly
in Section 3.2, has slightly more advanced proof terms, but is all the more interesting.

ψ = λx. µ
(
bac , bbc

)
.
〈
x
∣∣∣ ⌊{1 = a , 2 = b}

⌋ 〉
ψ−1 = λy. µ bxc .

〈
y
∣∣∣ (bx.1c , bx.2c) 〉

Notice the pattern here: ψ is quite similar to ϕ−1 – the λ of the latter becomes a µ in
the former – and so is ψ−1 to ϕ. Instead of giving a direct type derivation for ψ and ψ−1,
which the user can work out himself as an exercise, let us define a combinator to encode this
pattern, that is a proof of (A(B) ((B⊥ (A⊥):

γ = λf. λx. µy. 〈x | f y 〉
With the typing derivation

· ; f :A(B ` f : A(B
id · ; y:A ` y : A

id

· ; f :A(B, y:A ` f y : B
app

· ; f :A(B, x:B⊥, y:A ` 〈x | f y 〉 cutx

· ; f :A(B, x:B⊥ ` µy. 〈x | f y 〉 : A⊥
µ

· ; f :A(B ` λx. µy. 〈x | f y 〉 : B⊥ (A⊥
λ

` λf. λx. µy. 〈x | f y 〉 : (A(B) ((B⊥ (A⊥)
λ

` γ : (A(B) ((B⊥ (A⊥)
definition

A DISSECTION OF L 15

We now have the equivalent definitions of ψ and ψ−1:
ψ = γ ϕ−1

ψ−1 = γ ϕ

Both of them reduce to the corresponding original definition, and their type is clear.
The γ combinator is quite interesting. Up to the extensionality rules x = µα. 〈α |x 〉 and

f = λα. f α, a function f is the same as λx. µy. 〈 y | f x 〉. So really, γ simply exchanges x
and y in the binders. This remark makes it clear that γ is involutive, hence that A(B and
B⊥ (A⊥ are isomorphic. As they should be: A(B = A⊥`B and B⊥ (A⊥ = B `A⊥,
so γ witnesses the commutativity of the ` connective.

The unsugared type of γ – (A⊗B⊥) ` (B `A⊥) – suggests another definition

γ = µ
(
f, (x, y)

)
.
〈

(y, x)
∣∣ f 〉

Which, fortunately, is a reduced form of the original definition. This new form has the
advantage of a very succinct type derivation:

· ; f :A⊥ `B ` f : A⊥ `B
id

· ; f :A⊥ `B, x:B⊥, y:A `
〈

(y, x)
∣∣ f 〉 cut (y, x)

· ; · ` µ
(
f, (x, y)

)
.
〈

(y, x)
∣∣ f 〉 : (A⊗B⊥) ` (B `A⊥)

µ
(
f, (x, y)

)
To conclude this section, let us consider principles corresponding to contraction and

weakening. We already mentioned in Sections 2.3 and 3.1 the duplication combinator of type
!A(!A⊗ !A, corresponding to contraction of duplicating formulæ.

δ = λ bxc .
(
bxc , bxc

)
There is also an erasure combinator, of type !A(1 corresponding to weakening. To highlight
unused variables, we may simply omit them in the binders, writing b c instead of bαc:

ε = λ b c . ()
With γ we obtain corresponding principles on the type ?A:

· ; · ` γ δ : ?A` ?A(?A
· ; · ` γ ε : ⊥(?A

3.4. Programming constructs. We have seen many construction, so far, which allow to
program in the style of pure programming languages. Linear l, however, goes beyond pure
languages. To illustrate this, let us consider exceptions.

Following the tradition in pure languages, we can decide to represent computations of
type A which may raise an exception E by the type A⊕ E. The well known limit of this
representation is that exception-raising expressions must be threaded explicitly. Consider
three exception-raising functions ` f : A(B⊕E, ` g : B (C⊕E, and ` h : C (D⊕E,
their composite, in the worst order, can be defined as:

g ◦ f = λx. µr.

〈
f x

∣∣∣∣∣
{
µ (1.y) . 〈 g y | r 〉
µ (2.e) . 〈 e | r.2 〉

}〉

h ◦ (g ◦ f) = λx. µr.

〈
(g ◦ f) x

∣∣∣∣∣
{
µ (1.z) . 〈h z | r 〉
µ (2.e) . 〈 e | r.2 〉

}〉

16 ARNAUD SPIWACK

The relative verbosity is not an issue, as it can be hidden behind (monadic) combinators.
What can be an issue, on the other hand, is that each step of the program has to inspect
whether the previous expression returns a value or an exception. In the worst case, as above,
even when the innermost function – f – fails, there is a linear number of inspections before
the total function finally fails (on the other hand (h ◦ g) ◦ f would fail immediately if f fails).

The inspections themselves can be costly, but more importantly, it is not always possible
to avoid the slow composition order. An extreme, yet not uncommon, example would be
combinators like Ocaml’s List.fold_left: even if List.fold_left f s l fails quickly on f, the whole list
needs to be traversed before returning an error. With actual exceptions, on the other hand,
the execution of List.fold_left f s l is interrupted as soon as an exception is raised.

The behaviour of exceptions can be modelled in linear l. Instead of the type A ⊕ E,
we may use the weaker type ?E ` ?A to represent computation which may raise exceptions.
For simplicity, we use the fact that it also reads !E⊥ (?A. Let ` f : A (?E ` ?B,
` g : B (?E ` ?C, and ` h : C (?E `D, their composite can be written as:

g ◦ f = λx. µ
(
bθc , bρc

)
.

〈
f x bθc

∣∣∣∣ ⌊µy. 〈 g y bθc ∣∣ bρc 〉⌋〉
h ◦ (g ◦ f) = λx. µ

(
bθc , bρc

)
.

〈
(g ◦ f) x bθc

∣∣∣∣ ⌊µz. 〈h z bθc ∣∣ bρc 〉⌋〉
Where 〈 e | θ 〉 should be understood as throwing the exception e and 〈 a | ρ 〉 as returning
value a. The composition still threads functions in a monadic style to use values of type ?B
and ?C, however, when an exception is raised, the continuation is simply not executed as
there is no value of type B or C to go on with. Indeed, f x bθc has type ?B: if an exception
is raised no value is returned. With the type A⊕ E, on the other hand, a value of type E is
returned.

This representation of exceptions is often called the two-continuation encoding of excep-
tion. Where ρ is called the success continuation, and θ the failure continuation. Because
continuations are lexically bound, the θ operation behaves differently from Ocaml’s raise:
instead of dynamically looking for the enclosing try, θ jumps to a statically determined
context. Much like with callcc, it means that θ can be captured and escape its scope, in
which case executing 〈 e | θ 〉 would still resume at θ.

It should be no surprise that, actually, callcc itself can be implemented in linear l. In
fact, we have already claimed in Section 3.2 that classical logic can be embedded in linear l;
but we can give a more direct implementation with a more precise type than what would be
achieved through such an embedding.

The type of callcc is (a linear version of) Peirce’s law. The first ingredient is to take
a context of type A⊥ and reify it as a function A (X for some X. As, by definition, no
value of type X will be produced, X must be of the form ?B. In particular, X can be ⊥,
which is isomorphic to ?0. We define trow, of type A⊥ (A(?B:

throw = λk. λx. µ b c . 〈x | k 〉

A DISSECTION OF L 17

It takes the continuation k to the function which, given an element x, drops the current
continuation, and runs x against k. The typing derivation is:

α:B⊥ ; x:A ` x : A
id

α:B⊥ ; k:A⊥, x:A ` 〈x | k 〉 cut k

· ; k:A⊥, x:A ` µ bαc . 〈x | k 〉 : ?B
?

· ; k:A⊥ ` λx. µ bαc . 〈x | k 〉 : A(?B
λ

· ; · ` λk. λx. µ bαc . 〈x | k 〉 : A⊥ (A(?B
λ

· ; · ` throw : A⊥ (A(?B
definition

To complete callcc, let us consider Peirce’s law: ((A → B) → A) → A. From a
computational point of view, there are two ways an α is produced: either the body returns
an α, and the current continuation is restored, or the body explicitely calls the continuation
via the function α→ β. Returning to linear l, it means that the current continuation must
be duplicable, so callcc has a type of the form X (?A. Since the current continuation is
duplicable, we are free to make its functional reification duplicable as well. Which gives us
the final type (! (A(?B) (?A) (?A.

callcc = λf. µ bkc .
〈
f bthrow kc

∣∣ bkc 〉
Notice how k is indeed duplicated, hence forces the return type to be ?A. The full type
derivation is as follows:

k:A⊥ ; f :! (A(?B) (?A ` f : ! (A(?B) (?A
id

....
k:A⊥ ; · ` bthrow kc : ! (A(?B)

k:A⊥ ; f :! (A(?B) (?A ` f bthrow kc : ?A
app

k:A⊥ ; f :! (A(?B) (?A `
〈
f bthrow kc

∣∣ bkc 〉 cut bkc

· ; f :! (A(?B) (?A ` µ bkc .
〈
f bthrow kc

∣∣ bkc 〉 : ?A
?

` callcc :
(
! (A(?B) (?A

)
(?A

λ

The type of callcc illustrates how embedding classical principles in linear µ requires
annotations with both exponential connectives. Depending on the precise annotations used,
the ambiguous critical pairs of classical logic may be resolved by favouring one way or
another [Lau02, Chapter 9]. However, it is probably unnecessary to use a callcc combinator
to program in linear µ, as the µ binder already fills its function.

3.5. Commutative cuts. For those developing a programming language which is not based
on linear l, it can still be quite serviceable as an intermediate language. In the spirit of
the Glasgow Haskell Compiler (ghc) [PS98], the syntax of a programming language can be
desugared into linear l which is quite amenable to program transformations. Desugaring is
a simple transformation, which should consist of interpreting syntactic construction of the
language as macros, which is the case of every definition we demonstrate in this article. The
reader wishing to make the meaning of macros more formal may refer to [Fel90].

One of the roles of intermediate language optimisation is to eliminate unnecessary
computations introduces by modularly written programs: a common slogan is writing the
programs we want to write, and producing the code we want to produce. The strategy, in [PS98]
is to express optimisations as program transformations on the intermediate language. For
instance – in Ocaml syntax – let(x,y)=(u,v) in t x y, provided u and v are values, can be rewritten

18 ARNAUD SPIWACK

to t u v: it does not affect the complexity of the program, but avoids unnecessary allocations
which can be inefficient.

In languages based on λ-calculus, however, there are missed opportunity for reduc-
tion. Consider the term let(x,y) = let (z,i) = u in (i,z) in t. In that expression, (i,z) is built and
immediately destructed. However, this unnecessary allocation cannot be eliminated by
β-reduction. To handle this missed opportunity for reduction [PS98, Section 5] introduces
an extra transformation (we give the transformation for pair patterns, but it can be defined,
in general, for any atomic pattern matching):

let (x,y) = let (z,i) = u in v in t ; let(z,i) = u in let(x,y) = v in t

This reduction is an example of what is called, in proof theory, a commutative cut, or
commuting conversion. That is, proofs which are distinguished by the cut elimination of
natural deduction, but are identified by the cut elimination of sequent calculus. They can,
hence, be seen as hidden cuts. Commutative cuts always involve a pattern matching another
elimination rule. Here is a commutative cut with application:

(let (x,y) = u in v) t ; let(x,y) = u in v t

Transforming programs according to such commutative cut is crucial to the optimisation
strategy of ghc. Going even further, the mlj compiler [BKR99] transformed programs
according to every commutative cut.

In linear l, commutative cuts are, as is expected of cut elimination in a sequent calculus,
mere reductions. Indeed, the pattern matching of linear l do not return terms, but commands.
Hence the term-returning flavour of pattern matching from natural deduction must be encoded,
by capturing the current continuation: let(x,y) = u in v is encoded as µα. 〈u |µ (x, y) . 〈 v |α 〉 〉.
We then have that (let (x,y) = u in v) t is as follows:

µα.
〈
µβ.

〈
u
∣∣µ (z, i) . 〈 v |β 〉

〉 ∣∣∣µ (x, y) . 〈 t |α 〉
〉

Reducing the redex for µβ, we obtain:

µα.
〈
u
∣∣∣µ (z, i) .

〈
v
∣∣µ (x, y) . 〈 t |α 〉

〉 〉
which is almost the encoding of let(z,i) = u in let(x,y) = v in t. In fact, it is one innocuous
reduction better than the actual one:

µα.

〈
u

∣∣∣∣µ (z, i) .
〈
µβ.

〈
v
∣∣µ (x, y) . 〈 t |β 〉

〉 ∣∣∣α〉〉
The case of (let (x,y) = u in v) t works just as well:

µα.
〈
µβ.

〈
u
∣∣µ (x, y) . 〈 v |β 〉

〉 ∣∣∣ (t, α)
〉
; µα.

〈
u
∣∣∣µ (x, y) .

〈
v
∣∣ (t, α)

〉 〉
Going further, Marlow [Mar95, Chapter 3] studies precisely how cut elimination for sequent
calculus can model deforestation, i.e. elimination of unnecessary intermediate data in presence
of recursive types.

The commutative cuts, in linear l, are not actual reductions, because extra µ binder
are introduced by the macro-encoding of the language constructs. However, they are indeed
conversions. From an intermediate language perspective, anyway, these extra binders should
be eliminated as much as possible, so these reduction produce the appropriate terms.

While we are on the subject of program optimisation by reduction, linear l contributes
to the subject in another way. Indeed, reductions should not modify the complexity of the

A DISSECTION OF L 19

program, so they should not duplicate or drop computations. In linear l, there is only one
reduction rule which may duplicate or drop computation:〈

btc
∣∣µ bxc . c 〉 ; c[x\t]

All the other reduction may be applied safely. Though, they should probably not be applied
blindly, as code duplication can still occur, if several branches refer to the same variable.
Note that, for non-linear languages, this requires a significantly finer translation than just
marking every variable as duplicable to be actually useful.

Using linearity to guide reductions in the ghc compiler was actually proposed in [PS98,
Section 4.2]. Their intermediate language does not have syntactic markers for duplication,
so they rely purely on types to guide the reduction. The main difference, though, is that
Haskell being a lazy language, ghc can safely drop computations, so their typing system is
actually affine.

An affine flavour l can be defined by changing the linear context of linear l into an affine
context which can be dropped at leaves. Effectively, affine l differs from linear l by three
rules: the two identity rules and the introduction rule for 1, which now can have an arbitrary
affine context. Affine l can be translated into linear l by translating every hypothesis x of
type A in the affine context into an hypothesis x of type A&1 in the linear context. This
translation, however, is not a simple macro translation, at least not on untyped terms, as
unused variables must be explicitly dropped. So the translation of the three modified rules
depend on the affine variables in the context.

4. Polarised l

Linear l solves the weakening-against-weakening non-confluence example of Section 1: to
erase a variable, one must introduce a binder µ b c . c which is not involved in a critical pair.
However, there are still critical pairs of the form 〈µx. c |µy. c′ 〉 which can be typed in linear
l. It is conceivable that the reduction of linearly typed l term is still non-confluent. And
indeed, here is a counter-example.〈

µx.
〈

(x, z)
∣∣ v 〉 ∣∣∣µy. 〈 (t, y)

∣∣w 〉 〉
which reduces both to〈(

t, µx.
〈

(x, z)
∣∣ v 〉) ∣∣∣∣w〉 and

〈(
µy.

〈
(t, y)

∣∣w 〉 , z) ∣∣∣∣ v〉
two distinct normal forms, yet has the following type:

· ; t:A, z:A⊥, v:A⊥ `A,w:A⊥ `A `
〈
µx.

〈
(x, z)

∣∣ v 〉 ∣∣∣µy. 〈 (t, y)
∣∣w 〉 〉

There are several ways to think about this example. On the first hand, it could be said
that the syntax is inadequate and we should move to a syntax which identifies both terms,
like proof nets. On the other hand, we can also point out that µx. c does not really make
sense by itself: it is an active term which expects a counterpart. In that view, it does not
really make sense to capture such a term in a pair (µx. c, u) where the µ cannot be resolved.

20 ARNAUD SPIWACK

4.1. Restricting substitution. The solution suggested by the latter view is to take more
seriously the distinction between values and computations. That is µx. c is a computation,
yet we take the point of view that variables should only be substituted with values. This is a
form of call by value, even though, as we will see below, this does not preclude call by name
functions. Such a restriction can be achieved by a syntactic criterion: identifying a syntactic
class of values, and restricting reduction rules to only substitute values. This is the strategy
used in the setting of λ-calculus [Plo75] or in the original l paper [CH00].

To offer a counter-point we will account for this restriction purely by typing. This
is merely a difference in presentation, though, as the syntactic restriction can be read off
directly from the typing rules. This idea leads to a polarised logic, where types are classified
on whether their introduction rules are value constructors (positive types) or computation
constructors (negative types). The restriction that variables can only be substituted with
values then translates to the restriction that variables all are of positive type.

This rule has strong consequences: in µ (x, y) . c, x and y must be of positive type, hence
the two component of a pair must be values. In particular terms of the form (µx. c, u), like
above, are no longer permissible. It is now well understood [DL06, Zei08, MM09, CMM10],
that this call-by-value restriction of sequent calculus is akin to focusing [And92], though, on
the details, it need not correspond too closely.

The classification of types is, hence, a strong restriction which we sum up with the
following grammar, where A and B denote positive types and N and M denote negative
types:

A, B ::= A⊗B | 1 | A⊕B | 0 | !A | ↓N
N , M ::= N `M | ⊥ | A&B | > | ?A | ↑P

This grammar introduces two new dual connectives ↓N and ↑P – both read “shift” – to
mediate between the two polarities. The shift connectives have reversed introduction rules,
as ↑P is introduced by the construction ⇑v (read “return” v), and ↓N by µ⇑x . c, despite
the former being negative and the latter positive. Indeed ⇑v is a computation and µ⇑x . c a
value. Sequents for values are written Ξ ; Γ `v t : A, this is purely cosmetic in this section,
but the typing judgement of values and computations will be distinct in Section 5.

Ξ ; Γ, x:A ` c
Ξ ; Γ `v µ⇑x. c : ↓A⊥ ↓

Ξ ; Γ `v t : A

Ξ ; Γ ` ⇑t : ↑A ↑

With the obvious reduction rule:

〈µ⇑x. c | ⇑t 〉 ; c[x\t]

As often, it is usually possible to define an alternative syntax to replace the µ pattern:
↓N can alternatively be introduced by ⇓t – read “thunk t” – defined as:

⇓t = µ⇑α. 〈 t |α 〉
The typing of which is given by:

Ξ ; Γ ` t : N

Ξ ; Γ, α:N⊥ ` 〈 t |α 〉 cutα

Ξ ; Γ `v µ⇑α. 〈 t |α 〉 : ↓N ↓

Ξ ; Γ `v ⇓t : ↓N definition

And has as a reduction rule:
〈 ⇓t | ⇑u 〉; 〈u | t 〉

A DISSECTION OF L 21

Syntax

t, u ::= . . . | ⇑t | µ⇑x . c
c ::= 〈 t |u 〉

Types

A, B ::= A⊗B | 1 | A⊕B | 0 | !A | ↓N
N , M ::= N `M | ⊥ | A&B | > | ?A | ↑P

Reduction

〈 t |µx. c 〉 ; c[x\t]
〈µ⇑x . c | ⇑t 〉 ; c[x\t]
〈 (t, u) |µ (x, y) . c 〉 ; c[x\t, y\u]
〈 () |µ(). c 〉 ; c
〈 1.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c1[x\t]
〈 2.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c2[y\t]
〈 btc |µ bxc . c 〉 ; c[x\t]

Typing

Ξ ; x:A `v x : A
id

Ξ ; Γ `v t : A Ξ ; ∆ ` u : A⊥

Ξ ; Γ,∆ ` 〈 t |u 〉 cut

Ξ, x:A ; · `v x : A
id’

Ξ ; Γ, x:A ` c
Ξ ; Γ ` µx. c : A⊥

µ

Ξ ; Γ, x:A ` c
Ξ ; Γ `v µ⇑x . c : ↓A⊥ ↓

Ξ ; Γ `v t : A

Ξ ; Γ ` ⇑t : ↑A ↑

Ξ ; Γ `v t : A Ξ ; ∆ `v u : B

Ξ ; Γ,∆ `v (t, u) : A⊗B ⊗ Ξ ; Γ, x:A, y:B ` c
Ξ ; Γ ` µ (x, y) . c : A⊥ `B⊥

`

Ξ ; · `v () : 1
1

Ξ ; Γ ` c
Ξ ; Γ ` µ(). c : ⊥ ⊥

Ξ ; Γ `v t : A

Ξ ; Γ `v 1.t : A⊕B ⊕l
Ξ ; Γ, x:A ` c1 Ξ ; Γ, y:B ` c2

Ξ ; Γ ` {µ (1.x) . c1 , µ (2.y) . c2} : A⊥&B⊥
&

Ξ ; Γ `v u : B

Ξ ; Γ `v 2.u : A⊕B ⊕r

No rule for 0 Ξ ; Γ ` {} : > >

Ξ ; · `v t : A

Ξ ; · `v btc : !A
!

Ξ, x:A ; Γ ` c
Ξ ; Γ ` µ bxc . c : ?A⊥

?

Figure 4: Polarised l

The other typing rules for polarised l are given in Figure 4. They are, actually, textually
identical to the rules of linear l, except that now A and B stand for positive types. Polarised
l is really only a matter of constraining the variables to have positive types.

The shift are not simple coercions between negative and positive types: they have a real
computational significance. Indeed ↑A is a bigger type than A: if A contains only values v,

22 ARNAUD SPIWACK

↑A contains any computation which evaluates to v. For instance, 1 only contains the value
(), but ↑1 contains computations like

(
λ().

~w()
)

(). In fact, polarised l is a linear variant
of Levy’s call-by-push-value (cbpv) language [Lev01]. With ↑A and ↓N playing the role,
respectively, of FA and UN .

Like in cbpv, computations can be chained, with the expression t tox. u, so that the
value computed by t is bound to x in u, in a manner reminiscent of monadic composition.

t tox. u = µα.
〈
t
∣∣µ⇑x. 〈u |α 〉 〉

with the same typing rule as in [Lev01] (up to linearity):

Ξ ; Γ ` t : ↑A

Ξ ; ∆, x:A ` u : N

Ξ ; ∆, α:N⊥, x:A ` 〈u |α 〉 cutα

Ξ ; ∆, α:N⊥ ` µ⇑x. 〈u |α 〉 : ↓A⊥ ↓

Ξ ; Γ,∆, α:N⊥ `
〈
t
∣∣µ⇑x. 〈u |α 〉 〉 cut

Ξ ; Γ,∆ ` µα.
〈
t
∣∣µ⇑x. 〈u |α 〉 〉 : N

µ

Ξ ; Γ,∆ ` t tox. u : N
definition

Together with the reduction rule:

〈 ⇑v tox. u |α 〉;
〈
u[x\v]

∣∣α 〉
Dually, the type ↓N represents the type of suspended computations. A suspended com-

putation differs from regular computation in that they can be stored in a value. Suspending a
computation corresponds to an operation well-known to the functional programmer: building
a closure. Indeed, a closure is nothing but packing a computation (typically in form of a
code pointer) together with the environment necessary for the computation to be resumed
later. That is, turning a computation into a value.

A feature shared by cbpv and polarised l, is that functions are computations A(N .
They are not made into closure unless they are suspended into the type

y(A(N) . If
closures are considered expensive to make, which they often are, this property can be useful
as functions of multiple arguments A(B (C (N do not need intermediate closures.

As a matter of fact, the Rust programming language has, for efficiency purposes, so-called
stack closures, which are, in fact, not closures by that definition. Stack closures are functions
which can be used only as argument of another function, and be called, but not be stored in
a value. From the point of view of polarised l, this would correspond to having variables of
negative type, with restricted usage.

Suspended values, again inspired by cbpv, can be turned back into computation with a
force combinator, which is adjoint to return:

force t = µα. 〈 t | ⇑α 〉
Typed as

Ξ ; Γ `v t : ↓N
Ξ ; α:N⊥ `v α : N⊥

id

Ξ ; α:N⊥ ` ⇑α : ↑N⊥ ↑

Ξ ; Γ, α:N⊥ ` 〈 t | ⇑α 〉 cut

Ξ ; Γ ` µα. 〈 t | ⇑α 〉 : N
µ

Ξ ; Γ ` force t : N
definition

And with reduction rule:
〈 force ⇓t |α 〉; 〈 t |α 〉

A DISSECTION OF L 23

4.2. Translations. Despite the call-by-value slant of polarised l, both call-by-value and
call-by-name λ-calculus can be embedded in polarised l. Again, all of the definitions are
macros. For simplicity we will only give encoding of linear λ-calculus, but the intuitionistic
version is not very different. We use the definitions of λx. t and t u defined in Figure 1, like
the other connectives they have only changed inasmuch as the polarisation of the operands
of the arrow type: the arrow A(N = A⊥ `N has positive domain and negative codomain.

4.2.1. Call-by-name λ-calculus. Call-by-name λ-calculus is obtained by interpreting all type
as being negative. As a consequence, all variables in the context must be shifted which
modifies the variable rule, and the arrow is encoded as ↓N (M :

Γ, x:↓N `v x : ↓N id

Γ, x:↓N ` force x : N
force

Γ ` t : ↓N (M
∆ ` u : N

∆ `v ⇓u : ↓N ↓

Γ,∆ ` t ⇓u : M
app

Γ, x:↓N ` t : M

Γ ` λx. t : ↓N (M
λ

In call-by-name λ-calculus, the arguments of functions are suspended so that their
computation happens at use point: when the variables are used and forced. This translation,
which is mostly forced by the choice that all types are interpreted as negative, happens to
correspond closely to simple implementations, for instance Krivine’s abstract machine.

4.2.2. Call-by-value λ-calculus. Dually, in call-by-value λ-calculus all of the types are inter-
preted as positive. Since a λ-term is a computation, not a value, the type of the terms – rather
than the hypotheses as in call by name – must be shifted. Also, the encoding of functions is
a little more involved:

y(A(↑B) . Again, this translation follows straightforwardly from
the choice that every type is positive.

Γ, x:A `v x : A
id

Γ, x:A ` ⇑x : ↑A ↑

∆ ` u : ↑A
Γ ` t :

xy(A(↑B)

f :
y(A(↑B) `v f :

y(A(↑B)
id

f :
y(A(↑B) ` force f : A(↑B force

x:A `v x : A id

x:A, f :
y(A(↑B) ` force f x : ↑B

app

Γ, x:A ` t to f. force f x : ↑B chain

Γ,∆ ` u tox. t to f. force f x : ↑B chain

Γ, x:A ` t : ↑B
Γ ` λx. t : A(↑B λ

Γ `v ⇓λx. t :
y(A(↑B)

thunk

Γ ` ⇑⇓λx. t :
xy(A(↑B)

↑

As in any call-by-value calculus, there is a non-canonical choice in the order of evaluation.
We observe it in the translation of application: we chose to evaluate the argument before the
function, but the reverse works just as well and behaves differently in presence of effects.

24 ARNAUD SPIWACK

Notice that, contrary to the call-by-name λ-calculus, the encoding of call-by-value λ-
calculus introduces a closure around every abstraction. This aspect is discussed, in the
context of abstract machines, in [Ler90, Chapter 3]. Closures are usually expensive, hence
we may want to eliminate intermediate closures in expressions of the form

⇑⇓λx.⇑⇓λy. t
When it is applied to two arguments. It can be done by partial evaluation like in Section 3.5,
because the application to two arguments u and v:〈

v to y.
(
u tox. (⇑⇓λx.⇑⇓λy. t) to f. force f y

)
to g. force g x

∣∣∣α〉
Is convertible to

〈 v to y. u tox. t |α 〉
It requires some care to avoid code duplication, however. Compared to the solution of the
zinc abstract machine [Ler90, Chapter 3], this optimisation only applies to statistically
detectable situation, whereas the zinc tries dynamically to avoid intermediate closures (by
checking the number of available arguments on the stack). So partial evaluation of polarised
l is more efficient (as it forgoes dynamic tests), but does not apply as often.

4.2.3. Call-by-value linear l. Like λ-calculus, linear l can be translated into polarised l.
There is the same dichotomy as for λ-calculus with one translation interpreting each type as
positive and another as negative.

Unlike λ-calculus, types having all the same polarity causes difficulty because of the
cut rule, and the µ rule. So, sadly, these are not macro-translations. To be fair, apart from
the cut and µ rules, the terms are macro-translated, although their types are not. We will
focus on the multiplicative fragment, the rest follows straightforwardly. We write JAK for the
translation of type A.

In the encoding where all types are positive, the product A⊗B can be simply interpreted
as JAK⊗ JBK, and 1 as 1. We can see, already, that this calculus will have a call-by-value
feel. Like in call-by-value λ-calculus, hypotheses have their bare type, but the type of the
active term is shifted. Here is the identity rule

x:JAK `v x : JAK id

x:JAK ` ⇑x :
xJAK

↑

When translating the type A⊥ `B⊥, we must construct a continuation of JA⊗BK =
JAK⊗ JBK, so basically we have no alternative but to choose JAK⊥ ` JBK⊥, but since it’s not
a positive type, it needs to be shifted: JA⊥ `B⊥K =

y(JAK⊥ ` JBK⊥
)
. Likewise, J⊥K = ↓⊥ .

Since cut and µ involve dualisation, they need to relate JAK and JA⊥K. The property
we deduce from the definition is: JA⊥K =

yJAK⊥ or
xJA⊥K = JAK⊥ . The cut rule must be

oriented to recognise which of its operand has an extra shift.
Γ ` t :

xJAK

Γ `v ⇓t :
yxJAK

thunk
∆ ` u :

xyJAK⊥

Γ,∆ ` 〈⇓t |u 〉 cut

A DISSECTION OF L 25

The µ rule is worse, as it must be duplicated depending on whether it must add a shift or
not to the selected hypothesis.

Γ, x:JAK ` c
Γ `v µ⇑x. c :

yJAK⊥
↓

Γ ` ⇑µ⇑x. c :
xyJAK⊥

↑

Γ ` ⇑µ⇑x. c :
xJA⊥K

definition

Γ, x:JAK ` c
Γ ` µx. c : JAK⊥

µ

Γ ` µx. c :
xJA⊥K

definition

The translation of introduction rules, on the other hand, are quite unproblematic. Pairing
is obtained by first computing the values of the two components and then returning the
pair of the obtained values. Like for call-by-value λ-calculus, the order of evaluation is
non-canonical.

∆ ` v :
xJBK

Γ ` u :
xJAK

y:JAK `v y : JAK id
x:JBK `v x : JBK id

x:JBK, y:JAK `v (y, x) : JAK⊗ JBK
⊗

x:JBK, y:JAK `
~w(y, x) :

x(JAK⊗ JBK
) ↑

Γ, x:JBK ` u to y.
~w(y, x) :

x(JAK⊗ JBK
) chain

Γ,∆ ` v tox. u to y.
~w(y, x) :

x(JAK⊗ JBK
) chain

A product continuation waits for the computation to be finished and continues with the two
components

Γ, x:JAK, y:JAK ` c
Γ ` µ (x, y) . c : JAK⊥ ` JBK⊥

`
Γ `v

w�µ (x, y) . c :
y(JAK⊥ ` JBK⊥

) thunk

Γ `
~ww�µ (x, y) . c :

xy(JAK⊥ ` JBK⊥
) ↑

The introduction rules of nullary connectives 1 and ⊥ are straightforward.
The small discrepancy which prevents this translation to be only done with macro is due

to the fact that linear l is a single-sided sequent calculus. In a two-sided sequent calculus, the
cut rule is already asymetric and their are two µ-binders: one for the left-hand side variables
and one for the right-hand side variables. The call-by-value translation of a two-sided linear l
has right-hand types translated to positive types, and left-hand types to negative types. This
is loosely the same as the call-by-value restriction in the original system l paper [CH00].

4.2.4. Call-by-name linear l. The negative translation of linear l follows along the same
lines. It has a call-by-name flavour, as witnessed by the identity rule

x:↓N `v x : ↓N id

x:↓N ` force x : N
force

Hypotheses are shifted in the context, and forced at use point. A product N ⊗M is encoded
as
x(yJNK⊗

yJMK
)
, so that a pair contains suspended computations:

Γ ` u : JNK
Γ `v ⇓u :

yJNK
thunk

∆ ` v : JMK
∆ `v ⇓v :

yJMK
thunk

Γ,∆ `v (⇓u,⇓v) :
yJNK⊗

yJMK
⊗

Γ,∆ `
~w(⇓u,⇓v) :

x(yJNK⊗
yJMK

) ↑

26 ARNAUD SPIWACK

While a pair continuation, whose type is JN⊥ `M⊥K =
xJNK⊥ ` xJMK⊥ , binds the two

(suspended) components of a product:

Γ, x:
yJNK , y:

yJMK ` c
Γ ` µ (x, y) . c :

xJNK⊥ ` xJMK⊥
`

For the cut rule, we proceed like in the call-by-value case: we have either JN⊥K =
xJNK⊥

or
yJN⊥K = JNK⊥ . The cut rule is oriented such that cutting with a pair continuation

amounts to forcing the outermost pair constructor.

Γ ` u :
xJNK⊥

∆ ` v : JNK
∆ `v ⇓v :

yJNK
thunk

Γ,∆ ` 〈u | ⇓v 〉 cut

Like in the call-by-value translation, the µ rule is duplicated:
Γ, x:

yJNK ` c
Γ `v µx. c :

xJNK⊥
↓

Γ ` µx. c : JN⊥K definition

y:
yJN⊥K ` y :

yJN⊥K
id

y:
yJN⊥K ` force y : JN⊥K

force

Γ, x:
yJNK ` c

Γ ` µx. c :
xJNK⊥

µ

Γ ` µx. c :
xyJN⊥K

definition

Γ ` µx. c to y. force y : JN⊥K chain

The evaluation strategy of the negative translation of linear l, evaluating the outermost
constructor on demand, is essentially the same behaviour as lazy programming language
such as Haskell (except that lazy programming languages have a call-by-need strategy, hence
suspended computations must be shared rather than duplicated).

Like in the call-by-value case, if we translated a two-sided sequent calculus, we would
obtain a macro-translation. And it would correspond to the call-by-name calculus of [CH00].

5. Dependent types

Polarised l, with its type-based distinction of values and computations, gives an answer to
the question of what it means for type to have effects in them: the answer is, they should
not exist. If we see the type

∏
x:AN as a generalisation of the type A(N , it is clear that x

only stands for values.
The obvious limitation is that even pure computation are ostensibly forbidden in types,

preventing proofs by computation which are quite popular in modern dependent-type-
theory-based proof assistants [Bou97]. Another, somewhat separate, issue which is not
addressed in this last section is that of the computation of types (aka strong eliminta-
tion), which would be necessary to prove, for instance, the equivalence of A ⊕ B and∑

x:1⊕1 〈x | {µ (1.()) . A , µ (2.()) . B} 〉. The latter will not even be a valid type.
Despite these limitation, this modest proposal for a dependently typed linear logic is

already a fairly expressive logic which includes dependent elimination – as described in
Section 5.2.

A DISSECTION OF L 27

5.1. Weak dependent types. A first approach to extend linear l or polarised l with
dependent types is to leverage the remark that the duplicable context behaves like a natural
deduction context. We could therefore define a dependent product

∏
x:AN like in natural

deduction. This dependent product would generalise !A(N and we would retain a separate,
non-dependent, linear arrow A (N . Such a system would be along the lines of linear
lf [CP96], except in sequent calculus form rather than a natural deduction.

There are no particular difficulty with this approach, but it has severe limitations. The
most important limitation is that such a system cannot be extended to dependent elimination.
The system we propose in this section has a dependent product which generalises the linear
arrow. In Section 5.2, we enrich it with dependent elimination.

A key point of our presentation of l so far, is that µα. 〈 t |α 〉 is essentially the same as
just t, this underlies, in particular, our encoding of pattern-matching, and of linear λ-calculus.
This is problematic if types depend on linear variables. Indeed, if t has type N , which depend
on some linear variable x, we need α to have type N⊥ which also depends on x. But variables
have to be split between t and α so x can only go on one side of the cut.

This is where the polarised discipline helps: as variables represent only values, we can
restrict type to contain values which are harmless in that they cannot perform effects by
themselves. So, it is innocuous to allow variable duplication in types. In this proposal, it is
manifested by a third context – usually denoted Θ – in the typing judgement of value, which
represents variables accessible from the type, but not from the value.

This new typing context affects principally the identity and cut rules. Indeed another
way one can think about the typing context is that it allows variables to have any type.

Ξ,Θ ` A : ?

Ξ ; Θ ; x:A `v x : A
id

Ξ ; Θ ; Γ `v t : A Ξ ; Θ,∆ ` u : A⊥

Ξ ; Θ,Γ,∆ ` 〈 t |u 〉 cut

In the cut rule, the variables which are necessary to make sense of the types in Γ and A but
occur in the computation u are kept in the typing context of the value t. In the identity rule,
the duplicable context and the typing context are joined: types do not make a difference
between linear and duplicable variables.

The full system is given in Figure 5. It makes the simplifying hypothesis that the type of
duplicable variables does not depend on linear variables. When we write Γ,∆, it is implied
that types in ∆ may depend on variables of Γ but types of Γ may not depend on variables
of ∆. Also, all context which appear in the premise of a typing rule is supposed to make
sense, hence in the cut and tensor rule, it is understood that Γ and ∆ do not depend on
each other, and in the introduction rule for ?A⊥, the context Γ does not depend on x. These
independence constraints are omitted for the sake of readability. Apart from the dependencies
between bindings in the context, the context is not assumed to have a particular ordering.
In particular, the context does not have a linear structure, in contrast with common practice
in dependently typed natural deduction. Notice that we use a dependent product

∏
x:AN

which generalises the linear arrow, rather than a more symmetric generalisation of N `M ,
this is simply by lack of a notation for the latter. We assume that duality commutes with
conversion1.

As a consequence of this presentation, values do not reference the linear variables which
occur in their types. This is a form of uniformity which values have to conform to: in the

1There is no way, in Figure 5, to actually have values in types. So of course, substitution – which is the
identity – commutes with dualisation. This assumption should rather be seen as a constraint on extensions
of the system.

28 ARNAUD SPIWACK

Reduction

〈 t |µx. c 〉 ; c[x\t]
〈µ⇑x . c | ⇑t 〉 ; c[x\t]
〈 (t, u) |µ (x, y) . c 〉 ; c[x\t, y\u]
〈 () |µ(). c 〉 ; c
〈 1.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c1[x\t]
〈 2.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c2[y\t]
〈 btc |µ bxc . c 〉 ; c[x\t]

Typing

Ξ,Θ ` A : ?

Ξ ; Θ ; x:A `v x : A
id

Ξ ; Θ ; Γ `v t : A Ξ ; Θ,∆ ` u : A⊥

Ξ ; Θ,Γ,∆ ` 〈 t |u 〉 cut

Ξ ` A : ?
Ξ, x:A ; Θ ; · `v x : A

id’
Ξ ; Γ, x:A,Ψ ` c

Ξ ; Γ ` µx. c : A⊥
µ

Ξ ; Θ ; Γ, x:A ` c
Ξ ; Θ ; Γ `v µ⇑x . c : ↓A⊥ ↓

Ξ ; Γ `v t : A

Ξ ; Γ ` ⇑t : ↑A ↑

Ξ ; Θ ; Γ `v t : A Ξ ; Θ ; ∆ `v u : B[x\t] Ξ,Θ `
∑

x:AB : ?

Ξ ; Θ ; Γ,∆ `v (t, u) :
∑

x:AB
⊗

Ξ ; Γ, x:A, y:B ` c Ξ,Γ `
∏
x:AB

⊥ : ?

Ξ ; Γ ` µ (x, y) . c :
∏
x:AB

⊥ `

Ξ ; Θ ; · `v () : 1
1

Ξ ; Γ ` c
Ξ ; Γ ` µ(). c : ⊥ ⊥

Ξ ; Θ ; Γ `v t : A

Ξ ; Θ ; Γ `v 1.t : A⊕B ⊕l
Ξ ; Γ, x:A ` c1 Ξ ; Γ, y:B ` c2

Ξ ; Γ ` {µ (1.x) . c1 , µ (2.y) . c2} : A⊥&B⊥
&

Ξ ; Θ ; Γ `v u : B

Ξ ; Θ ; Γ `v 2.u : A⊕B ⊕r

No rule for 0 Ξ ; Γ ` {} : > >

Ξ ; Θ ; · `v t : A

Ξ ; Θ ; · `v btc : !A
!

Ξ, x:A ; Γ ` c
Ξ ; Γ ` µ bxc . c : ?A⊥

?

Types

Θ ` 1 : ? Θ ` ⊥ : ?

Θ ` A : ? Θ, x:A ` B : ?

Θ `
∑

x:AB : ?

Θ ` A : ? Θ, x:A ` N : ?

Θ `
∏
x:AN : ?

Θ ` 0 : ? Θ ` > : ?
Θ ` A : ? Θ ` B : ?

Θ ` A⊕B : ?
Θ ` N : ? Θ `M : ?

Θ ` N&M : ?

Θ ` N : ?
Θ ` ↓N : ?

Θ ` A : ?
Θ ` ↑A : ?

Θ ` A : ?
Θ ` !A : ?

Θ ` N : ?
Θ ` ?N : ?

Figure 5: Weak dependent l

A DISSECTION OF L 29

types of values, term variables behave a little like the type variables of the Hindley-Milner
type system.

Maybe surprisingly, as the only substitution occur in the premises of the tensor rule,
the typing rules, in weak dependent l, of linear λ-abstraction and application correspond to
standard rules for dependently typed λ-calculus – except linear.

Linear λ abstraction λx. t which is defined, as before, as µ (x, α) . 〈 t |α 〉 demonstrates
the essential use of the typing context:

Ξ ; Γ, x:A ` t : N

Ξ,Γ, x:A ` N⊥ : ?

Ξ ; Γ, x:A ; α:N⊥ `v α : N⊥
id

Ξ ; Γ, x:A,α:N⊥ ` 〈 t |α 〉 cut

Ξ ; Γ ` µ (x, α) . 〈 t |α 〉 :
∏
x:AN

`
The typing derivation of the application t u = µα. 〈 t | (u, α) 〉 indeed performs a substitution
in the body of

∏
x:AN . The well-formedness conditions of types are omitted for brevity:

Ξ ; Γ ` t :
∏
x:AN

Ξ ; Γ ; ∆ `v u : A Ξ ; Γ ; α:N⊥[x\u] `v α : N⊥[x\u]
id

Ξ ; Γ ; ∆, α:N⊥[x\u] `v (u, α) :
∑

x:AN
⊥ ⊗

Ξ ; Γ,∆, α:N⊥[x\u] `
〈
t
∣∣ (u, α)

〉 cut

Ξ ; Γ,∆ ` µα.
〈
t
∣∣ (u, α)

〉
: N [x\u]

µ

Weak dependent l is not very expressive, nonetheless the various implementations
of lf have demonstrated that this weak kind of dependent types can already be quite
useful [Pfe91, AHMP92, HHP93, PS99]. It is also pleasant that we could derive a natural
definition for a dependently typed linear λ-calculus from design choices which are largely
technical, and were not meant to force this definition.

5.2. Dependent elimination. If weak dependent l can encode dependently typed linear
λ-calculus, as it happens, this does not extend to regular λ-calculus, as we shall demonstrate
momentarily. This is because it lacks so-called dependent elimination. Going back to the
always quite representative multiplicative fragment, let us consider the following statement,
in ml-like syntax:

let (x,y) = u in v
or in the syntax of l:

µα.
〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉
In weak dependent l, the type of v cannot depend on x or y as it has the dual type of α’s,
but α is not in the scope of x and y.

Concretely, let us suppose that we have a positive type u = v whose formation rule is
given by:

Ξ ; Γ ` u : A Ξ ; Γ ` v : A

Ξ,Γ ` u = v : ?

And introduction rule
Ξ,Θ ` u = u : ?

Ξ ; Θ ; Γ `v refl : u = u

We will not need the dual type.

30 ARNAUD SPIWACK

With such a type it would be desirable, but is not possible in weak dependent l, to prove
the statement ∏

x:A⊗B

x∑y:A

∑
z:Bx = (y, z)

That every value in A⊗B is a pair.
Dependent elimination allows, in let (x,y) = u in v to link u with (x,y) in the type of v.

Dependent elimination comes in two main brands: Paulin’s style [PM93], as used by Coq,
and Coquand’s style [Coq92], as used by Agda. In Paulin elimination, the type of v may
contain references to (x,y) which are transformed into occurrences of u in the type of the
whole term. Coquand’s elimination does the same to the whole typing context. Since, in l,
elimination is introduced over commands, which do not have a distinguished type, dependent
elimination in dependent l will resemble Coquand elimination most.

Looking closely at the representation of elimination in l

µα.
〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉
we can observe that dependent elimination must be split in two parts – in contrast with
natural deduction where elimination is a single operation. First, in µ (x, y) . 〈 v |α 〉, the
types of v and α may depend on (x, y) and this dependency must be hidden as x and y are
going out of scope. And in a second time – when cutting with u – u must be linked into the
type.

This leads to the idea of introducing a distinguished variable, which we write • which
stands for the value against which the current computation will be cut2. Notice that by
definition, since variables only stand for values and values are cut against computation, the
cut variable • can only appear in the typing judgement of computations, not of values, nor
of commands.

In the typing judgements of computations, we use names such as N• or Γ• as reminders
that the type or context can contain the cut variable. Here is the cut rule:

Ξ ; Θ ; Γ `v t : A Ξ ; Θ,∆• ` u : A⊥

Ξ ; Θ,Γ,∆•[•\t] ` 〈 t |u 〉 cut

Notice how, since the duplicable context is shared between the value and the computation,
it does not make sense for it to contain the cut variable. The cut rule eliminates the cut
variable by replacing it with the value t as the semantics of the cut variable mandates.

The cut variable is introduced by the µ-binders, notably in the introduction rule for
N `M :

Ξ ; Γ, x:A, y:B,Γ•[•\(x, y)] ` c Ξ,Γ `
∏
x:AB

⊥

Ξ ; Γ,Γ• ` µ (x, y) . c :
∏
x:AB

⊥ `
So, indeed, c is typed as if the hypothetical cut value was (x, y). In this rule

∏
x:AB

⊥ does
not mention the cut variable. Just as in the cut rule, the type A⊥ does not mention the
cut variable. Types of computation are duals of types of values which do not have the cut
variable. All of the mentions of type variable are in the context, which is not a problem
since the current continuation can be hosted there. Indeed here is the rule for dependent

2Credit where credit is due: this idea was originally formulated by Hugo Herbelin in an unpublished draft.
The context was an intuitionistic dependent type theory in sequent calculus form. It is mentionned at the
very end of [Her05, Chapter 3]

A DISSECTION OF L 31

elimination of pairs:

Ξ ; Γ, x:A, y:B ` v : N•[•\(x, y)]

Ξ,Γ, x:A, y:B ` N•[•\(x, y)]
⊥

: ?

Ξ ; Γ, x:A, y:B ; α:N•[•\(x, y)]
⊥ `v α : N•[•\(x, y)]

⊥ id

Ξ ; Γ, x:A, y:B,α:N•[•\(x, y)]
⊥ ` 〈 v |α 〉

cut

Ξ ; Γ, α:N•
⊥ ` µ (x, y) . 〈 v |α 〉 : A⊥ `B⊥

`
Which can be further combined with a value u to obtain a rule akin to dependent elimination
in natural deduction (omitting the type well-formedness constraint):

Ξ ; Γ ; ∆ `v u : A⊗B

Ξ ; Γ, x:A, y:B ` v : N•[•\(x, y)]....
Ξ ; Γ, α:N•

⊥ ` µ (x, y) . 〈 v |α 〉 : A⊥ `B⊥

Ξ ; Γ,∆, α:N•
⊥[•\u] `

〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉 cut

Ξ ; Γ,∆ ` µα.
〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉
: N•[•\u]

µ

The full system can be found in Figure 6. Let us illustrate dependent l further by
showing the rules for dependent product of duplicable terms. That is, the typing derivation for
λ bxc . t which is defined (see Section 3.1) as µ (bxc , α) . 〈 t |α 〉 = µ (β, α) . 〈β |µ bxc . 〈 t |α 〉 〉
(using shortcut rules for variables as in Section 3.1, the shortcut omit type well-formedness
verification):

Ξ, x:A ; · ` t : N•[•\bxc]
Ξ, x:A ; α:N•

⊥[•\bxc] ` 〈 t |α 〉
cutα

Ξ ; α:N•
⊥ ` µ bxc . 〈 t |α 〉 : ?A⊥

?

Ξ ; β:!A,α:N•
⊥[•\β] `

〈
β
∣∣µ bxc . 〈 t |α 〉 〉 cutβ

Ξ ; · ` µ (β, α) .
〈
β
∣∣µ bxc . 〈 t |α 〉 〉 :

∏
β:!AN•[•\β]

⊗

As it happens this is not exactly the rule of dependent product in λ-calculus. Namely, all the
free variables in a type are of the form bxc while it is not necessarily the case of bound variables.
Remember, however, from Section 3.2 how intuitionistic conjunction and disjunction could be
encoded as !A⊗ !B and !A⊕ !B respectively. Encoding of intuitionistic positive connectives
require a strict interleaving of linear positive connectives and the duplicability modality. This
is essentially the same phenomenon which is reflected in the duplicable dependent product
rule.

As a last example, let us return to the equality example of the beginning of the present
section. We promised a proof derivation for:∏

x:A⊗B

x∑y:A

∑
z:Bx = (y, z)

This sort of statement is quite precisely what dependent elimination provides. A derivation of
this statement can be found in Figure 7 Note the necessary step which uses the cut variable,
without the cut variable the derivation is no longer valid (in weak dependent l, the cut rule
would lead to · ; · ; · ` refl : x = (y, z), which is certainly an underivable sequent).

There is a limit to dependent l, however: it does not enjoy subject reduction. This is
due to the fact that commutative cuts are simply reductions in l. Commutative conversion
are not usually correct in dependently typed languages with dependent elimination (though
there are much more many correct commutative conversion with Coquand elimination than
with Paulin elimination).

32 ARNAUD SPIWACK

Reduction

〈 t |µx. c 〉 ; c[x\t]
〈µ⇑x . c | ⇑t 〉 ; c[x\t]
〈 (t, u) |µ (x, y) . c 〉 ; c[x\t, y\u]
〈 () |µ(). c 〉 ; c
〈 1.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c1[x\t]
〈 2.t | {µ (1.x) . c1 , µ (2.y) . c2} 〉 ; c2[y\t]
〈 btc |µ bxc . c 〉 ; c[x\t]

Typing

Ξ,Θ ` A : ?

Ξ ; Θ ; x:A `v x : A
id

Ξ ; Θ ; Γ `v t : A Ξ ; Θ,∆• ` u : A⊥

Ξ ; Θ,Γ,∆•[•\t] ` 〈 t |u 〉 cut

Ξ ` A : ?
Ξ, x:A,Ψ ; Θ ; · `v x : A

id’
Ξ ; Γ, x:A,Γ•[•\x] ` c
Ξ ; Γ,Γ• ` µx. c : A⊥

µ

Ξ ; Γ, x:A ` c
Ξ ; Θ ; Γ `v µ⇑x . c : ↓A⊥ ↓

Ξ ; Γ `v t : A

Ξ ; Γ ` ⇑t : ↑A ↑

Ξ ; Θ ; Γ `v t : A Ξ ; Θ ; ∆ `v u : B[x\t] Ξ,Θ `
∑

x:AB : ?

Ξ ; Θ ; Γ,∆ `v (t, u) :
∑

x:AB
⊗

Ξ ; Γ, x:A, y:B,Γ•[•\(x, y)] ` c Ξ,Γ `
∏
x:AB

⊥

Ξ ; Γ,Γ• ` µ (x, y) . c :
∏
x:AB

⊥ `

Ξ ; Θ ; · `v () : 1
1

Ξ ; Γ,Γ•[•\()] ` c
Ξ ; Γ,Γ• ` µ(). c : ⊥ ⊥

Ξ ; Θ ; Γ `v t : A

Ξ ; Θ ; Γ `v 1.t : A⊕B ⊕l
Ξ ; Γ, x:A,Γ•[•\1.x] ` c1 Ξ ; Γ, y:B,Γ•[•\2.y] ` c2

Ξ ; Γ,Γ• ` {µ (1.x) . c1 , µ (2.y) . c2} : A⊥&B⊥
&

Ξ ; Θ ; Γ `v u : B

Ξ ; Θ ; Γ `v 2.u : A⊕B ⊕r

No rule for 0 Ξ ; Γ,Γ• ` {} : > >

Ξ ; Θ ; · `v t : A

Ξ ; Θ ; · `v btc : !A
!

Ξ, x:A ; Γ•[•\bxc] ` c
Ξ ; Γ• ` µ bxc . c : ?A⊥

?

Figure 6: Dependent l with dependent elimination

As we have seen above, elimination of a value of tensor type can be given the following
(specialised) type:

Ξ ; Γ ; ∆ `v u : A⊗B Ξ ; Γ, x:A, y:B ` v : C•[•\(x, y)] (N•[•\(x, y)]

Ξ ; Γ,∆ ` µα.
〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉
: C•[•\u] (N•[•\u]

With Ξ ; Γ,∆ ; Π `v t : C•[•\u] we have

Ξ ; Γ,∆,Π `
(
µα.

〈
u
∣∣µ (x, y) . 〈 v |α 〉

〉)
t : N•[•\u]

A DISSECTION OF L 33

· ; · ; y:A `v y : A
id
· ; · ; z:B `v z : B

id · ; · ; · `v refl : (y, z) = (y, z)

· ; · ; z:B `v (z, refl) :
∑

z′:B (y, z) =
(
y, z′

) ⊗

· ; · ; y:A, z:B `v
(
y, (z, refl)

)
:
∑

y′:A

∑
z′:B (y, z) =

(
y′, z′

) ⊗

· ; y:A, z:B `
~w(y, (z, refl)

)
:
x∑y′:A

∑
z′:B (y, z) =

(
y′, z′

) ↑
· ; y:A, z:B,α:

(x∑y′:A

∑
z′:B (y, z) =

(
y′, z′

))⊥
`
〈~w(y, (z, refl)

) ∣∣∣α〉 cutα

· ; α:

(x∑y:A

∑
z:B• = (y, z)

)⊥
` µ (y, z) .

〈~w(y, (z, refl)
) ∣∣∣α〉 : A⊥ `B⊥

`

· ; x:A⊗B,α:

(x∑y:A

∑
z:Bx = (y, z)

)⊥
`
〈
x

∣∣∣∣µ (y, z) .
〈~w(y, (z, refl)

) ∣∣∣α〉〉 cutx

· ; x:A⊗B ` µα.
〈
x

∣∣∣∣µ (y, z) .
〈~w(y, (z, refl)

) ∣∣∣α〉〉 :
x∑y:A

∑
z:Bx = (y, z)

µ

· ; · ` λx. µα.
〈
x

∣∣∣∣µ (y, z) .
〈~w(y, (z, refl)

) ∣∣∣α〉〉 :
∏
x:A⊗B

x∑y:A

∑
z:Bx = (y, z)

λ

Figure 7: Derivation of an equality result with dependent elimination

However, the application (µα. 〈u |µ (x, y) . 〈 v |α 〉 〉) t reduces (against an arbitrary
context) to µα. 〈u |µ (x, y) . 〈 v | (t, α) 〉 〉 (see Section 3.5). And, unfortunately, the latter is
not necessarily well-typed. For it to be well-typed we need a stronger statement on t:

∀vΨ, (Ξ ; Γ ; Ψ ` v : A⊗B)→ (Ξ ; Γ,Ψ ; Π•[•\v] ` t : C•[•\v])

If t has such types, then in particular Ξ ; Γ, x:A, y:B ; Π•[•\(x, y)] ` t : C•[•\(x, y)], which
will be the proof obligation since dependent elimination takes care of evolving the Π• context
through the proof.

Not all values are as such, however, and subject reduction may indeed fail. To fix subject
reduction, we would need to rely on a more involved mechanism than simple substitutions to
specialise the context. Some sort of equality constraints would probably work.

However, the lack of subject reduction is not necessarily bad. Indeed, if u, above, is
of the form (a, b) (which every closed u is), then µα. 〈 (a, b) |µ (x, y) . 〈 v | (t, α) 〉 〉 further
reduces to µα.

〈
v[x\a, y\b]

∣∣ (t, α)
〉
which has indeed the appropriate type. So, at least for

closed terms, a failure of subject reduction can be fixed by additional reductions. This sort
of type safety property can be proved using Krivine realisability [MM09]. Such a proof is left
to future work, so let it be the last act of this article to state the following conjecture:

Conjecture 5.1 (Type safety). For any closed term · ; · ` t : N of negative type, the normal
form c of the command 〈 t |α 〉 has type · ; α:N⊥ ` c.

Conclusion

Linear l, together with its polarised and dependent flavours, is a rich toolkit which models
a wide variety of phenomena in programming languages. It is very expressive, with many
features from programming languages being macro-expressible in linear and polarised l.

34 ARNAUD SPIWACK

A testimony to the robustness of the diverse variants is that the macros – λ-abstraction
and deep pattern matching – defined for linear l are left unchanged in polarised and
dependent l. Only their typing evolves. Though polarised l enforces a strong call-by-value
style restriction, which forces translations from programming language to be more complex
(but still macros) as we have finer control on their behaviour. This expressiveness makes
linar l and its variants good candidates both as intermediate languages and as programming
languages.

Dependent l gives a novel account of dependent types, where positive connectives – hence
dependent elimination – are an essential part of the design. The limitations of dependent l
clearly have to be addressed in the future. In particular, the lack of strong elimination. In
a sense the types of dependent l are values, but strong elimination mandates that they
be computations. This is still unclear what it would mean in this context, however. It is
nonetheless desirable to expand the expressiveness of dependent l to have a family of system
of the same kind as pts, which requires strong elimination.

To give a more realistic account of programming languages (with or without dependent
types), the logical types should be extended with inductive types. In the context of one-sided
sequent calculus, the dual of an inductive type would be a co-inductive type. Inductive types
would be positive, and hence introduced by values and eliminated by recursive fixed points
(presumably defined by pattern-matching). Dually, co-inductive types are introduced by
recursive fixed points and eliminated by values. This would validate the co-pattern point of
view, heralded for instance in [APTS13].

References

[AHMP92] Arnon Avron, Furio Honsell, Ian A. Mason, and Robert Pollack. Using typed lambda calculus
to implement formal systems on a machine. Journal of Automated Reasoning, 9(3):309–354,
December 1992.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns. In Proceedings
of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages
- POPL ’13, page 27, New York, New York, USA, 2013. ACM Press.

[AR99] V.Michele Abrusci and Paul Ruet. Non-commutative logic I: the multiplicative fragment. Annals
of Pure and Applied Logic, 101(1):29–64, November 1999.

[BKR99] Nick Benton, Andrew Kennedy, and George Russell. Compiling standard ML to Java bytecodes.
ACM SIGPLAN Notices, 34(1):129–140, January 1999.

[Bou97] Samuel Boutin. Using reflection to build efficient and certified decision procedures. Theoretical
Aspects of Computer Software, 1281:515–529, 1997.

[BW96] Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. Logic in Computer
Science, 1996. LICS’, 1996.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. ACM SIGPLAN Notices,
35(9):233–243, September 2000.

[CMM10] Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of computation under focus.
In Cristian Calude and Vladimiro Sassone, editors, Theoretical Computer Science, IFIP Advances
in Information and Communication Technology, pages 165–181. Springer Berlin Heidelberg, 2010.

[Coq92] Thierry Coquand. Pattern matching with dependent types. In Proceedings of the Workshop on
Types for Proofs and Programs, 1992.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. Logic in Computer Science,
1996., 72:1–72, 1996.

A DISSECTION OF L 35

[DK13] Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking
for higher-rank polymorphism. Proceedings of the 18th ACM SIGPLAN international conference
on Functional programming - ICFP ’13, page 429, 2013.

[DL06] Roy Dyckhoff and Stéphane Lengrand. LJQ: a strongly focused calculus for intuitionistic logic.
In Logical Approaches to Computational Barriers, 2006.

[EMgS09] Jeff Egger, Rasmus Mø gelberg, and Alex Simpson. Enriching an effect calculus with linear types.
Computer Science Logic, 2009.

[Fel90] Matthias Felleisen. On the expressive power of programming languages. In Neil Jones, editor,
ESOP’90, number 432 in Lecture Notes in Computer Science, pages 134–151. Springer Berlin
Heidelberg, 1990.

[Gir96] JY Girard. Proof-nets: the parallel syntax for proof-theory. Lecture Notes in Pure and Applied
Mathematics, pages 1–28, 1996.

[Har12] Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, 2012.

[Her05] Hugo Herbelin. C’est maintenant qu’on calcule: au cœur de la dualité. Habilitation, Université
Paris 11, 2005.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the ACM, 40(1):143–184, January 1993.

[KB11] Neelakantan R. Krishnaswami and Nick Benton. A semantic model for graphical user interfaces.
ACM SIGPLAN Notices, 46(9):45, September 2011.

[Lau02] Olivier Laurent. Étude de la polarisation en logique. PhD thesis, Université Aix-Marseille 2, 2002.
[LDM10] Stéphane Lengrand, Roy Dyckhoff, and James McKinna. A Focused Sequent Calculus Framework

for Proof Search in Pure Type Systems. Logical Methods in Computer Science, 2010.
[Ler90] Xavier Leroy. The ZINC experiment: an economical implementation of the ML language. Technical

report, Inria, 1990.
[Lev01] Paul Blain Levy. Call-By-Push-Value. PhD thesis, Queen Mary, University of London, 2001.
[Mar95] Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis, University of

Glasgow, 1995.
[MM09] Guillaume Munch-Maccagnoni. Focalisation and classical realisability. In Computer Science Logic,

number June, pages 409–423, 2009.
[MM13] Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs

and Proofs. PhD thesis, Université Paris Diderot - Paris 7, 2013.
[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. Logical frameworks, 1991.
[Plo75] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,

1(2):125–159, December 1975.
[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq rules and properties. In Marc

Bezem and JanFriso Groote, editors, Typed Lambda Calculi and Applications, volume 664 of
Lecture Notes in Computer Science, pages 328–345. Springer Berlin Heidelberg, 1993.

[PS98] Simon Peyton Jones and André Santos. A transformation-based optimiser for Haskell. Science of
Computer Programming, 32(1-3):3–47, September 1998.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf—a meta-logical framework
for deductive systems. Automated Deduction—CADE-16, 1632:202–206, 1999.

[See89] RAG Seely. Linear logic, *-autonomous categories and cofree coalgebras. In Categories in Computer
Science and Logic. American Mathematical Society, 1989.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. ACM SIGPLAN Notices, 38(9):189–201,
September 2003.

[Zei08] Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, 153(1-3):66–96,
April 2008.

	Introduction
	1. Core l
	1.1. Typing as classical sequent calculus
	1.2. Typing as linear sequent calculus

	2. Linear l
	2.1. Multiplicative fragment
	2.2. Additive fragment
	2.3. Exponentials

	3. Practical l
	3.1. Patterns
	3.2. Natural deduction
	3.3. Linear logic proofs
	3.4. Programming constructs
	3.5. Commutative cuts

	4. Polarised l
	4.1. Restricting substitution
	4.2. Translations

	5. Dependent types
	5.1. Weak dependent types
	5.2. Dependent elimination

	Conclusion
	References

